El bosón de higgis como un pseudo bosón de nambu-goldstone bosón: un modelo no minimal. / The higgs boson as a pseudo nambu-goldstone boson: a non-minimal model.

Rossia, Alejo N. (2017) El bosón de higgis como un pseudo bosón de nambu-goldstone bosón: un modelo no minimal. / The higgs boson as a pseudo nambu-goldstone boson: a non-minimal model. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
16Mb

Resumen en español

El sector del Higgs del Modelo Estandar presenta lo que se conoce como Problema de la Jerarquía. Los modelos de Higgs Compuesto son posibles soluciones no supersimétricas a dicho problema que han sido desarrollados intensivamente en la última década. En este trabajo se estudia un modelo no minimal de Higgs Compuesto. En el mismo hay un sector elemental idéntico al Modelo Estandar a excepción de la ausencia del Higgs y un sector compuesto formado por resonancias bosónicas y fermiónicas. Este sector compuesto tiene una simetría global SO (7) rota espontáneamente a SO (6). Los bosones de Nambu-Goldstone asociados a esa ruptura espontánea de simetría se identifican con el doblete del Higgs del Modelo Estandar y con un bosón escalar cargado adicional. La interacción entre los sectores elemental y compuesto de la teoría rompe explícitamente la simetría SO (7) y genera un potencial para los bosones de Nambu- Goldstone. En este trabajo se calcula dicho potencial en un modelo efectivo de 2 sitios y se estudia su dependencia con los parametros del sector compuesto. Se explora el espacio de parámetros de la teoría y se encuentran regiones fenomenológicamente aceptables. Se estudia el espectro de resonancias bosónicas y fermiónicas así como la influencia de las mezclas con partículas del sector compuesto sobre las masas del quark top, del quark bottom y de los bosones electrodebiles. Se encuentra que los acoplamientos del bosón de Higgs con los quarks top y bottom y con los bosones electrodebiles están suprimidos respecto al Modelo Estandar. También se encuentra una supresión respecto al Modelo Estandar en las amplitudes de los principales canales de producción y decaimiento del bosón de Higgs. En cambio, no se encuentran diferencias respecto al Modelo Estandar en los branching ratios de decaimiento del Higgs. Por último, se realiza un breve estudio de la fenomenología del bosón escalar cargado adicional.

Resumen en inglés

The Higgs sector of the Standard Model shows what is known as the Hierarchy Problem. Composite Higgs models are non-supersymmetric solutions to the Hierarchy Problem and they have been developed intensively during the last decade. In this thesis, a non-minimal Composite Higgs Model is studied. The model has an elementary sector which is equal to the Standard Model without the Higgs boson and a composite sector constituted by bosonic and fermionic resonances. The composite sector has an SO (7) global symmetry spontaneously broken to SO (6). The Nambu-Goldstone bosons related to that spontaneous breaking of the symmetry are identified as the Higgs doublet of the Standard Model plus an extra charged scalar boson. The interaction between the elementary and composite sectors breaks the global symmetry of the composite sector explicitly and generates a potential for the pseudo Nambu-Goldstone bosons. In this thesis that potential is calculated in a 2-site model and its dependence on the parameters of the composite sector is studied. The space of parameters is explored and phenomenologically suitable regions are found. The spectrum of bosonic and fermionic resonances and the influence of the