Cascallares, María G. (2017) Ciclos circadianos : estructuras emergentes en poblaciones de osciladores acoplados. / Circadian cycles: emergent structures in populations of coupled oscillators. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 5Mb |
Resumen en español
Todos los seres vivos, desde las bacterias a los humanos, tienen la capacidad de sincronizarse y anticiparse a los cambios periódicos impuestos por el ambiente, lo cual les otorga una ventaja evolutiva. Los ritmos circadianos, que son los ritmos cuyo período es cercano a la duración de un día, son generados por relojes a nivel molecular, que se sincronizan con el ambiente y se organizan para dar como resultado un comportamiento con ese período. En esta tesis estudiamos tres de los organismos modelos más estudiados en cronobiología: las cianobacterias, los ratones y la mosca de la fruta. En cianobacterias analizamos el efecto de la modulación de la luz en la competencia entre cepas mutantes para el reloj. Utilizando un modelo teórico, se estudió el valor adaptativo del reloj. Propusimos un experimento sencillo para comprobar las predicciones del modelo. Para estudiar el reloj de mamíferos también se utilizó un modelo matemático. Estudiamos la sincronización entre dos grupos de osciladores acoplados basados en la evidencia experimental de la existencia de dos grupos en el núcleo supraquiasmático, que es el reloj central de los mamíferos. Encontramos que en algunos casos el comportamiento global del sistema no es intuitivo y por ejemplo incrementar el acoplamiento entre ambos grupos puede ir en contra de una mayor sincronización global. Por ultimo, trabajamos en colaboración con la Dra Lorena Franco en la creación de su laboratorio de Drosophila melanogaster. Desarrollamos un dispositivo para hacer registro de la actividad locomotora de las moscas y realizamos experimentos con moscas wild-type y moscas mutantes en el reloj. Encontramos que las propiedades estad´ısticas de la actividad de la mosca son similares a las del ratón en el caso de las moscas wild-type. En el caso de las mutantes se evidencia en los patrones de movimiento que su reloj no funciona correctamente. Ademas, nos interesamos en un output menos estudiado, que es el comportamiento de oviposición. En primer lugar comprobamos que este ritmo también es circadiano. En búsqueda de cuál es la jerarquía de los relojes que controlan este ritmo, realizamos experimentos con distintos mutantes. Encontramos que las moscas con el reloj alterado en todos sus tejidos no presentan ritmicidad en la puesta de huevos y que las neuronas reloj son necesarias para mantener el ritmo.
Resumen en inglés
All living organisms, including animals, plants and many tiny bacteria, have the ability to synchronize and predict periodical environmental changes, which put organisms at a selective advantage in evolutionary terms. Circadian rhythms are those behavioral and physiological changes that follow a roughly 24-hour cycle, responding primarily to light and darkness. These rhythms are driven by a molecular clock. In this thesis, we will study circadian rhythms in three important model organisms: cyanobacteria, mice, and the fruit fly. We analyzed the effect of having a modulation in the amount of light when two different strains of cyanobacteria grow in competition. Using a theoretical model, we studied the adaptative value of the clock. We have proposed a simple experiment, in order to verify our results. We also used a mathematical model to study the mammalian clock. In mammals, the pacemaker neurons are located