Propiedades electrónicas y magnéticas en óxidos multiferroicos y en materiales nanoestructurados / Electrical and magnetic properties in multiferroic oides and nanoestructure materials

Lohr, Javier H. (2017) Propiedades electrónicas y magnéticas en óxidos multiferroicos y en materiales nanoestructurados / Electrical and magnetic properties in multiferroic oides and nanoestructure materials. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
50Mb

Resumen en español

El interés en los materiales multiferroicos que presentan coexistencia de orden magnético y orden ferroeléctrico, se ha incrementado en los últimos años debido a su potencial tecnológico. Dentro de la familia de los materiales multiferroicos, el mayor interés lo presentan los compuestos magnetoeléctricos, es decir aquellos en los cuales el orden ferroeléctrico esta acoplado con un orden magnético. La posibilidad de controlar la magnetización con un campo eléctrico es muy interesante para su aplicación en memorias. Por otro lado se esta avanzando en la creación de estructuras heterogéneas, conocidas como multiferroicos articiales, que combinen materiales magnéticos con materiales ferroeléctricos, las cuales permiten un amplio abanico de posibilidades y una mejora en las propiedades tanto magnéticas como ferroeléctricas. En este trabajo se presenta el estudio de nuevos materiales con posibilidades de tener propiedades multiferroicas. Para ello se utilizaron distintas estrategias. La primera fue la síntesis de una familia de compositos nanoestructurados que combinan el material ferromagnético La_0.5 Sr_0.5 CoO_3 (LSCO) con el multiferroico BiFeO_3 (BFO), x La-0.5 Sr_0.5 CoO_3-(1- x) BiFeO_3. Otra estrategia fue la sustitución cationica de compuestos con propiedades multiferroicas con la idea de mejorar sus propiedades. Se sintetizaron y se estudiaron las propiedades eléctricas y magnéticas de dos familias de óxidos en estado masivo. Una de ellas es la familia RCrMnO_5 (R=Sm, Eu, Gd, Tb, Ho y Er). Se tomo como referencia la familia de compuestos multiferroicos RMn_2O_5 en los cuales el orden magnético y el ferroeléctrico están relacionados. La segunda familia de compuestos del tipo RFe_0.5 Co_0.5 O_3 se baso en las ortoferritas multiferroicas RFeO3 como referencia. Ademas, pensado en las posibles nanoestructuras que pueden conformar una estructura heterogénea se realizaron estudios eléctricos en nanoestructuras individuales como nanotubos ferromagnéticos, nanohilos metálicos y compuestos planares que podrían utilizarse como electrodos en diferentes dispositivos. Los compositos xLSCO-(1 - x) BFO (x = 0; 0.1; 0.2; 0.5; 0.8; 0.9; 1) fueron sintetizados a partir de polvos nanoestructurados de las fases que los conforman, los cuales fueron preparados previa e individualmente por la técnica de spray pirolisis. Los polvos fueron mezclados mecanicamente en las proporciones requeridas. Primeramente se estudio el LSCO nanoestructurado, el mismo presenta propiedades que dieren de las del material masivo. Su conductividad eléctrica aumenta con la temperatura a diferencia del material masivo el cual es metálico. La conductividad eléctrica del material sintetizado se puede describir con el modelo de Glazman y Matveev en el cual la conducción es a través de dos y tres estados localizados entre barreras aislantes. En principio, estas barreras están asociadas a la gran cantidad de bordes de granos en el material. Por su parte la magnetización de saturación se ve reducida producto de una capa magneticamente muerta en los bordes de los granos. En cuanto a los compositos, todos (salvo los extremos) presentaron una señal magnética adicional a la presente en las fases individuales. Se efectuaron mediciones de permitividad eléctrica, ciclos de polarizacion vs. campo eléctrico y mediciones de acople magnetoeléctrico. Estas ultimas mostraron que en el composito x=0.1 el acople es débil comparado con otros compositos reportados en la bibliografía. En el estudio de compuestos masivos de la familia RCrMnO_5, se estudiaron en profundidad las propiedades magnéticas. A pesar de que las mediciones con difracción de neutrones no mostraron orden magnético de largo alcance (R= Er, Ho, Tb), en las mediciones de magnetización a bajas temperaturas se observa una anomalía que podría estar asociada a un orden de corto alcance debido a la frustración magnética. En el caso de R=Sm esta anomalía es mas evidente indicando un orden antiferromagnético de largo alcance. Por su parte, las mediciones de magnetocapacitancia muestran un máximo cercano a dicha transición. Anomalías similares también fueron observadas en las mediciones de la componente de perdidas eléctricas. Este comportamiento puede estar mas bien asociado a un efecto magnetorresistivo que capacitivo. La resistividad electrica muestra un comportamiento tipo variable range hopping (p / T -1/4). Los resultados mas prometedores se encontraron en los compuestos de la familia RFe_0.5 Co_0.5 O_3. En medidas de magnetización se observa una transición ferromagnética débil (antiferro alabeado) y otra a temperaturas menores que muestra una transición asociada a un reordenamiento de espín. La conductividad electrica presenta un comportamiento tipo variable range hopping y se destacan resultados de corriente piroeléctrica que muestran una polarizacion remanente en TmFe_0.5 Co_0.5 O_3 y en YbFe_0.5Co_ 0.5O_3 por debajo de la temperatura de orden magnético. Por ultimo, pensado en la formación de futuras heteroestructuras, se presenta el estudio de las propiedades eléctricas en nanoestructuras de modo macroscópico y microscópico. Se presentan mediciones in-situ de una película de oxido de grafeno altamente reducido (HRGO). Se pudo medir la resistividad de un parche de HRGO presentando una baja resistividad que también fue medida macroscopicamente. Por otro lado se realizaron mediciones en nanohilos de plata individuales. Estos presentaron un aumento de la resistividad al disminuir el diámetro del mismo el cual se pudo describir con los resultados obtenidos del modelo de Mayadas.

