Cobos , Agustín C. (2017) Desarrollo e implementación de técnicas alternativas de modulación en haces externos de fotones y electrones de alta energía para radioterapia de intensidad modulada. / Research and implementation of intensity modulated radiation therapy for high energy photon and electron beams using alternative techniques. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 4Mb |
Resumen en español
La calidad de un tratamiento de radioterapia se asocia a factores clínicos y físicos. Los factores físicos se vinculan con el logro seguro de la dosis prescripta en el volumen tumoral y de las dosis de tolerancia en los tejidos aledaños. De esta manera se aumenta la probabilidad de éxito del tratamiento, se producen resultados comparables entre diferentes instituciones y se disminuye la probabilidad de ocurrencia de accidentes radiológicos. La radioterapia de intensidad modulada (IMRT) con haces externos de fotones y electrones es una técnica universalmente aceptada en la que la fluencia de energía varía en la sección de cada haz de radiación, permitiendo lograr un mayor grado de conformidad de la distribución de dosis con el volumen tumoral, en comparación con las técnicas de radioterapia convencionales. La modulación de dicha fluencia se puede lograr mediante el uso de colimadores de hojas múltiples o mediante filtros compensadores. Estos últimos son una muy buena alternativa en los países emergentes debido a su bajo costo relativo. En este sentido, la Fundación Escuela de Medicina Nuclear (FUESMEN) ha desarrollado e implementado una técnica propia que permite elaborar filtros compensadores con costos y tiempos de fabricación diez veces menores que los filtros convencionales. El mayor grado de conformidad de las distribuciones de dosis en el volumen tumoral hace que la IMRT presente más exigencias en términos de las incertezas espaciales debidas a las tolerancias mecánicas de la máquina de irradiación, el posicionamiento y los cambios anatómicos del paciente, y el movimiento de órganos. Dicha exigencia ha motivado el desarrollo de nuevas tecnologías e investigaciones enfocadas en las distribuciones de dosis absorbida en el volumen tumoral y en los órganos de riesgo. El cálculo de estas distribuciones de dosis ha sido realizado históricamente mediante los métodos de convolución y convolución-superposición, siendo el método de simulación por Monte Carlo la herramienta típicamente usada para su validación. Si bien los modelos determinísticos de la ecuación de transporte de Boltzmann pueden tener la misma exactitud que los métodos de Monte Carlo, su aplicación en problemas de radioterapia ha sido muy escasa y reciente debido a la falta de memoria computacional previa para manipular la información necesaria para su resolución. La calidad de los servicios de radioterapia también se asocia al cumplimiento y mejora de la protección radiológica del paciente, trabajadores y miembros del público. Dicha protección radiológica conlleva la disminución de las dosis en el cuerpo del paciente y en localizaciones particulares dentro y fuera de las salas de tratamientos, lo que afecta el diseño estructural de estas últimas. Otra característica de la IMRT es que el tiempo de irradiación requerido para lograr la misma dosis de planificación, es mucho mayor que el correspondiente al de radioterapia convencional, lo que produce un incremento de la dosis absorbida en el cuerpo del paciente, aunque fuera del haz primario de radiación (dosis periférica). Dicho incremento es originado básicamente por el aumento de la radiación de fuga del cabezal del acelerador y por el aumento de radiación dispersada desde los colimadores y filtros compensadores. Si bien el estudio de la dosis periférica ha sido tema de interés debido a que puede tener una variedad de efectos sobre la salud del paciente, existen pocos estudios al respecto dada la dificultad de su determinación experimental y teórica. Como primer trabajo