in the suprachiasmatic nucleus (SCN) of the brain, which can be divided between a ventrolateral core and a dorsomedial shell region. We studied the synchronization properties of a system formed by two groups of fully coupled phase oscillators. Even for such a simple system, we show that counterintuitive behaviors can take place. In particular, we show that in some cases increasing the coupling between the oscillators can hinder global synchronization. Finally, we have worked in collaboration with Dr. Lorena Franco, who is starting her Drosophila’s lab. We developed a tracking system to monitor the fly’s locomotor activity, and performed experiments with wild-type and mutant flies. We found that several statistical properties of the locomotor activity are similar in mice and flies, and showed that the activity patterns in mutant flies are different from wild-type flies. We have also analyzed a poorly studied circadian rhythm, the egg-laying behavior. In the first place, we studied the molecular clock participation on egg-laying behavior by analyzing oviposition in control flies. Then we studied if oviposition is regulated by central or peripheral clocks and found that the central molecular clock is necessary for rhythmic oviposition.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Synchronization; Sincronización; [Circadian cycle; Ciclos circadianos; Complex networks; Redes complejas] |
Referencias: | [1] Aschoff, J. Handbook of behavioural neurobiology. Biological Rhythms. Plenum Press, 4, 1981. 2, 6 [2] deMairan, J. Observation botanique. Histoire de L’AcademieRoyale des Sciences, p´ag. 35, 1729. 4 [3] Mitsui, A., Kumazawa, S., Takahashi, A., Ikemoto, H., Cao, S., Arai, T. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, 323, 720–722, 1986. 4, 23 [4] Beling, I. Uber das zeitgedachtnis der bienen. Z. Vgl. Physiol, 9, 259, 1929. 4 [5] Kramer, G. Experiments on birds orientation. Naturwissenschaften, 94, 265, 1952. 4 [6] Richter, C. A behavioristic study of the activity of the rat. Comp. Psychol. Monogr., 1, 1, 1922. 4 [7] Simpson, S., Gaibraith, J. Observations on the normal temperature of the monkey and it diurnal variation, and on the effect of changes in the daily routine on this variation. R. Soc. Edinb., 45, 65, 1906. 4 [8] Aschoff, J., Wever, R. Spontanperiodik des menschen bei ausschluss aller zeitgeber. Naturwissenschaften, 49, 337, 1962. 5 [9] Pittendrigh, C. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol, 25, 169, 1960. 5, 17 [10] Tresguerres, J. Fisiolog´ıa humana. 4a ed´on. McGraw-Hill Medical, 2007. 6 [11] Hedges, S. B. The origin and evolution of model organisms. Nature Reviews Genetics, 3, 2002. 6 [12] Toh, K., Jones, C., He, Y., Eide, J., Hinz, W., Virshup, D., et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Scien- ce, 291, 1040–1043, 2001. 7, 15, 39 [13] Cohen, S., Golden, S. Circadian rhythms in cyanobacteria. Microbiol Mol Biol Rev., 79, 373–385, 2005. 7 [14] Grobbelaar, N., Huang, T., Li, H., Chow, T. Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1. FEMS. Microbiol. Lett., 37, 173–177, 1986. 7, 23 [15] Huang, T., Chow, T. Characterization of the rhythmic nitrogen-fixing activity of Synechococcus RF-1 at the transcription level. Curr. Microbiol., 20, 23–26, 1990. 7 [16] Read, N., Jaffe, D., FitzHugh, W., Ma, L., Smirnov, S., Purcell, S., et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859, 2003. 7 [17] Pittendrigh, C., Bruce, V., Rosensweig, N., Rubin, M. A biological clock in Neurospora. Nature, 184, 169–170, 1959. 