Resumen en inglés

In last years, the interest in multiferroic materials, with magnetic and ferroelectric order, has been incremented due to potential technological applications. The ability to control magnetization by applying an electric feld is very attractive for memory devices. The most interesting materials in the multiferroic family are materials where the magnetic and the ferroelectric order are strongly coupled. These are called magnetoelectric materials. On the other hand, the new advances in the fabrication of heterostructures that combine ferroelectric and magnetic materials allow enlarging the possibilities and improving the magnetic and ferroelectric properties. In this work, we present a study of new materials with the possibilities of presenting multiferroic properties. Different strategies were used. The first one was the synthesis of nanocomposites combining the ferromagnetic oxide La_0.5 Sr_0.5 CoO_3 (LSCO) with the multiferroic BiFeO_3 (BFO), x La_0.5 Sr_ 0.5 CoO_3-(1- x) BiFeO_3 The second strategy was the cationic substitution of multiferroic compounds with the aim of improving their properties. Two families of bulk oxides were synthesised and their electric and magnetic properties were studied. One of these families is RCrMnO_5 (R=Sm, Eu, Gd, Tb, Ho y Er), which is isostructural with the multiferroic reference compounds RMn2O_5. The other family under study is RFe0:5Co0:5O3, which is based on the multiferroic RFeO_3 orthoferrites. We also present electrical studies on individual nanostructures like ferromagnetic nanotubes, metallic nanowires, and planar compounds which could be used as electrodes in different devices or as integrating part of new heterostructures. Composites xLSCO-(1 - x) BFO(x = 0; 0.1; 0.2; 0.5; 0.8; 0.9; 1) were synthesized starting from nanopowders of the composite phases. The nanopowders were synthesized by the spray-pyrolysis technique and then mechanically mixed in an agate mortar in the desired stoichiometry. The nanostructured LSCO was studied in the first place, showing differences with respect to the bulk properties. The electric conductivity increases with temperature, this is opposite to the behaviour of the bulk material, which is metallic. The conductivity of nanostructured LSCO can be described with the Glazman-Matveev model. The conduction mechanism is by hopping between localized states within insulating barriers. We associate these barriers to the grain boundaries in the material. The saturation magnetization is reduced as compared to the bulk, due to the magnetic dead layer at the grain boundary. We perform electric permittivit electric polarization loops and magneto-electric effect measurements. The composite with x = 0:1 composition shows a magnetoelectric coupling which is weak compared with other reported composites. The magnetic properties of RCrMnO_5 bulk materials are extensively studied. Despite the fact that neutron diffraction measurements do not show any re ections associated to a long-range magnetic order in R=Er, Ho, Tb, magnetization measurements present an anomaly at low temperatures. This anomaly could be associated to a shortrange magnetic order due to magnetic frustration. For the R=Sm case, the magnetic anomaly is clearly visible and similar to the cases with long antiferromagnetic order. On the other hand, the magneto-capacitance measurements show a maximum near this anomaly. The anomalies were observed on the loss component of the magnetocapacitance. This behaviour can be associated to a magneto-resistive rather than capacitive effect. The electric resistivity shows a variable range hopping behaviour (p / T -1/4). The most promising results were found in the RFe_0.5Co_0.5O_3 family. The magnetic measurements show a weak ferromagnetic transition (canted antiferromagnetic) and below this temperature a second transition is observed, associated to spin reorientation. Electrical conductivity also shows a variable range hopping behaviour. It is remarkable that the remanent electric polarization was observed below the magnetic order temperature by pyroelectric measurements in TmFe_0.5 Co_0.5 O_3 y en YbFe_0.5Co_ 0.5O_3 Finally, we present macroscopic and microscopic studies of the electrical properties of nanostructures, thinking of possible heterestructures to be fabricated in the future. I-V curves were measured on a highly reduced graphene oxide film (HRGO). The electrical resistivity of a HRGO patch shows low values close to the obtained macroscopically. Also individual silver nanowires were measured. These present increasing resistivity with decreasing nanowire diameter.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Nanoestructure; Nanoestructura; Oxides; Óxido; Magnetism; Magnetismo.