de esta tesis, se presentó un novedoso enfoque determinístico que consistió en el uso de la ecuación de transporte dependiente del tiempo como intermediaria para la obtención de las soluciones correspondientes al estado estacionario. El método demostró tener muchas ventajas en cuanto a exactitud, sencillez y velocidad con respecto a los métodos estacionarios convencionales de resolución de la ecuación de transporte. Se obtuvieron por primeros principios los criterios suficientes para la convergencia y se compararon resultados con cálculos de Monte Carlo a los efectos de asegurar la exactitud del método. El método numérico fue usado como herramienta de cálculo recurrente en todos los modelos dosimétricos presentados en esta tesis. En primer lugar, se justificó y demostró que un modelo de transporte unidimensional con simetría azimutal es una suposición aceptable para calcular la transmisión de las barreras primarias de salas de radioterapia, necesarias para el diseño de instalaciones. Aprovechando la practicidad del modelo, se realizó un estudio sobre la conveniencia radiológica que puede haber entre distintas configuraciones de barreras laminadas de materiales mixtos. Por otro lado, como parte de la mejora y caracterización de los filtros compensadores de IMRT que han sido implementados en la FUESMEN, se determinaron experimentalmente sus contribuciones a la dosis periférica producida en el cuerpo del paciente. Con el objeto de complementar y mejorar los tratamientos de IMRT, se desarrolló e implementó en los sistemas de planificación un modelo teórico que permite el cómputo de dicha dosis periférica. Finalmente, se demostró que la dosis periférica es lo suficientemente significativa y debe, por lo tanto, ser tenida en cuenta en el diseño de barreras secundarias de salas de IMRT. Se concluye que el nuevo método numérico desarrollado en esta tesis demostró tener gran robustez, pudiéndose extender a otras áreas de la ciencia. Las aplicaciones unidimensionales presentadas resultaron muy útiles para la mejora de la protección radiológica de los pacientes, trabajadores ocupacionalmente expuestos y miembros del público involucrados en IMRT. Se propone a futuro extender el método numérico a otros tipos de partículas y a problemas tridimensionales para cálculos dosimétricos dentro del campo de radiación y en la periferia cercana.
Resumen en inglés
Radiotherapy treatment quality depends on physical and clinical factors. The physical factors influence how the medically prescribed dose to the tumoral volume and an adequate dose to the surroundings tissues are achieved in an assured and controlled fashion. Following strict protocols and high fidelity models, the probability of success of the treatment increases, different institutions produced readily intercomparable results, and the probability of radiological accident decreases. Intensity Modulated Radiation Therapy (IMRT) with external photons and electrons beams is a universal and accepted technique in which the energy fluence changes with the beam section. Therefore, this technique allows a higher control of the dose conformity mapping over the tumoral volume compared to other conventional radiotherapy techniques. Fluence modulation can be achieved by multileaf collimators or compensator filters. The latter ones are a good option for developing countries, especially due to its relative low cost. In this sense, the Fundación Escuela de Medicina Nuclear (FUESMEN) has already developed compensator filters that can be manufactured at ten times lower cost and faster than conventional filters. The higher degree of conformity in the dose mapping around the tumoral volume results in higher requirements of precision for the IMRT planning protocols due to mechanical tolerances in the irradiation machine, positioning and anatomical changes in the patient, and organs movement. Following these demands, new technologies and researches have been developed