7 [18] Dunlap, J., Loros, J. Analysis of circadian rhythms in neurospora: Overview of assays and genetic and molecular biological manipulation. Methods Enzymol., 393, 22, 2005. 7 [19] Barak, S., Tobin, E., Green, R., Andronis, C., Sugano, S. All in good time: the Arabidopsis circadian clock. Trends Plant Sci, 5, 517–522, 2000. 8 [20] Nakamichi, N. Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol, 52, 1709–1718, 2011. 8 [21] Dubruille, R., Emery, P. A plastic clock: How circadian rhythms respond to environmental cues in Drosophila. Molecular Neurobiology, 38, 129–45, 2008. 9 [22] Panda, S., Hogenesch, J., Kay., S. Circadian rhythms from flies to human. Nature, 417, 329–35, 2002. 9 [23] Sheeba, V., Kaneko, M., Sharma, V., Holmes, T. The Drosophila circadian pacemaker circuit: Pas de Deux or Tarantella? Crit. Rev. Biochem. Mol. Biol., 43(1), 37–61, 2008. 9 [24] Meinertzhagen, I. Connectome studies on Drosophila: a short perspective on a tiny brain. J Neurogenet., 30, 62–8, 2016. 9 [25] Ralph, M., Menaker, M. A mutation of the circadian system in golden hamsters. Science, 241, 1225–7, 1988. 9 [26] Ralph, M., Foster, R., Davis, F., Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science, 247, 975–8, 1990. 10, 36 [27] Lowrey, P., Takahashi, J. Genetics of circadian rhythms in mammalian model organisms. Advances in genetics., 241, 175–230, 2011. 10, 39 [28] Vitaterna, M., King, D., Chang, A., Kornhauser, J., Lowrey, P., McDonald, J., et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 264, 719–725, 1994. 10 [29] Konopka, R., Benzer, S. Clock mutants of Drosophila melanogaster. PNAS, 68, 2112–6, 1971. 10, 64, 65, 66, 69 [30] Dunlap, J. Molecular basis for circadian clocks. Cell, 96, 1999. 10, 11 [31] Ko, C., Takahashi, J. Molecular components of the mammalian circadian clock. Human Molecular Genetics, 15, R271–R277, 2006. 11 [32] Hardin, P., Yu, W. Circadian oscillators of Drosophila and mammals. Journal of Cell Science, 119, 4793–95, 2006. 12 [33] Qin, X., Byrne, M., Xu, Y., Mori, T., Johnson, C. Coupling of a core posttranslational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLOS Biology, 8, e1000394, 2010. 12 [34] Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C., Tanabe, A., et al. Expression of a gene cluster kaiabc as a circadian feedback process in cyanobacteria. Science, 281 (5382), 1519–23, 1998. 12, 23 [35] Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Y. Murayama, e. a. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 308, 414–415, 2005. 12 [36] Ito, H., Kageyama, H., Nakajima, M., T. Oyama, e. a. Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nat Struct Mol Biol, 14, 1084–1088, 2007. 12 [37] Kitayama, Y., Nishiwaki, T., Terauchi, K., Kondo, T. Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes and Development, 22, 1513–21, 2008. 12 [38] Hertel, S., Brettschneider, C., Axmann, I. Revealing a two-loop transcriptional feedback mechanism in the cyanobacterial circadian clock. PLOS Computational Biology, 9, e1002966, 2013. 13, 25 [39] Rosato, E., Kyriacou, C. The role of natural selection in circadian behaviour: a molecular-genetic approach. Essays in Biochemistry, 49, 71–85, 2011. 13, 14 [40] Gallego, M., Virshup, D. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol., 8, 139–148, 2007. 14, 15 [41] Stoleru, D., Nawathean, P., Fern´andez, M., Menet, J., Ceriani, M., Rosbash, M. The Drosophila circadian network is a seasonal timer. Cell, 129, 207–219, 2007. 14, 69 [42] Martinek, S., Inonog, S., Manoukian, A., Young, M. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell, 6, 769–79, 2001. 