Referencias:[1] Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y. Magnetic control of ferroelectric polarization. Nature, 426, 55, 2003. [2] Fujita, T., Kohn, K. Ferroelectricity of SmMn2O5. Ferroelectrics, 219, 155, 1998. [3] Inomata, A., Kohn, K. Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5. Journal of Physics: Condensed Matter, 8, 2673, 1996. [4] Hur, N., Park, S., Sharma, P. A., Ahn, J. S., Guha, S., Cheong, S. W. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429, 392, 2004. [5] Hur, N., Park, S., Sharma, P. A., Guha, S., Cheong, S. W. Colossal magnetodielectric effects in DyMn2O5. Physical Review Letters, 93, 107207, 2004. [6] Blake, G. R., Chapon, L. C., Radaelli, P. G., Park, S., Hur, N., Cheong, S. W., et al. Spin structure and magnetic frustration in multiferroic RMn2O5 (R = Tb; Ho; Dy). Physical Review B, 71, 214402, 2005. [7] Wakimoto, S., Kimura, H., Sakamoto, Y., Fukunaga, M., Noda, Y., Takeda, M., et al. Role of magnetic chirality in polarization ip upon a commensurateincommensurate magnetic phase transition in YMn2O5. Physical Review B, 88, 140403, 2013. [8] Kimura, H., Kamada, Y., Noda, Y., Kaneko, K., Metoki, N., Kohn, K. Ferroelectricity induced by incommensurate-commensurate magnetic phase transition in multiferroic HoMn2O5. Journal of the Physical Society of Japan, 75, 113701, 2006. [9] Acharya, S., Mondal, J., Ghosh, S., Roy, S., Chakrabarti, P. Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Materials Letters, 64, 415, 2010. [10] Lee, J. H., Jeong, Y. K., Park, J. H., Oak, M. A., Jang, H. M., Son, J. Y., et al. Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Physical Review Letters, 107, 117201, 2011. [11] Chowdhury, U., Goswami, S., Bhattacharya, D., Ghosh, J., Basu, S., Neogi, S. Room temperature multiferroicity in orthorhombic LuFeO3. Applied Physics Letters, 105, 052911, 2014. [12] Shang, M., Zhang, C., Zhang, T., Yuan, L., Ge, L., Yuan, H., et al. The multiferroic perovskite YFeO3. Applied Physics Letters, 102, 062903, 2013. [13] Nan, C. W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physivcal Review B, 50, 6082, 1994. [14] Molegraaf, H. J. A., Hoffman, J., Vaz, C. A. F., Gariglio, S., van der Marel, D., Ahn, C. H., et al. Magnetoelectric effects in complex oxides with competing ground states. Advanced Materials, 21, 3470, 2009. [15] Martin, L., Crane, S., Chu, Y., Holcomb, M., Gajek, M., Huijben, M., et al. Multiferroics and magnetoelectrics: thin films and nanostructures. Journal of Physics: Condensed Matter, 20, 434220, 2008. [16] Hu, J. M., Chen, L. Q., Nan, C. W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Advanced Materials, 28, 15, 2016. [17] Zheng, H., Wang, J., Lo and, S. E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science, 303 (5658), 661, 2004. [18] Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M. P., Yang, P.-L., et al. Electrically assisted magnetic recording in multiferroic nanostructures. Nano Letters, 7, 1586, 2007. [19] Zhu, Q. X., Yang, M. M., Zheng, M., Zheng, R. K., Guo, L. J., Wang, Y., et al. Ultrahigh tunability of room temperature electronic transport and ferromagnetism in dilute magnetic semiconductor and PMN-PT single-crystal-based field effect transistors via electric charge mediation. Advanced Functional Materials, 25, 1111, 2015. [20] Zhang, C., Wang, F., Dong, C., Gao, C., Jia, C., Jiang, C., et al. Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1=3Nb2=3)0:7Ti0:3O3 interface. Nanoscale, 7, 4187, 2015. [21] Nan, C. W., Bichurin, M. I., Dong, S., Viehland, D., Srinivasan, G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. Journal of Applied Physics, 103, 031101, 2008. [22] Morrish, A. H. The Physical Principles of Magnetism. John Wiley and Sons, Inc., 1965. [23] Cullity, B. D. Introduction to Magnetic Materials. Addison-Wesley Publishin Company, Inc., 1972. [24] Coey, J. M. D. Magnetism and Magnetic Materials. Cambridge University Press, 2009. [25] Curie, P. Proprietes magnetiques des corps a diverses temperatures. 4. Gauthier- Villars et fils, 1895. [26] Dzyaloshinskii, I. A thermodynamic theory of \weak" ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids, 4, 241, 1958. [27] Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Physical Review, 120, 91, 1960. [28] Khomskii, D. I. Multiferroics: Different ways to combine magnetism and ferroelectricity. Journal of Magnetism and Magnetic Materials, 306, 1, 2006. [29] Khomskii, D. I. Classifying multiferroics: Mechanism and effects. Physics, 2, 20, 2009. [30] Cheong, S. W., Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nature materials, 6, 13, 2007. [31] Mercone, S., Wahl, A., Pautrat, A., Pollet, M., Simon, C. Anomaly in the dielectric response at the charge-orbital-ordering transition of Pr0:67Ca0:33MnO3. Physical Review B, 69, 174433, May 2004. [32] Efremov, D. V., Van Den Brink, J., Khomskii, D. I. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nature materials, 3, 853, 2004. [33] Van Aken, B. B., Palstra, T. T., Filippetti, A., Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3. Nature materials, 3, 164, 2004. [34] Tokura, Y., Seki, S. Multiferroics with spiral spin orders. Advanced Materials, 22, 1554, 2010. [35] Katsura, H., Nagaosa, N., Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Physical Review Letters, 95, 057205, 2005. 36] Choi, Y. J., Yi, H. T., Lee, S., Huang, Q., Kiryukhin, V., Cheong, S. W. Ferroelectricity in an Ising chain magnet. Physical Review Letters, 100, 047601, 2008. [37] Landau, L. D., Lifshitz, E. M. Statistical physics. UK: Pergamon, 1980. [38] Velev, J. P., Jaswal, S. S., Tsymbal, E. Y. Multiferroic and magnetoelectric materials and interfaces. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369, 3069, 2011. [39] Fischer, P., Polomska, M., Sosnowska, I., Szymanski, M. Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics, 13, 1931, 1980. [40] Arnold, D. C., Knight, K. S., Morrison, F. D., Lightfoot, P. Ferroelectricparaelectric transition in BiFeO3: crystal structure of the orthorhombic B phase. Physical Review Letters, 102, 027602, 2009. [41] Ryu, J., Vazquez Carazo, A., Uchino, K., Kim, H. E. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Japanese Journal of Applied Physics, 40, 4948, 2001. [42] Lahtinen, T. H. E., Franke, K. J. A., van Dijken, S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Scientific Reports, 2, 258, 2012. [43] Hu, J. M., Yang, T., Wang, J., Huang, H., Zhang, J., Chen, L. Q., et al. Purely electric-field-driven perpendicular magnetization reversal. Nano Letters, 15, 616, 2015. [44] Heron, J., Bosse, J., He, Q., Gao, Y., Trassin, M., Ye, L., et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature, 516, 370, 2014. [45] Eerenstein, W., Wiora, M., Prieto, J., Scott, J., Mathur, N. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature materials, 6, 348, 2007. [46] Cui, B., Song, C., Mao, H., Wu, H., Li, F., Peng, J., et al. Magnetoelectric coupling induced by interfacial orbital reconstruction. Advanced Materials, 27, 6651, 2015. [47] Nan, T., Zhou, Z., Liu, M., Yang, X., Gao, Y., Assaf, B. A., et al. Quantifi- cation of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Scientific reports, 4, 3688, 2014. [48] Webster, T. J. Nanophase ceramics: the future orthopedic and dental implant material. Advances in chemical engineering, 27, 125, 2001. [49] Webster, T., Siegel, R., Bizios, R. Nanostructured ceramics and composite materials for orthopaedic-dental implants, 2001. US Patent 6,270,347. [50] Siegel, R. W., Fougere, G. E. Mechanical properties of nanophase metals. Na- nostructured Materials, 6, 205, 1995. [51] Sobolev, K., Gutierrez, M. F. How nanotechnology can change the concrete world. American Ceramic Society Bulletin, 84, 14, 2005. [52] Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature materials, 4, 366, 2005. [53] Chan, W. C., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology, 13, 40, 2002. [54] Giacovazzo, C. Fundamentals of crystallography, pag. 228. Oxford university, 2002. [55] Byer, R., Roundy, C. Pyroelectric coefficient direct measurement technique and application to a nsec response time detector. IEEE Transactions on Sonics and Ultrasonics, 19, 333, 1972. [56] Sawyer, C. B., Tower, C. H. Rochelle salt as a dielectric. Physical Review, 35, 269, 1930. [57] Fukunaga, M., Noda, Y. New technique for measuring ferroelectric and antiferroelectric hysteresis loops. Journal of the Physical Society of Japan, 77, 064706, 2008. [58] Fukunaga, M., Noda, Y. Improvement of the Double-Wave Method for ferroelectric hysteresis loops and application to multiferroic EuMn2O5. Journal of Korean Physical Society, 55, 888, 2009. [59] Scott, J. F., Kammerdiner, L., Parris, M., Traynor, S., Ottenbacher, V., Shawabkeh, A., et al. Switching kinetics of lead zirconate titanate submicron thin-film memories. Journal of Applied Physics, 64, 787, 1988. [60] Duong, G. V., Groessinger, R., Schoenhart, M., Bueno-Basques, D. The lock-in technique for studying