mixes with resonances on the masses of the top and bottom quarks and the electroweak bosons is analyzed. The couplings between the Higgs boson and the top and bottom quarks and the electroweak bosons are found to be suppressed respect to the Standard Model. It is also found that the amplitudes of the main decay and production channels of the Higgs boson are suppressed respect to the Standard Model. On the other hand, the decay branching ratios do not suffer modifications. Finally, a brief analysis of the phenomenology of the extra charged scalar boson is performed.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Bosons; Bosones; [Beyond standard model; Composite higgs; Higgs compuesto; Pseudo nambu-goldstone; Phenomenology; Fenomenología; Composite resonances; Resonancia compuestas]
Referencias:[1] Panico, G., Wulzer, A. The Composite Nambu-Goldstone Higgs. No ISBN: 978- 3-319-22616-3 en Lecture Notes in Physics, 1a ed. Springer International Publishing, 2015. URL https://arxiv.org/abs/1506.01961. v, 2, 3, 4, 5, 12, 13, 14, 15, 16, 18 [2] Carena, M., Da Rold, L., Ponton, E. Minimal Composite Higgs Model at the LHC. Journal of High Energy Physics, 2014 (6), 159, Junio 2014. URL https: //doi.org/10.1007/JHEP06(2014)159. v, 6, 18, 25, 58, 82, 121 [3] Weinberg, S. Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions. The Nobel Foundation, Diciembre 1979. URL https://www.nobelprize.org/nobel_prizes/physics/laureates/1979/ weinberg-lecture.pdf. 1 [4] Okun, L. B. Leptons and Quarks. ISBN-13: 978-0444596215, 1a ed. North Holland, 1985. 1 [5] Cheng, T.-P., Li, L.-F. Gauge Theory of elementary particles. ISBN-13: 978- 0198519614, 1a ed Oxford University Press, 1988. 8 [6] Schwartz, M. D. Quantum Field Theory and the Standard Model. ISBN-13: 978-1107034730, 1a ed Cambridge University Press, 2013. 1 [7] Roulet, E. CERN Yellow Book 2003-003, cap. Beyond the Standard Model. CERN, 2007. URL https://arxiv.org/abs/hep-ph/0112348. 1 [8] Pomarol, A. CERN Yellow Report CERN-2012-001, cap. Beyond the Standard Model, pags. 115-151. CERN, 2012. URL https://arxiv.org/abs/1202.1391. 2 [9] Patrignani, C., et al. (Particle Data Group). Neutrino Mass, Mixing, and Oscillations, Junio 2016. URL http://pdg.lbl.gov/2016/reviews/ rpp2016-rev-neutrino-mixing.pdf. 2 [10] Mohr, P. J., Newell, D. B., Taylor, B. N. CODATA Recommended Values of the Fundamental Physical Constants: 2014. arXiv:1507.07956 [physics.atom-ph], Julio 2015. URL https://arxiv.org/abs/1507.07956. 2 [11] Patrignani, C., et al. (Particle Data Group). Dark Matter, Mayo 2016. URL http://pdg.lbl.gov/2016/reviews/rpp2016-rev-dark-matter.pdf. 2 [12] Nir, Y. CERN Yellow Report CERN-2010-001, cap. Flavour Physics and CP violation, pags. 279{314. CERN, 2010. URL https://arxiv.org/abs/1010. 2666. 2 [13] Manohar, A., Georgi, H. Chiral quarks and the non-relativistic quark model. Nuclear Physics B, 234 (1), 189-212, 1984. URL http://www.sciencedirect. com/science/article/pii/0550321384902311. 3 [14] Giudice, G. F. Perspectives on LHC Physics, cap. Naturally Speaking: The Naturalness Criterion and Physics at the LHC, pags. 155{178. World Scientific, 2008. URL https://arxiv.org/abs/0801.2562v2. 4, 5 [15] Weinberg, S. Implications of dynamical symmetry breaking. Phys. Rev. D, 13, 974{996, Feb 1976. URL https://link.aps.org/doi/10.1103/PhysRevD.13. 974. 5 [16] Weinberg, S. Implications of dynamical symmetry breaking: An addendum. Phys. Rev. D, 19, 1277-1280, Feb 1979. URL https://link.aps.org/doi/10.1103/ PhysRevD.19.1277. [17] Martin, A. Technicolor Signals at the LHC. arXiv:0812.1841v2 [hep-ph], December 2008. URL https://arxiv.org/abs/0812.1841. 