14 [43] Glossop, N., Lyons, L., Hardin, P. Interlocked feedbackloops within the Drosophila circadian pacemaker. Science, 286, 766–768, 1999. 14 [44] Hardin, P. Essential and expendable features of thecircadian timekeeping mechanism. Curr Opin Neurobiol, 16, 686–692, 2006. 14 [45] Xu, Y., Padiath, O., Shapiro, R., Jones, C., Wu, S. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature, 434, 640–44, 2005. 15 [46] Mackey, S. Biological Rhythms Workshop IA: molecular basis of rhythms generation. Cold Spring Harb Symp Quant Biol., 7, 7–19, 2007. 15 [47] Golombek, D. Cronobiolog´ıa humana: ritmos y relojes biol´gicos en la salud y en la enfermedad. Universidad Nacional de Quilmes, 2007. 18 [48] Sokolove, P., Bushell, W. The chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol., 72 (1), 131–60, 1978. 18 [49] Woelfle, M., Ouyang, Y., Phanvijhitsiri, K., Johnson, C. The adaptative value of circadian clocks: An experiment assesment in cyanobacteria. Curr. Biology, 14, 1481–1486, 2004. 21, 23, 24, 25, 29, 32 [50] Peleato, D. Las cianobacterias: cooperaci´on vs. competencia. Real Academia de Ciencias Exactas, Fisicas, Quimicas y Naturales de Zaragoza, 2011. 21 [51] Clark, D., Moore, R., Vodopich, D. Botany. McGraw-Hill Companies, Inc., 1998.53] Stal, L., Krumbein,W. Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles. Arch. Microbiol., 143, 67–71, 1985. 23 [54] Johnson, C., Mori, T., Xu, Y. A cyanobacterial circadian clockwork. Current Biology, 18, 816–825, 208. 23 [55] Liu, Y., Tsinoremas, N., Johnson, C., Lebedeva, N., Golden, S., Ishiura, M., et al. Circadian orchestration of gene expression in cyanobacteria. Genes Dev, 9, 1469–1478, 1995. 23 [56] Johnson, C., Golden, S., Ishiura, M., Kondo, T. Circadian clocks in prokaryotes. Mol. Microbiol., 21, 5–11, 1996. 23 [57] Vaze, K., Sharma, V. On the adaptive significance of circadian clocks for their owners. Chronobiol. Int., 30, 413–433, 2013. 23 [58] Ouyang, Y., Andersson, C., Kondo, T., Golden, S., Johnson, C. Resonating circadian clocks enhance fitness in cyanobacteria. PNAS, 95, 8660–8664, 1998. 25 [59] Roussel, M., Gonze, D., Goldbeter, A. Modelling the differential fitness of cyanobacterial strains whose circadian oscillators have different free-running periods: Comparing the mutual inhibition and substrate depletion hypotheses. J. Theor. Biol., 205, 321–340, 2000. 25 [60] Gonze, D., Roussel, M., Goldbeter, A. A model for the enhancement of fitness in cyanobacteria based on resonance of a circadian oscillator with the external light-dark cycle. J. Theor. Biol., 214, 577–597, 2002. 25, 26, 27, 37 [61] Garner, W., Allard, H. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Monthly Weather Review, 1920. 27 [62] Hamner, K. Interrelation of light and darkness in photoperiodic induction. Bo- tanical Gazette, 101, 658–687, 1940. 28 [63] http://www.timeanddate.com/worldclock/sunrise.html. 28 [64] Dodd, A., Salathia, N., Hall, A., K´evei, E., T´oth, R., et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science, 309, 630–633, 2005. 33 [52] Herrero, A., Flores, E. The Cyanobacteria: Molecular Biology, Genomics, and Evolution. Caister Academic Press, 2008. 22 [65] Ma, P., Woelfle, M., Johnson, C. An evolutionary fitness enhancement conferred by the circadian system in cyanobacteria. Chaos, Solitons & Fractals, 50, 65–74, 2013. 33 [66] Nguyen, D., Xu, T. The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech., 1, 56–66, 2008. 35 [67] Paigen, K. One hundred years of mouse genetics: an intellectual history. the classical period (1902– 1980). Genetics, 163, 1–7, 2003. 