magnetoelectric effect. Journal of Magnetism and Mag- netic Materials, 316, 390, 2007. [61] Josephson, B. D. Possible new effects in superconductive tunnelling. Physics Letters, 1, 251, 1962. [62] Foner, S. Versatile and sensitive vibrating-sample magnetometer. Review of Scientific Instruments, 30, 548, 1959. [63] Zysler, R. Propiedades de aleaciones magneticas diluidas. Proyecto Fin de Carrera, Instituto Balseiro, Universidad Nacional de Cuyo y Comision Nacional de Energía Atomica, 1985. [64] Wu, J., Leighton, C. Glassy ferromagnetism and magnetic phase separation in La1-xSrxCoO3. Physical Review B, 67, 174408, 2003. [65] Golovanov, V., Mihaly, L., Moodenbaugh, A. R. Magnetoresistance in La1-xSrxCoO3 for 0.05 -< x -<0.25 . Physical Review B, 53, 8207, 1996. [66] Takahashi, H., Munakata, F., Yamanaka, M. Theoretical investigation of the electronic structure of LaCoO3 by ab-initio molecular-orbital calculations. Physical Review B, 53, 3731, 1996. [67] Saleta, M. E., Granada, M., Curiale, J., Benavides, R., Troiani, H. E., Sanchez, R. D. Room-temperature I { V characteristics of a single hollow La2=3Ca1=3MnO3 microparticle. Journal of Physics: Condensed Matter, 23, 275301, 2011. [68] Saleta, M. E. Nanoestructuracion y magnetismo de planos y partículas de oxidos formando nanotubos y esferas huecas. Tesis Doctoral, Instituto Balseiro, Universidad Nacional de Cuyo y Comision Nacional de Energia Atomica, Marzo 2011. [69] Grenier, J. C., Ghodbane, S., Demazeau, G., Pouchard, M., Hagenmuller, P. Le cobaltite de strontium Sr2Co2O5 : Caracterisation et proprietes magnetiques. Materials Research Bulletin, 14, 831, 1979. [70] Samal, D., Kumar, P. S. A. A critical re-examination and revised phase diagram of La1-xSrxCoO3 . Journal of Physics: Condensed Matter, 23, 016001, 2011. [71] Curiale, J., Granada, M., Troiani, H. E., Sanchez, R. D., Leyva, A. G., Levy, P., et al. Magnetic dead layer in ferromagnetic manganite nanoparticles. Applied Physics Letters, 95, 043106, 2009. [72] Lopez-Quintela, M. A., Hueso, L. E., Rivas, J., Rivadulla, F. Intergranular magnetoresistance in nanomanganites. Nanotechnology, 14, 212, 2003. [73] Curiale, C. J. Nanohilos y nanotubos magneticos. Preparacion, caracterizacion microsetructural y estudio de las propiedades electricas y magneticas. Tesis Doctoral, Instituto Balseiro, Universidad Nacional de Cuyo y Comision Nacional de Energía Atomica, Noviembre 2008. [74] Stoner, E. C., Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 240, 599, 1948. [75] Wohlfarth, E. P. Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. Journal of Applied Physics, 29, 595, 1958. [76] Street, R., Woolley, J. C. A study of magnetic viscosity. Proceedings of the Physical Society. Section A, 62, 562, 1949. [77] Wohlfarth, E. P. The coefficient of magnetic viscosity. Journal of Physics F: Metal Physics, 14, L155, 1984. [78] Glazman, L., Matveev, K. Inelastic tunneling across thin amorphous films. So- vietic Physics Journal of Experimental and Theoretical Physics, 67, 1276, 1988. [79] Xu, Y., Ephron, D., Beasley, M. R. Directed inelastic hopping of electrons through metal-insulator-metal tunnel junctions. Physical Review B, 52, 2843, 1995. [80] Hwang, H. Y., Cheong, S. W., Ong, N. P., Batlogg, B. Spin-polarized intergrain tunneling in La2=3Sr1=3MnO3. Physical Review Letters, 77, 2041, 1996. [81] Gupta, A., Gong, G. Q., Xiao, G., Duncombe, P. R., Lecoeur, P., Trouilloud, P., et al. Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Physical Review B, 54, R15629, 1996. [82] Kim, T. H., Uehara, M., Cheong, S. W., Lee, S. Large room-temperature intergrain magnetoresistance in double perovskite SrFe1-x(Mo or Re)xO3. Applied Physics Letters, 74, 1737, 1999. [83] Hwang, H., Cheong, S. W. Low-field magnetoresistance in the pyrochlore Tl2Mn2O7. Nature, 389 (6654), 942, 1997. [84] Hueso, L. E., Rivadulla, F., Sanchez, R. D., Caeiro, D., Jardon, C., Vazquez- Vazquez, C., et al. In uence of the grain-size and oxygen stoichiometry on magnetic and transport properties of polycrystalline La0:67Ca0:33MnO3 -+ perovskites. Journal of Magnetism and Magnetic Materials, 189, 321, 1998. [85] Rivadulla, F., Hueso, L. E., Rivas, J., Blanco, M. C., Lopez-Quintela, M., Sanchez, R. Effects of electrochemical reduction on the magnetotransport properties of La0:67Ca0:33MnO3 -+ nanoparticles. Journal of Magnetism and Magnetic Materials, 203, 253, 1999. [86] Wang, Y., Fan, H. J. Low-Field Magnetoresistance Effect in Core-Shell Structured La0:7Sr0:3CoO3 