5 [18] Kaplan, D. B., Georgi, H. Composite Higgs scalars. Phys. Lett., B136 (3), 187- 190, Marzo 1984. URL http://www.sciencedirect.com/science/article/ pii/037026938491178X. 5 [19] Kaplan, D. B., Georgi, H. SU(2)-U(1) Breaking by Vacuum Misalignment. Phys. Lett., B136, 183, 1984. URL http://www.sciencedirect.com/science/ article/pii/0370269384911778. [20] Georgi, H., Kaplan, D. B., Galison, P. Calculation of the Composite Higgs Mass. Phys. Lett., B143, 152, 1984. URL http://www.sciencedirect.com/science/ article/pii/0370269384908232. [21] Georgi, H., Kaplan, D. B. Composite Higgs and Custodial SU(2). Phys. Lett., B145, 216, 1984. URL http://linkinghub.elsevier.com/retrieve/ pii/0370269384903411. 5 [22] Contino, R., Kramer, T., Son, M., Sundrum, R. Warped/composite phenomenology simplified. Journal of High Energy Physics, 2007 (05), 074, 2007. URL http://stacks.iop.org/1126-6708/2007/i=05/a=074. 6, 10, 12, 37 [23] Agashe, K., Contino, R., Pomarol, A. The minimal composite Higgs model. Nu- clear Physics B, 719 (1), 165{187, Julio 2005. URL https://arxiv.org/abs/ hep-ph/0412089. 6 [24] Arkani-Hamed, N., Cohen, A. G., Georgi, H. Electroweak symmetry breaking from dimensional deconstruction. Phys. Lett., B513 (1-2), 232{240, Julio 2001. URL http://www.sciencedirect.com/science/article/pii/S0370269301007419. [25] Arkani-Hamed, N., Cohen, A. G., Katz, E., Nelson, A. E. The Littlest Higgs. Journal of High Energy Physics, 2002 (07), 034, 2002. URL http://stacks. iop.org/1126-6708/2002/i=07/a=034. [26] Giudice, G. F., Grojean, C., Pomarol, A., Rattazzi, R. The strongly-interacting light Higgs. Journal of High Energy Physics, 2007 (06), 045, 2007. URL http: //stacks.iop.org/1126-6708/2007/i=06/a=045. [27] De Curtis, S., Redi, M., Tesi, A. The 4D composite Higgs. Journal of High Energy Physics, 2012 (4), 42, Abril 2012. URL http://dx.doi.org/10.1007/ JHEP04(2012)042. 6, 18 [28] Da Rold, L., Davidovich, I. A. A symmetry for fik. arXiv:1704.08704 [hep-ph], May 2017. URL https://arxiv.org/abs/1704.08704. 6 [29] Balkin, R., Perez, G., Weiler, A. Little composite Dark Matter. arXiv:1707.09980[hep-ph], 2017. URL https://arxiv.org/abs/1707.09980. 6, 31, 37 [30] Balkin, R., Ruhdorfer, M., Salvioni, E., Weiler, A. Charged composite scalar dark matter. Journal of High Energy Physics, 2017 (11), 94, Nov 2017. URL https://doi.org/10.1007/JHEP11(2017)094. 37, 98 [31] Ballesteros, G., Carmona, A., Chala, M. Exceptional composite dark matter. The European Physical Journal C, 77 (7), 468, Jul 2017. URL https://doi.org/10. 1140/epjc/s10052-017-5040-1. 6, 31 [32] Higgs, P. W. Evading the Goldstone Theorem. Nobel Lecture. The Nobel Foundation, Diciembre 2013. URL https://www.nobelprize.org/nobel_prizes/ physics/laureates/2013/higgs-lecture.pdf. 8 [33] Bailin, D., Love, A. Introduction to Gauge Field Theory. No ISBN 0-7503-0281- X en Graduate Student Series in Physics, revisada ed Techno House, Redclifie Way, Bristol BS1 6NX, Inglaterra: IOP Publishing Ltd, 1993. 8, 17 [34] Peskin, M. E., Schroeder, D. V. An Introduction to Quantum Field Theory. ISBN 0-201-50397-2, 1a ed. Reading, Massachussetts: Perseus Books, 1995. [35] Ryder, L. H. Quantum Field Theory. ISBN: 0-521-47814-6, 2a ed. The Pitt Building, Trumpington Street, Cambridge, Reino Unido.: Cambridge University Press, 1996. 17 [36] Weinberg, S. The Quantum Theory of Fields. Vol II: Modern Applications. ISBN 0-521-55002-5, 1a ed. The Pitt Building, Trumpington Street, Cambridge: Cambridge University Press, 1996. 