35 [68] Peters, L., Robledo, R., Bult, C., Churchill, G., Paigen, B., Svenson, K. The mouse as a model for human biology: a resource guide for complex trait analysis. Nature Reviews Genetics, 8, 58–69, 2007. 35 [69] Pierce, B. Gen´etica: un enfoque conceptual. Ed. M´edica Panamericana, 2009. 36 [70] Moore, R., Eichler, B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res., 42, 201–6, 1972. 36 [71] Sujino, M., Masumoto, K., Yamaguchi, S., van der Horst, G., Okamura, H., Inouye, S. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr. Biol., 13, 664–8, 2003. 36 [72] Herzog, E., Aton, S., Numano, R., Sakaki, Y., Tei, H. Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J. Biol. Rhythms., 19, 35–46, 2004. 37 [73] Liu, C., Weaver, D., Strogatz, S., Reppert, S. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell, 91, 855–860, 1997. 37 [74] Evans, J., Leise, T., Castanon-Cervantes, O., Davidson, A. Intrinsic regulation of spatiotemporal organization within the suprachiasmatic nucleus. PLoS One, 2011. 37 [75] Foley, N., Tong, T., Foley, D., Lesauter, J., Welsh, D., Silver, R. Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur J Neurosci, 2011. 37 [76] Welsh, D., Takahashi, J., Kay, S. Suprachiasmatic Nucleus: Cell autonomy and network properties. Annu. Rev. Physiol., 72, 551–77, 2010. 37 [77] Lincoln, G. Melatonin entrainment of circannual rhythms. Chronobiol Int., 23 (1), 301–6, 2006. 38 [78] Yamamoto, T., Nakahata, Y., Soma, H., Akashi, M., Mamine, T., Takumi, T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Molecular Biology., 5:18, 2004. 38 [79] Yoshino, J., Klein, S. A novel link between circadian clocks and adipose tissue energy metabolism. Diabetes, 62 (7), 2175–2177, 2013. 38 [80] Yoo, S., Yamazaki, S., Lowrey, P., Shimomura, K., Ko, C. PERIOD2:: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PNAS, 101, 5339–5346, 2004. 38 [81] Schibler, U., Ripperger, J., Brown, S. Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms, 18, 250–60, 2003. 38 [82] Oishi, K., Sakamoto, K., Okada, T., Ishida, T. N. N. Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun, 253, 199–203, 1998. 38 [83] Chung, S., Son, G., Kim, K. Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochimica et Biophysica, 1812, 581–591, 2011. 39 [84] Hirota, T., Fukada, Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci, 21, 359–368, 2004. 39 [85] Takahashi, J., Hong, H., Ko, C., McDeamon, E. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet, 9, 764–775, 2008. 39 [86] Myung, J., Hong, S., Hatanaka, F., Nakajim, Y., DeSchutter, E., Takumi, T. Period coding of Bmal1 oscillators in the Suprachiasmatic Nucleus. The Journal of Neuroscience, 32, 8900–8918, 2008. 39 [87] Pikovsky, A., Rosenblum, M., Kurths, J. Synchronization. A universal concept in nonlinear sciences. Cambridge University Press, 2001. 43, 45, 51 [88] Pecora, L., Carrol, T. Synchronization in chaotic systems. Physical Review Letters, 64 (821), 1990. 44 [89] Kuramoto, Y. Chemical Oscillations, Waves and Turbulence. Springer, 1984. 45, 51 [90] Winfree, T. The Geometry of Biological Time. Interdisciplinary Applied Mathematics. Springer, 2001. [91] Strogatz, S. Sync. The Emerging Science of Spontaneous Order. Hyperion, 2003. 51 [92] Manrubia, S., Mikhailov, A., Zanette, D. Emergence of Dynamical Order. Synchronization Phenomena in Complex Systems. World Scientific, 2004. 52 [93] Acebr´on, J., Bonilla, L., P´erez Vicente, C., Ritort, F., Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77, 137, 2005. 