focused on the distribution of the absorbed dose in the tumoral volume and the organs at risk. In this regard, dose distribution calculations have historically been obtained by convolution and convolution-superposition methods. Monte Carlo simulations were then applied as a validation method only. Even though Boltzmann transport equation deterministic models could have the same accuracy as Monte Carlo methods, their application has been sparse in the past. The main reason deterministic methods were relegated in the past is the high volumes of machine memory needed for the calculations to reach an adequate resolution in the results. With the advent of accessible powerful and large memory computers, this historical trend may be reverting and deterministic calculation applications in commercial planning software are recently appearing. Radiotherapy services quality is also associated with the compliance and improvement of the radiological protection of patients, workers and members of the public. Such radiation protection principles lead to the reduction of doses in the patient's body and in particular locations inside and outside the treatment rooms, which affects the structural design of the latter. Another characteristic of the IMRT is that the irradiation time required to achieve the same planning dose is much higher than that of conventional radiotherapy, which results in an increase of the absorbed dose in the patient's body outside the beam primary radiation (peripheral dose). This increase is basically caused by the increase in the leakage radiation from the accelerator head and by the increase in radiation dispersed from the collimators and compensator filters. Although the study of the peripheral dose is a topic of recent interest because it can have a variety of effects on the health of the patient, there are few studies in this regard given the difficulty of their experimental and theoretical determination. In the context of the above presented background, this thesis first proposes a novel deterministic approach which consists in the use of the time-dependent transport equation as an intermediary to obtaining the solutions of the corresponding steady state problem. The method has proved to have many advantages in terms of accuracy, simplicity and speed with respect to the conventional stationary methods of solving the transport equation. Sufficient convergence criteria were obtained from first principles and results were compared with Monte Carlo calculations in order to ensure the accuracy of the method. The newly developed numerical method has been used as a recurrent calculation tool in all the dosimetric models presented in this thesis. On the one hand, a onedimensional transport model with azimuth symmetry is shown to be an acceptable assumption to calculate the transmission of the primary barriers of radiotherapy room, necessary for the design of facilities. Taking advantage of the practicality of the model, a study was made on the radiological suitability and convenience of different configurations of laminated barriers of mixed materials. On the other hand, as part of the improvement and characterization of the compensator filters of IMRT that have been implemented in the FUESMEN, their contributions to the peripheral dose produced in the patient's body were experimentally determined. In order to complement and improve the planning of IMRT treatments, a theoretical model was developed and implemented in the planning system that allows for the computation of this peripheral dose. Finally, the peripheral dose is shown to be sufficiently significant and should therefore be taken into account in the design of secondary barriers of IMRT rooms. In conclusion, the new numerical method developed in this thesis proved to have great robustness and could be easily extended to other areas of science. The onedimensional applications presented were very useful for improving the radiological protection of patients, occupationally exposed workers and members of the public involved in IMRT. Future work to extend the numerical method to other types of particles and to three-dimensional problems for dosimetric calculations within the radiation field and in the near periphery, is proposed.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Radiotherapy; Radioterapia [Primary barrier; Barrera primaria; Secondary barrier; Barrera secundaria; Peripheral dose; Dósis periférica] |