17 [37] Zee, A. Quantum Field Theory in a Nutshell. ISBN: 978-0-691-14034-6, 2a ed. 41 William Street, Princeton, New Jersey 08540, Estados Unidos: Princeton University Press, 2010. 8, 17 [38] Peskin, M. E., Takeuchi, T. Estimation of oblique electroweak corrections. Phys. Rev. D, 46, 381{409, Julio 1992. URL https://link.aps.org/doi/10.1103/ PhysRevD.46.381. 9 [39] Da Rold, L. Anarchy with linear and bilinear interactions. Journal of High Energy Physics, 2017 (10), 120, Oct 2017. URL https://doi.org/10.1007/ JHEP10(2017)120. 12 [40] Coleman, S., Wess, J., Zumino, B. Structure of Phenomenological Lagrangians. I. Phys. Rev., 177, 2239{2247, Enero 1969. URL https://link.aps.org/doi/10. 1103/PhysRev.177.2239. 12, 13 [41] Callan, C. G., Coleman, S., Wess, J., Zumino, B. Structure of Phenomenological Lagrangians. II. Phys. Rev., 177, 2247-2250, Enero 1969. URL https://link. aps.org/doi/10.1103/PhysRev.177.2247. 12, 13 [42] Coleman, S., Weinberg, E. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D, 7 (6), 1888-1910, Marzo 1973. URL https: //journals.aps.org/prd/abstract/10.1103/PhysRevD.7.1888. 17 [43] Georgi, H. Effective Field Theory. Annual Review of Nuclear and Particle Scien- ce, 43 (1), 209-252, 1993. URL https://doi.org/10.1146/annurev.ns.43. 120193.001233. 26 [44] Kaplan, D. B. Five lectures on Effective Field Theory. arXiv:nucl-th/0510023, Octubre 2005. URL https://arxiv.org/abs/nucl-th/0510023. 26 [45] Slansky, R. Group theory for uniffed model building. Physics Reports, 79 (1), 1-128, 1981. URL http://www.sciencedirect.com/science/article/pii/ 0370157381900922. 31, 35, 110 [46] Agashe, K., Contino, R., Da Rold, L., Pomarol, A. A custodial symmetry for Zbb. Physics Letters B, 641 (1), 62 { 66, 2006. URL http://www.sciencedirect. com/science/article/pii/S0370269306009828. 34, 35 [47] Patrignani, C., et al. (Particle Data Group). Physical Constants, Mayo 2016. URL http://pdg.lbl.gov/2016/reviews/rpp2016-rev-dark-matter.pdf. 56 [48] Rappoccio, S. Search for new resonances involving Higgs, W or Z boson at CMS. PoS, ICHEP2016, 143, 2016. URL https://pos.sissa.it/282/143/pdf. 58 [49] Ventura, A. Searches for supersymmetry. En: 21st International Conference on Particles and Nuclei (PANIC 17) Beijing, China, September 1-5, 2017. 2017. URL http://inspirehep.net/record/1633760/files/arXiv:1711.00152.pdf. 80 [50] Aaboud, M., et al. Search for Supersymmetry in final states with missing transverse momentum and multiple b-jets in proton{proton collisions at p s = 13 TeV with the ATLAS detector. arXiv:1711.01901, 2017. URL https://arxiv.org/ abs/1711.01901. [51] Panella, O., Leonardi, R., Pancheri, G., Srivastava, Y. N., Narain, M., Heintz, U. Production of exotic composite quarks at the LHC. Phys. Rev. D, 96, 075034, Oct 2017. URL https://link.aps.org/doi/10.1103/PhysRevD.96.075034. 80 [52] Djouadi, A. The anatomy of electroweak symmetry breaking: Tome I: The Higgs boson in the Standard Model. Physics Reports, 457 (1), 1-216, 2008. URL http: //www.sciencedirect.com/science/article/pii/S0370157307004334. 88, 121 [53] Frigerio, M., Pomarol, A., Riva, F., Urbano, A. Composite scalar dark matter. Journal of High Energy Physics, 2012 (7), 15, Jul 2012. URL https://doi.org/ 10.1007/JHEP07(2012)015. 98 [54] Conan Doyle, A. The Adventures of Sherlock Holmes. George Newnes, 1892. 99
Materias:Física > Física de partículas
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:655
Depositado Por:Tamara Cárcamo
Depositado En:26 Abr 2018 10:20
Última Modificación:26 Abr 2018 11:28

Personal del repositorio solamente: página de control del documento