45, 51 [94] Kiss, I., Quigg, M., Chun, S., Kori, H., Hudson, J. Characterization of synchronization in interacting groups of oscillators: Application to seizures. Biophysical Journal, 94, 1121–1130, 2008. 48, 49, 51, 52 [95] Mikhailov, A., Zanette, D., Zhai, Y., Kiss, I., Hudson, J. Cooperative action of coherent groups in broadly heterogeneous populations of interactinf chemical oscillators. PNAS, 101, 10890–10894, 2004. 48, 52 [96] Daan, S., Pittendrigh, C. A functional analysis of circadian pacemakers in nocturnal rodents. Journal of comparative physiology, 106, 253, 1976. 49 [97] Helfrich-F¨orster, C. Does the morning and evening oscillator model fit better for flies or mice? J. Biol. Rhythms, 24, 259–270, 2009. 49 [98] Hoffman, K., Illnerov´a, H., Vanecek, J. Effect of photoperiod and of one minute light at night-time on the pineal rhythm on N-acetyltransferase activity in the Djungarian hamster Phodopus sungorus. Biol Reprod, 24, 551–556, 1981. 49 [99] Yan, L., Foley, N., Bobula, J., Kriegsfeld, L., Silver, R. Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters. J. Neurosci, 25, 9017–26, 2005. 49 [100] Quintero, J., Kuhlman, S., McMahon, D. The biological clock nucleus: a multiphasic oscillator network regulated by light. J. Neurosci., 22, 8070, 2003. 49, 61 [101] Okuda, K., Kuramoto, Y. Mutual entrainment between populations of coupled oscillators. Prog. Theor. Phys., 86, 1159–1176, 1991. 49 [102] Montbri´o, E., Kurths, J., Blasius, B. Synchronization of two interacting populations of oscillators. Phys. Rev. E, 70, 056125–1:4, 2004. 49 [103] Sheeba, J., Chandrasekar, V., Stefanovska, A., McClintock, P. Routes to synchrony between asymmetrically interacting oscillator ensembles. Phys. Rev. E, 78, 025201, 2008. 49 [104] Barreto, E., Hunt, B., Ott, E., So, P. Synchronization in networks of networks: The onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators. Phys. Rev. E, 77, 036107, 2008. 49 [105] Abrams, D., Mirollo, R., Strogatz, S.,Wiley, D. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 101, 084103, 2008. 49 [106] Martens, E., Barreto, E., Strogatz, S., Ott, E., So, P., Antonsen, T. Exact results for the Kuramoto model with a bimodal frequency distribution. Physical Review E, 79, 026204, 2009. 49, 51 [107] Kiss, I., Zhai, Y., Hudson, J. Emerging coherence in a population of chemical oscillators. Science, 296, 1676–1678, 2002. 51, 52 [108] Ott, E., Antonsen, T. Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 18, 037113, 2008. 51 [109] Sakaguchi, H. Cooperative phenomena in coupled oscillator systems under external fields. Prog. Theor. Phys., 79, 39, 1988. 52 [110] Engelbrecht, J., Mirollo, R. Structure of long-term average frequencies for Kuramoto oscillator systems. Phys. Rev. Lett., 109, 2012. [111] Pazo, D., Montbrio, E. Low-dimensional dynamics of populations of pulsecoupled oscillators. Phys. Rev. X, 4, 2014. 52 [112] Abraham, U., Granada, A., Westermark, P., Heine, M., Kramer, A., Herzel, H. Coupling governs entrainment range of circadian clocks. Molecular Systems Bio- logy, 6, 438, 2010. 52 [113] Buzna, L., Lozano, S., D´ıaz-Guilera, A. Synchronization in symmetric bipolar population networks. Phys. Rev. E, 80, 066120, 2009. 54 [114] Schaap, J., Albus, H., van der Leest, H., Eilers, P., D´et´ari, L., Meijer, J. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. PNAS, 100(26), 15994–15999, 2003. 56 [115] de la Iglesia, H., Meyer, J., Carpino Jr, A., Schwartz, W. Antiphase oscillation of the left and right Suprachiasmatic Nuclei. Science, 290, 2000. 