Nanoparticles. Small, 8, 1060, 2012. [87] Hamaguchi, M., Aoyama, K., Asanuma, S., Uesu, Y., Katsufuji, T. Electric-fieldinduced resistance switching universally observed in transition-metal-oxide thin films. Applied Physics Letters, 88, 142508, 2006. [88] Fu, Y. J., Xia, F. J., Jia, Y. L., Jia, C. J., Li, J. Y., Dai, X. H., et al. Bipolar resistive switching behavior of La0:5Sr0:5CoO3-+ films for nonvolatile memory applications. Applied Physics Letters, 104, 223505, 2014. [89] Catalan, G., Scott, J. F. Physics and Applications of Bismuth Ferrite. Advanced Materials, 21, 2463, 2009. [90] Zvezdin, A., Kadomtseva, A., Krotov, S., Pyatakov, A., Popov, Y., Vorob'ev, G. Magnetoelectric interaction and magnetic field control of electric polarization in multiferroics. Journal of Magnetism and Magnetic Materials, 300, 224, 2006. The third Moscow International Symposium on Magnetism 2005. [91] Koferstein, R., Buttlar, T., Ebbinghaus, S. G. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. Journal of Solid State Chemistry, 217, 50, 2014. [92] Kubel, F., Schmid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B, 46, 698, 1990. [93] Haggerty, R. P., Seshadri, R. Oxygen stoichiometry, crystal structure, and magnetism of La0:5Sr0:5CoO3-+. Journal of Physics: Condensed Matter, 16, 6477, 2004. [94] Cullity, B. D., Graham, C. D. Ferrimagnetism, pag. 183. John Wiley and Sons, Inc., 2008. [95] Lazenka, V. V., Ravinski, A. F., Makoed, I. I., Vanacken, J., Zhang, G., Moshchalkov, V. V. Weak ferromagnetism in La-doped BiFeO3 multiferroic thin films. Journal of Applied Physics, 111, 123916, 2012. [96] Bergman, D. J., Stroud, D. Physical properties of macroscopically inhomogeneous media. tomo 46 de Solid State Physics, pag. 147. Academic Press, 1992. [97] Lu, J., Gunther, A., Schrettle, F., Mayr, F., Krohns, S., Lunkenheimer, P., et al. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties. The European Physical Journal B, 75, 451, 2010. [98] Vollman, M., Waser, R. Grain Boundary Defect Chemistry of Acceptor-Doped Titanates: Space Charge Layer Width. Journal of the American Ceramic Society, 77, 235, 1994. [99] Fleig, J., Maier, J. A finite element study on the grain boundary impedance of different microstructures. Journal of The Electrochemical Society, 145, 2081, 1998. [100] Dawber, M., Rabe, K. M., Scott, J. F. Physics of thin-film ferroelectric oxides. Reviews of Modern Physics, 77, 1083, 2005. [101] Teague, J. R., Gerson, R., James, W. Dielectric hysteresis in single crystal BiFeO3. Solid State Communications, 8, 1073, 1970. [102] Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 299 (5613), 1719, 2003. [103] Lebeugle, D., Colson, D., Forget, A., Viret, M., Bonville, P., Marucco, J. F., et al. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Physical Review B, 76, 024116, 2007. [104] Kumar, M. M., Palkar, V. R., Srinivas, K., Suryanarayana, S. V. Ferroelectricity in a pure BiFeO3 ceramic. Applied Physics Letters, 76, 2764, 2000. [105] Luo, W., Wang, D., Wang, F., Liu, T., Cai, J., Zhang, L., et al. Roomtemperature simultaneously enhanced magnetization and electric polarization in BiFeO3 ceramic synthesized by magnetic annealing. Applied Physics Letters, 94, 202507, 2009. [106] Wang, Y. P., Yuan, G. L., Chen, X. Y., Liu, J. M., Liu, Z. G. Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO3 ceramic. Journal of Physics D: Applied Physics, 39, 2019, 2006. [107] Su, W. N.,Wang, D. H., Cao, Q. Q., Han, Z. D., Yin, J., Zhang, J. R., et al. Large polarization and enhanced magnetic properties in BiFeO3 ceramic prepared by high-pressure synthesis. Applied Physics Letters, 91, 092905, 2007. [108] Hanumaiah, A., Bhimasankaram, T., Suryanarayana, S. V., Kumar, G. S. Dielectric behaviour and magnetoelectric effect in cobalt ferrite-barium titanate composites. Bulletin of Materials Science, 17, 405, 1994. [109] Nie, J., Xu, G., Yang, Y., Cheng, C. Strong magnetoelectric coupling in CoFe2O4-BaTiO3 composites prepared by molten-salt synthesis method . Mate- rials Chemistry and Physics, 115, 400, 2009. [110] Mori, K., Wuttig, M. Magnetoelectric coupling in Terfenol- D/polyvinylidenedi uoride composites. Applied Physics Letters, 81, 100, 2002. [111] Chen, J., Bai, Y., Nie, C., Zhao, S. Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films. Journal of Alloys and Compounds, 663, 480, 2016. [112] Miah, M., Khan, M., Akther Hossain, A. Weak ferromagnetism and magnetoelectric effect in multiferroic xBa0:95Sr0:05TiO3-(1 - x)BiFe0:9Gd0:1O3 relaxors. Journal of Magnetism and Magnetic Materials, 401, 600, 2016. [113] Shvartsman, V. V., Alawneh, F., Borisov, P., Kozodaev, D., Lupascu, D. C. Converse magnetoelectric effect in CoFe2O4{BaTiO3 composites with a core{shell structure. Smart Materials and Structures, 20, 075006, 2011. [114] Clabel H., J., Ferri, F., Zabotto, F., Rivera, V., Nogueira, I., Garcia, D., et al. Grain size and interfacial interdifusion in uence on the magnetic and dielectric properties of magnetoelectric La0:7Ba0:3MnO3-BaTiO3 composites. Journal of Magnetism and Magnetic Materials, 407, 160, 2016. [115] Priya, A. S., Banu, I. B. S., Anwar, S. Investigation of multiferroic properties of doped BiFeO3{BaTiO3 composite ceramics. Materials Letters, 142, 42, 2015. [116] Lei, T., Cai, W., Fu, C., Ren, H., Zhang, Y., Sun, Y., et al. The effects of grain size on electrical properties and domain structure of BiFeO3 thin films by sol{gel method. Journal of Materials Science: Materials in Electronics, 26, 9495, 2015. [117] Pomiro, F. Nuevos Materiales con potenciales propiedades Magnetoelectricas: In uencia de los cationes de los bloques d y f . Tesis Doctoral, INFIQCDepartamento de fisicoquímica. Facultad de Ciencias Químicas. Universidad Nacional de Cordoba, Marzo 2016. [118] Alonso, J. A., Casais, M. T., Martínez-Lope, M. J., Martínez, J. L., Fernandez- Díaz, M. T. A structural study from neutron diffraction data and magnetic properties of (R = La, rare earth). Journal of Physics: Condensed Matter, 9, 8515, 1997. [119] Martínez-Lope, M. J., Retuerto, M., García-Hernandez, M., Alonso, J. Preparation, structural and magnetic characterization of DyCrMnO5 . Journal of Solid State Chemistry, 182, 532, 2009. [120] Goodenough, J. B., Longo, M. Table 6, Part 2, pag. 228. Berlin, Heidelberg: Springer Berlin Heidelberg, 1970. [121] Van Vleck, J. H. The theory of electric and magnetic susceptibilities. Oxford University Press, 1932. [122] Preethi Meher, K. R. S., Wahl, A., Maignan, A., Martin, C., Lebedev, O. I. Observation of electric polarization reversal and magnetodielectric effect in orthochromites: A comparison between LuCrO3 and ErCrO3. Physical Review B, 89, 144401, 2014. [123] El Amrani, M., Zaghrioui, M., Ta Phuoc, V., Gervais, F., Massa, N. E. Local symmetry breaking and spin{phonon coupling in SmCrO3 orthochromite. Journal of Magnetism and Magnetic Materials, 361, 1, 2014. [124] Deng, D., Wang, X., Zheng, J., Qian, X., Yu, D., Sun, D., et al. Phase separation and exchange bias effect in Ca doped EuCrO3. Journal of Magnetism and Magnetic Materials, 395, 283, 2015. [125] Mu~noz, A., Alonso, J. A., Martínez-Lope, M. J., Martínez, J. L. Synthesis, structural, and magnetic characterization of a new ferrimagnetic oxide:YFeMnO5. Chemistry of Materials, 16, 4087, 2004. [126] Kumar, K. S., Joseph, D. P., Raja, S. P., Manimuthu, P., Venkateswaran, C. Synthesis and characterization of BiMn2O5 ceramics. AIP Conference Procee- dings, 1349, 1155, 2011. [127] Liu, J., Duan, C. G., Yin, W. G., Mei, W. N., Smith, R. W., Hardy, J. R. Large dielectric constant and Maxwell-Wagner relaxation in Bi2=3Cu3Ti4O12. Physical Review B, 70, 144106, 2004. [128] Catalan, G. Magnetocapacitance without magnetoelectric coupling. Applied Physics Letters, 88, 102902, 2006. [129] Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., Chen, L. H. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science, 264 (5157), 413, 1994. [130] Schiffer, P., Ramirez, A. P., Bao, W., Cheong, S. W. Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. Physical Review Letters, 75, 3336, 1995. [131] Holmes, L., Van Uitert, L. G., Hecker, R. Effect of Co on Magnetic Properties of ErFeO3, HoFeO3, and DyFeO3. Journal of Applied Physics, 42, 657, 1971. [132] Treves, D. Studies on Orthoferrites at theWeizmann Institute of Science. Journal of Applied Physics, 36, 1033, 1965. [133] White, R. L. Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. Journal of Applied Physics, 40, 1061, 1969. [134] Bombik, A., Lesniewska, B., Pacyna, A. W. Magnetic susceptibility of powder and single-crystal TmFeO3 orthoferrite. Journal of Magnetism and Magnetic Materials, 214, 243, 2000. [135] Wood, J. C. Bulletin of the American Physical Society Series II, 13, 574, 1968. [136] Traff, J. Mossbauer studies on iron in the perovskites LaFexAl1-xO3 (0 < x -1). Physica Status Solidi (b), 34, K139, 1969. [137] Berry, F. J., Gancedo, J., Marco, J. F., Ren, X. Synthesis and characterization of the reduction properties of cobalt-substituted lanthanum orthoferrites. Journal of Solid State Chemistry, 177, 2101, 2004. [138] Antunes, A., Pe~na, O., Moure, C., Gil, V., Andre, G. Structural and magnetic properties of Er(Co,Mn)O3 perovskite. Journal of Magnetism and Magnetic Ma- terials, 316, e652, 2007. Proceedings of the Joint European Magnetic Symposia. [139] Bramwell, S. T., Field, M. N., Harris, M. J., Parkin, I. P. Bulk magnetization of the heavy rare earth titanate pyrochlores - a series of model frustrated magnets. Journal of Physics: Condensed Matter, 12, 483, 2000. [140] Matsuhira, K., Hinatsu, Y., Tenya, K., Amitsuka, H., Sakakibara, T. Lowtemperature magnetic properties of pyrochlore stannates. Journal of the Physical Society of Japan, 71, 1576, 2002. [141] Sankaranarayanan, V., Gajbhiye, N. Magnetization and magnetic resonance studies of ultrane Ho3Fe5O12 and Yb3Fe5O12. Journal of Magnetism and Magnetic Materials, 92, 217, 1990. [142] Manimuthu, P., Vidya, R., Ravindran, P., Fjellvag, H., Venkateswaran, C. Observation of direct magneto-dielectric behaviour in Lu3Fe5O12-+ above roomtemperature. Physical Chemistry Chemical Physics, 17, 17688, 2015. [143] Su, J., Lu, X., Zhang, J., Sun, H., Zhang, C., Jiang, Z., et al. The effect of Fe2+ ions on dielectric and magnetic properties of Yb3Fe5O12 ceramics. Journal of Applied Physics, 111, 014112, 2012. [144] Subba Rao, G., Ramdas, S., Mehrotra, P., Rao, C. Electrical transport in rareearth oxides. Journal of Solid State Chemistry, 2, 377, 1970. [145] Ye, J., Wang, C., Ni, W., Sun, X. Dielectric properties of ErFeO3 ceramics over a broad temperature range. Journal of Alloys and Compounds, 617, 850, 2014. [146] Rajeswaran, B. and Mandal, P. and Saha, Rana and Suard, E. and Sundaresan, A. and Rao, C. N. R. Ferroelectricity induced by cations of nonequivalent spins disordered in the weakly ferromagnetic perovskites, YCr1-xMxO3 (M = Fe or Mn). Chemistry of Materials, 24, 3591, 2012. [147] Ahn, S.-J., Lee, J.-H., Jang, H. M., Jeong, Y. K. Multiferroism in hexagonally stabilized TmFeO3 thin films below 120 K. Journal of Materials Chemistry C, 2, 4521, 2014. [148] Cheong, S. W., Hwang, H. Y. Colossal magnetoresistive oxides. Gordon and breach Science Publishers, 2000. [149] Matula, R. A. Electrical resistivity of copper, gold, palladium, and silver. Journal of Physical and Chemical Reference Data, 8, 1147, 1979. [150] Blodgett, K. B. Films built by depositing successive monomolecular layers on a solid surface. Journal of the American Chemical Society, 57, 1007, 1935. [151] Blodgett, K. B., Langmuir, I. Built-up films of barium stearate and their optical properties. Physical Review, 51, 964, 1937. [152] Hummers, W. S., Offeman, R. E. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339, 1958. [153] Gomez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7, 3499, 2007. [154] van der Pauw, L. J. A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape. Philips Technical Review, 20, 220, 1958. [155] Low level measurements handbook. Keithley Instruments, 2004. [156] Jiu, J., Araki, T., Wang, J., Nogi, M., Sugahara, T., Nagao, S., et al. Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A, 2, 6326, 2014. [157] Martínez, E. D., Lohr, J. H., Sirena, M., Sanchez, R. D., Pastoriza, H. Silver nanowires in poly(methyl methacrylate) as a conductive nanocomposite for microfabrication. Flexible and Printed Electronics, 1, 035003, 2016. [158] Mayadas, A. F., Shatzkes, M., Janak, J. F. Electrical resistivity model for polycristalline films: The case of specular re ection at external surfaces. Applied Physics Letters, 14, 345, 1969. [159] Anik, M., Asare, K. O. Effect of ph on the anodic behavior of tungten. Journal of The Electrochemical Society, 146, B224, 2002. [160] Ibe, J. P., Bey Jr., P. P., Brandow, S. L., Brizzolara, R. A., Burnham, N. A., DiLella, D. P., et al. On the electrochemical etching of tips for scanning tunneling microscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8, 3570, 1990. [161] Ju, B. F., Chen, Y. L., Ge, Y. The art of electrochemical etching for preparing tungsten probes with controllable tip profle and characteristic parameters. Review of Scientific Instruments, 82, 013707, 2011.
Materias:Física > Materia condensada
Divisiones:Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas
Código ID:642
Depositado Por:Tamara Cárcamo
Depositado En:26 Oct 2017 11:36
Última Modificación:27 Oct 2017 11:01

Personal del repositorio solamente: página de control del documento