Referencias: | Adams M L y Larsen E W 2002 Fast Iterative Methods for Discrete-Ordinates Particle Transport Calculations Prog. in Nucl. Ener. 40 3-159 Alcouffe R E 1993 An adaptive weighted diamond differencing method for three dimensional XYZ geometry Trans. Am. Nucl. Soc. 68A 206-209 Allen A et al 2012 An evidence based review of proton beam therapy: The report of ASTRO’s emerging technology committee Radioth. and Onc. 103 8-11 Andreo P 1991 Monte Carlo techniques in medical radiation physics Phys. Med. Biol. 36 861-920 Baró J, Roteta M, Fernández-Varea J M y Salvat F 1994 Analytical cross sections for Monte Carlo simulation of photon transport Radiat. Phys. Chem. 44 531–552 Berger M.J 1963 Methods in computational physics, Fernbach S., Alder B. and Rothenberg M. (editors), Academic, New York, Vol. I Berger M J 1992 ESTAR, PSTAR and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons and helium ions Report NISTIR 4999, Nat. Inst. of Stand. and Tech., Gaithersburg, MD Biggs P J 1996 Obliquity factors for 60Co and 4, 10 and 18 MV x-ray for concrete, steel and lead and angles of incidence between 0º and 70º Health Phys. 70 527-536 Biggs P J y Styczynski J R 2008 Do angles of obliquity apply to 30° scattered radiation from megavoltage beams? Health Phys. 95 425-432 Bortfeld T R, Kahler D L, Waldron T J, y Boyer A L 1994 X-ray field compensation with multileaf collimators Int. J. Radiat. Oncol. Biol. Phys. 28 723–730 Briere T M, Beddar A S y Gillin M T 2005 Evaluation of precalibrated implantable MOSFET radiation dosimeters for megavoltage photon beams Med. Phys. 32 3346-3349 Brockmann H 1981 Treatment of Anisotropic Scattering in Numerical Neutron Transport Theory Nuc. Sc. and Eng. 77 377-414 Case K M y Zweifel P F 1967 Linear Transport Theory Addison-Wesley Publishing Co., Inc., Reading, Massachussetts Chao K S, Majhail N, Huang C J, et al 2001. Intensity-modulated radiation therapy reduces late salivary toxicity without compromising tumor control in patients with ropharyngeal carcinoma: a comparison with conventional techniques. Radiother. Oncol. 1 275-280 Chandrasekhar S 1950 y 1960 Radiative Transfer Oxford University Press, London and Dover, New York Chetty I J, Curran B, Cygler J E, DeMarco J J, Ezzell G, Faddegon B A, Kawrakow I, Keall P J, Liu H, Ma CM, Rogers D W, Seuntjens J, Sheikh-Bagheri D y Siebers J V 2007 Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning Med. Phys. 34 (12) 4818-53 Chong E K P y Zak S H 2001 An introduction to Optimization John Wiley and Sons, Inc. Convery D J, y Rosenbloom M E 1992 The generation of intensity-modulated fields for conformal radiotherapy by dynamic collimation Phys. Med. Biol. 37 1359–1374 Cozzi L, Fogliata A, Bolsi A, et al 2004 Three-dimensional conformal vs. intensity modulated radiotherapy in head-and-neck cancer patients: comparative analysis of dosimetric and technical parameters Int. J. Radiat. Oncol. Biol. Phys. 58 617-624 Cullen D, Hubbell J y Kissel L 1997 EPDL97 the evaluated photon data library ’97 version, Report UCRL-50400 6(4) parts A and B Livermore, CA: Lawrence Livermore National Laboratory Courant R, Friedrichs K y Lewy H 1967 On Partial Difference Equations of Mathematical Physics. IBM Journal 11 215-234 (Traducción al inglés del trabajo original, “Uber die Partiellen Differenzengleichungen der Mathematischen Physik,” Math. Ann. 100 32-74 (1928) Daskalov G M, Baker R S, Rogers D W O y Williamson L F 2000 Dosimetric modeling