57, 6 [116] Li, D., Zhou, C. Organization of anti-phase synchronization pattern in neural networks: what are the key factors? Frontiers in Systems Neuroscience, 5, 2011. 57 [117] Weiner, J. Time, Love, Memory: A Great Biologist and His Quest for the Origins of Behavior. Vintage Books, 1998. 64, 103 [118] Vosshall, L. Into the mind of a fly. Nature, 450, 193–97, 2007. 65 [119] Hao, H., Allen, D., Hardin, P. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol., 17 (7), 3687–3693, 1997. 65 [120] Konopka, R., Hamblen-Coyle, M., Jamison, C., Hall, J. An ultrashort clock mutation at the period locus of drosophila melanogaster that reveals some new features of the fly’s circadian system. J Biol Rhythms., 9 (3), 189–216, 1994. 66 [121] Hamblen, M., White, N., Emery, P., Kaiser, K., Hall, J. Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics, 149 (1), 165–178, 1998. 66 [122] Sehgal, A., Price, J., Man, B., Young, M. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science, 263, 1603–1606, 1994. 66 [123] W¨ulbeck, C., Szabo, G., Shafer, O., Helfrich-F¨orster, C., Stanewsky, R. The novel Drosophila timblind mutation affects behavioral rhythms but not periodic eclosion. Genetics, 169 (2), 751 – 766, 2005. 66 [124] Allada, R., White, N., So, W., Hall, J., Rosbash., M. A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell, 93 (5), 791 – 804, 1998. 66 [125] Rutila, J., Suri, V., Le, M., So, W., Rosbash, M., Hall, J. {CYCLE} is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell, 93 (5), 805 – 814, 1998. 66 [126] Yoshii, T., W¨ulbeck, C., Sehadova, H., Veleri, S., Bichler, D., Stanewsky, R., et al. The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila’s clock. J Neurosci., 29 (8), 2597–610, 2009. 66 [127] Stoleru, D., Peng, Y., Agosto, J., Rosbash, M. Coupled oscillators control morning and evening locomotor behaviour in Drosophila. Nature, 431, 862–868, 2004. 66 [128] Bao, S., Rihel, J., Bjes, E., Fan, J., Price, J. The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA. J Neurosci., 21 (18), 7117–26, 2001. 66 [129] R.Stanewsky, Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S., et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in drosophila. Cell, 95 (5), 681–92, 1998. 66, 68 [130] Allada, R., Chung, B. Circadian organization of behavior and physiology in drosophila. Annual review of physiology, 72 (7), 605–624, 2010. 67, 68 [131] Kadener, S., Menet, J., Schoer, R., Rosbash, M. Circadian transcription contributes to core period determination in Drosophila. PLoS Biol, 6, e119, 2008. 67 [132] Helfrich-F¨orster, C. The circadian system of drosophila melanogaster and its light input pathways. Zoology, 105, 297–312, 2002. 68 [133] Emery, P., So, W., Kaneko, M., Hall, J., Rosbash, M. PCRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell, 95, 669–679, 1998. 68 [134] Ceriani, M., Darlington, T., Staknis, D., M´as, P., Petti, A., Weitz, C., et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science, 285, 553–6, 1999. 68 [135] Busza, A., Emery-Le, M., Rosbash, M., Emery, P. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science, 304, 1503–6, 2004. 68 [136] Kloss, B., Rothenfluh, A., Young, M., Saez, L. Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron, 30, 699–706, 2001. 68 [137] Kaneko, M. Neural substrates of Drosophila rhythms revealed by mutants and molecular manipulations. Curr Opin Neurobiol, 8, 652–658, 1998. 68 [138] Kaneko, M., Hall, J. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol., 422 (1), 66–94, 2000. 68 [139] Grima, B., Chelot, E., Xia, R., Rouyer, F. Morning and evening activity peaks are controlled by different clock neurons of the Drosophila brain. Nature, 431, 869–873, 2004. 