of the microselectron high-dose rate 192Ir source by the multigroup discrete ordinates method Med. Phys. 27 2307-2319 Davison B 1957 Neutron Transport Theory Oxford University Press, London Djordjevich A, Bonham D J, Hussein E M A, Andrew J W y Hale M E 1990 Optimal design of radiation compensators Med. Phys. 17 397–404 Dirkx M L P, Heijmen B J M y Santvoort J P C 1998 Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles Phys. Med. Biol. 43 1171–1184 Duderstadt J J y Martin W R 1979 Transport Theory John Wiley & Sons, Inc., New York Duo J 2004 Aplicación del método nodal AHOT-N al transporte acoplado de electrones y fotones Trabajo especial carrera Ingeniería Nuclear, Instituto Balseiro Evans R D 1955 The atomic nucleus Mc-Graw-Hill, New York Faw R y Chen M 1994 Build-up factors for gamma rays obliquely incident on slab shields of concrete, iron and lead Radiat. Prot. Dosimetry 51 27-33 Followill D, Geis P y Boyer A 1997 Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int. J. Radiat. Oncol. Biol. Phys. 38 667- 672 Fondevila D, Arbiser S, Sansogne R, Brunetto M y Dosoretz B 2008 Maximum dose angle of oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities Med. Phys. 35 1816-1819 Fraass B A y van de Geijn J 1983 Peripheral dose from megavoltage beams Med. Phys. 10 809-818 Greenbaum A 1997 Iterative Methods for Solving Linear Systems Frontiers in Applied Mathematics, SIAM 17 134-145. Haddad F S y Somsin A A 1987 Seeding and Perineal implantation of prostatic cancer in the track of the biopsy needle: three case reports and a review of the literature J. Surg. Oncol. 35 184-191 Hensel H, Iza-Teran R y Siedow N 2006 Deterministic model for dose calculation in photon radiotherapy Phys. Med. Biol. 51 675–693 Hindmarsh A C, Gresho PM, Griffiths DF 1984 The stability explicit Euler timeintegration for certain finite difference approximations of the multi-dimensional advection-diffusion equation Int. J. Numer. Methods. Fluids 4 853-897 Hoisak J D, Sixel K E, Tirona R, Cheung P C y Pignol J P 2004 Correlation of lung tumor motion with external surrogate indicators of respiration Int. Radiat. Oncol. Biol. Phys. 60 1298-1306 Horn A R y Johnson C R 1994 Topics in matrix analysis Cambridge University Press Huang P, Kase K y Bjarngard B 1983 Reconstruction of 4 MV bremsstrahlung spectra from measured transmission data Med. Phys. 10 678-685 Huang D, Xia P, Akazawa P, et al 2002 Comparison of treatment plans using intensity modulated radiotherapy and three-dimensional conformal radiotherapy for paranasal sinus carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 56 158-168 IAIEA 2008a Transition from 2-D radiotherapy to 3-D conformal and intensity modulated radiotherapy TECDOC 1588 (Vienna: International Atomic Energy Agency) IAIEA 2008b The role of PET/CT in radiation treatment planning for cancer patient treatment TECDOC 1603 (Vienna: International Atomic Energy Agency) ICRU 2010 Prescribing, recording and reporting photon-beam intensity modulated radiation therapy (IMRT) Report 83 (Bethesda, MD: International Commission on Radiation Units and Measurements) James K y Riha W 1974 Convergence criteria for successive over relaxation SIAMJ Numer. Anal. 12 137-143 Jaradat A y Biggs P 2007 Tenth value layers for 60Co gamma rays and for beams of cone angles between 0º and 14º calculated by Monte Carlo simulation Health Phys. 92 456- 463 Jiang S B y Ayyangar K M 1998 On compensator design for photon beam intensity modulated conformal therapy Med. Phys. 25 668–675 Karzmark C J, Nunan C S y Tanabe E 1993 Medical Electron Accelerators (USA: McGraw-Hill, Inc) Kavanagh B D y Timmerman R D 2006 Stereotactic radiosurgery and stereotactic body radiation therapy: an overview of technical consideration and clinical applications. Hematol. Oncol. Clin. Nroth. Am. 20 87-95 Khan F M 1994 The Physics of Radiation Therapy 2da ed (Baltimore, MD: Williams y Wilkins) Klein E E, Maserang B, Wood R y Mansur D 2006 Peripheral doses from pediatric IMRT Med. Phys. 33 2525-2531 Kling A, Barao F, Nakagawa M, Távora L y Vaz P (Eds.) Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23–26 October 2000, Springer, 2001 Kry S F, Salehpour M, Followill D S et al 2005 The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy Int. J. Radiat. Oncol. Biol. Phys. 62 1195-1203 Kuban D A, Dong L, Cheung R, Strom E y de Crevoisier R 2005 Ultrasound-based localization Semin. Radiat. Oncol. 15 180-191 Leksell L 1951 The stereotaxic method and radiosurgery of the brain Acta. Chir. Scand. 102 316-319 Ling C C, Burman C, Chui C S, Kutcher G J, Leibel S A, LoSasso T, Mohan R, Bortfeld T, Reinstein L, Spirou S, Wang X H, Wu Q, Zelefsky M, y Fuks Z 1996 Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation Int. J. Radiat. Oncol. Biol. Phys. 35 721–730 Lo Y 1992 Albedos for 4, 10 and 18 MV bremsstrahlung x-ray beams on concrete, iron and lead normally incident Med. Phys. 19 659-666 Lucas D S, Gougar H D, Roth P A, Wareing T, Failla G, McGhee J y Barnett A 2004 Applications of the 3-D Deterministic Transport Attila® for Core Safety Analysis Americas Nuclear Energy Symposium 2004, Miami Beach, Florida, October 3-6 Mackie T R 1990 Applications of the Monte Carlo Method in radiotherapy The Dosimetry of Ionizing Radiation vol 3, ed K R Kase, B Bjärngard y F H Attix (New York: Academic) 541-620 Mansur D B, Klein E E y Maserang B P 2007 Measured peripheral dose in pediatric radiation therapy: a comparison of intensity-modulated and conformal techniques. Radioth. Oncol. 82 179-184 McGinley P 1992 Photoneutron production in the primary barriers of medical accelerator rooms Health Phys. 62 359-362 [Errata 63, 366] McGinley P 1992 Photoneutron fields in medical accelerator rooms with primary barriers constructed of concrete and metals Health Phys. 63 698-701 Mechalakos J G 2004 Results of a one year survey of output for linear accelerators using IMRT and non-IMRT techniques J. App. Clin. Med. Phys. 5 Meyer J L 2007 IMRT, IGRT, SBRT- Advances in the Treatment Planning and Delivery of Radiotherapy Front. Radiat. Ther. Oncol. 40 Miften M, Wiesmeyer M, Monthofer S y Krippner K 2000 Implementation of FFT convolution and multigrid superposition models in the FOCUS RTP system Phys. Med. Biol. 45 817-33 Minc H 1988 Nonnegative Matrices John Wiley & Sons, New York Minniti G, Scaringi C, Clarke E, Valeriani M, Osti M y Maurizi Enrici R 2011 Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes Rad. Onc. 6 158 Moss R 2014 Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT) App. Radiat. and Isot. 88 2-11 NCRP 2005 Structural shielding design and evaluation for medical use of x- and gammaray radiotherapy facilities Report 151 (Bethesda, MD: National Council on Radiation Protection and Measurements) Patton H. McGinley 1998 Shielding Techniques for Radiation Oncology Facilities. Medical Physics Publishing Pautz S 2002 An Algorithm for parallel Sn sweeps on unstructured meshes Nuc. Sc. and Eng. 140 111-136 Perez C y Brady L 2013 Principles and practice of radiation oncology 4ta ed (Uppincott: Williams y Wilkins) Renner W D, O’Connor T P, y Bermudez N M 1989 An algorithm for design of beam compensators Int. J. Radiat. Oncol. Biol. Phys. 17 227–234. Ribberfors R 1983 X-ray incoherent scattering total cross sections and energy-absorption cross sections by means of simple calculation routines Phys. Rev. 27 3061–3070 Rogers D 2006 Fifty years of Monte Carlo simulations for medical physics Phys. Med. Biol. 51 287–301 Ruben J D, Lancaster C M, Jones P y Smith R L 2011 Comparison of out-of-field dose and its constituent components for intensity-modulated radiation therapy versus conformal radiation therapy: implications for carcinogenesis Int. J. Radiation. Oncology. Biol. Phys. 81 1458-1464 Salvat F J, Fernández-Varea M y Sempau J 2008a PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport Workshop Proceedings Barcelona Spain Salvat F J, Fernandez-Varea M, Acosta E y Sempau J 2008b PENELOPE: A code system for Monte Carlo simulation of electron and photon transport, Version 2008 OECD Nuclear Energy Agency Issy-les-Moulineaux, available at http://www.nea.fr/html/science/pubs/2009/nea6416-penelope. Pdf. Sanz D E 2003 Análisis de algoritmos semi-empíricos clásicos y desarrollo de nuevas formulaciones para el cálculo de dosis absorbida en haces de fotones de alta energía Tesis Doctorado en Ingeniería Nuclear, Instituto Balseiro Sanz 2015 Patente de invención: “Método de fabricación de filtros moduladores metálicos y filtro obtenido con el mismo”. Registrada en abril de 2012 bajo Acta Nro P- 2012-01-01316. Titulares: FUESMEN 95%, CNEA 5%, Inventor: Darío Esteban Sanz. Título de Patente definitivo AR 086102 concedido en abril de 2015 por el Instituto Nacional de la Propiedad Industrial. Secretaría de Industria y Comercio. Schallenkamp J M, Hernan M G, Kruse J J y Pisansky T M 2005 Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging Int. J. Radiat. Oncol. Phys. 63 800-811 Sharma D S, Animesh, Deshpande S S, Phurailatpam R D, Deshpande D D, Shrivastava S K y Dinshaw K A 2006 Peripheral dose from uniform dynamic multileaf collimation fields: implications for sliding window intensity-modulated radiotherapy The British Journal of Radiology 79 331-335. Sharma D S, Upreti R R y Deshpande D D 2006 Use of peripheral dose data from uniform dynamic multileaf collimation fields to estimate out-of- field organ dose in patients treated employing sliding window intensity modulated radiotherapy Phys. Med. Biol. 51 2987-2995 Sheikh-Bagheri D y Rogers D 2002 Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code Med. Phys. 29 391-402 Shen Z L, Murray E, Yu N, Kolar M D, Greskovich J F, Koyfman S Jr. y Bzdusek P 2015 Automatic IMRT and VMAT Treatment Planning for Head and Neck Cancer Int. J. Radiat. Oncol. Biol. Phys. 93 560–561 Shultis J K y Faw R E 1996 Radiation shielding Prentice Hall, Upper Saddle River, N. J. Siochi R A C 1999 Minimizing static intensity modulation delivery time using an intensity solid paradigm Int. J. Radiat. Oncol. Biol. Phys. 43 671–680 Spirou S V y Chui C S 1994 Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators Med. Phys. 21 1031–1041 Thongmoon M, McKibbin R 2006 A comparison of some numerical methods for the advection-diffusion equation Inf. Math. Sci. 10 49-62 Van der Giessen P H 1997 Measurement of the peripheral dose for the tangential breast treatment technique with 60Co gamma radiation and high energy X-rays. Radioth. Oncol. 42 257-64 Van Herk M 2004 Errors and margins in radiotherapy Semin. Radiat.Oncol. 14 52-46 Vassiliev O, Wareing T, McGhee J, Failla G, Salehpour M y Mourtada F 2010 Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams Phys. Med. Biol. 55 581-598 Venselaar J L M 2000 Accuracy of dose calculations in megavoltage photon beams PhD Thesis University of Leiden Webb S 2003 The physical basis of IMRT and inverse planning The Brit. Jour. of Radiol. 76 678–689 Wiezorek T, Georg D, Schwedas M, Salz H y Wendt T G 2009 Experimental determination of peripheral photon dose components for different IMRT techniques and linear accelerators Med. Phys. 19 120-128 Williams M M R 1971 Mathematical Methods in Particle Transport Theory Butterworths, London Woznicki Z I 2001 Matrix splitting principles IJMMS 28 251–284 Yamano N, Koyama K y Kinami K 1979 Method of calculation for anisotropic transmission problems by SN transport code Journal of Nuc. Sci. and Tech. 16 919-922 Yoda K y Aoki Y 2003 A multiportal compensator system for IMRT delivery Med. Phys. 30 880–886 |
Materias: | Medicina > Radioterapia |
Divisiones: | Gerencia Centro Integral de Medicina Nuclear y Radioterapia de Bariloche |
Código ID: | 648 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 16 Abr 2018 15:42 |
Última Modificación: | 16 Abr 2018 15:52 |
Personal del repositorio solamente: página de control del documento