69 [140] Helfrich-F¨orster, C., Shafer, O., W¨ulbec, C., Grieshaber, E., Rieger, D., Taghert, P. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. The Journal of Comparative Neurology, 500 (1), 47–70, 2007. 69 [141] Sheeba, V. The Drosophila melanogaster circadian pacemaker circuit. J. Genet., 87, 385–93, 2008. 69 [142] Helfrich-F¨orster, C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. PNAS, 92 (2), 612–616, 1995. 69 [143] Peng, Y., Stoleru, D., Levine, J., Hall, J., Rosbash, M. Drosophila free-running rhythms require intercellular communication. PLoS Biol, 1, E13, 2003. 69 [144] Lin, Y., Stormo, G., Taghert, P. The neuropeptide pigment-dispersing factor coordinate pacemaker interactions in the Drosophila circadian system. J. Neu- rosci, 24 (2), 7951–57, 2004. [145] Stoleru, D., Peng, Y., Nawathean, P., Rosbash, M. A resseting signal between drosophila pacemakers synchronizes mornign and evenign activity. Nature, 439, 238–242, 2005. 69 [146] Krishnan, B., Dryer, S., Hardin, P. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature, 400, 375–78, 1999. 69 [147] Lee, J., Emery, I. Circadian regulation in the ability of Drosophila to combat pathogenic infections. Curr Biol, 18, 195–99, 2008. 69 [148] Sakai, T., Ishida, N. Circadian rhythms of female mating activity governed by clock genes in Drosophila. PNAS, 98, 9221–25, 2001. 69 [149] Lyons, L., Roman, G. Circadian modulation of short-term memory in drosophila. Learn Mem, 16, 19–27, 2009. 69 [150] Pfeiffenberger, C., Lear, B., Keegan, K., Allada, R. Locomotor activity level monitoring using the Drosophila Activity Monitoring (DAM) System. Cold Spring Harb Protoc., 11, 2010. 70 [151] Bachleitner, W., Kempinger, L., W¨ulbeck, C., Rieger, D., Helfrich-F¨orster, C. Moonlight shifts the endogenous clock of Drosophila melanogaster. PNAS, 104 (9), 3538–3543, 2007. 71 [152] Gilestro, G. Video tracking and analysis of sleep in Drosophila melanogaster. Nature Prot, 7 (5), 995–1007, 2012. 72, 107 [153] Seiger, M., Kink, J. The effect of anesthesia on the photoresponses of four sympatric species of Drosophila. Behav Genet, 23 (1), 99–104, 1993. 75 [154] Wolf, M., Rockman, H. Drosophila, genetic screens, and cardiac function. Cir- culation Research, 109, 794–806, 2011. 75, 76 [155] Proekt, A., Banavar, J., Maritan, A., Pfaff, D. Scale invariance in the dynamics of spontaneous behavior. PNAS, 109 (26), 10564–10569, 2012. 79, 80, 86 [156] Lo, C., Chou, T., Penzel, T., Scammell, T., Strecker, R., Stanley, E., et al. Common scale-invariant patterns of sleep–wake transitions across mammalian species. PNAS, 101, 17545–17548, 2004. 82, 85 [157] Anteneodo, C., Chialvo, D. Unraveling the fluctuations of animal motor activity. Chaos, 19, 33123, 2009. 88, 91 [158] Allemand, R. Influence of light condition modification on the circadian rhythm of vitellogenesis and ovulation in Drosophila melanogaster. J. Insect Physiol., 22, 1075–1080, 1976. 95 [159] Howlader, G., Sharma, V. Circadian regulation of egglaying behavior in fruit flies Drosophila melanogaster. J. Insect Physiol., 52, 779–785, 2006. 95 [160] Manjunatha, T., Dass, S., Sharma, V. Egg-laying rhythm in Drosophila melanogaster. Journal of Genetics, 87 (5), 495–504, 2008. 95 |
Materias: | Física > Física estadística |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria |
Código ID: | 641 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 26 Oct 2017 10:12 |
Última Modificación: | 26 Mar 2018 10:36 |
Personal del repositorio solamente: página de control del documento