Galvañ, Joaquín (2017) Comisionamiento del sistema integrado de radiocirugía Varian ICVI. / Commissioning of the integrated radiosurgery system Varian ICVI. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 2719Kb |
Resumen en español
La radiocirugía es una técnica de radioterapia compleja que requiere altos niveles de precisión debido a la elevada dosis entregada de forma hipofraccionada sobre un pequeño volumen rodeado por estructuras de riesgo. Para resguardar dichas estructuras y generar alto gradiente de dosis, la técnica puede ser administrada mediante colimadores cónicos, los cuales conforman campos considerados pequeños. Trabajar con dichos campos implica dificultades dosimétricas, por lo cual se han desarrollado nuevos protocolos. Se comisionó el sistema de radiocirugía ICVI de Varian, que incluye colimadores cónicos de 4 mm, 5 mm, 7,5 mm, 10 mm, 12,5 mm, 15 mm y 17,5 mm, a ser usado en un acelerador TrueBeam STx® con energías 6 MV y 10 MV, con y sin filtro aplanador. Se midieron perfiles, curvas de dosis en profundidad y output factors, tal como lo requiere el software de planificación Eclipse™ Cone Planning. Se utilizaron detectores Edge™, microDiamond™ y Diodo E™, así como el fantoma 3D Scanner™, y los resultados se compararon con los datos de referencia del fabricante. Los perfiles y curvas de dosis en profundidad calculados se validaron utilizando diferentes criterios gamma. También se realizó un estudio End-to-End con el fantoma StereoPhan™ y la cámara de ionización PinPoint® 3D. Los conos iguales o mayores a 7,5 mm mostraron concordancia dentro del 2% entre lo medido y lo calculado. Se requiere otro método de validación para los conos más chicos.
Resumen en inglés
Radiosurgery is a complex radiotherapy technique wich requires high levels of precision due to the high dose delivered in few fractions over a small volume surrounded by risk structures. To protect these structures and generate a high dose gradient, the technique can be administered using conical collimators, which form fields considered small. Working with these fields implies dosimetric difficulties, for which new protocols have been developed. The Varian ICVI radiosurgery system was commissioned, which includes 4 mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 15 mm and 17.5 mm conical collimators, to be used in a TrueBeam STx® accelerator with 6 MV and 10 MV energies, both with and without flattening filter. Profiles, dose depth curves and output factors were measured, as required by the Eclipse™ Cone Planning software. Edge™, microDiamond™ and Diode E™ detectors were used, as well as the 3D Scanner™ phantom, and the results were compared with the manufacturer’s reference data. Calculated profiles and dose depth curves were validated using different gamma criteria. An End-to-End test was also carried out with the StereoPhan™ phantom and the PinPoint® 3D ionization chamber. The cones equal or greater than 7.5 mm showed concordance within 2% between the measured and the calculated. Another method of validation is required for the smaller cones.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Información Adicional: | Área Temática: Radiocirugía. |
Palabras Clave: | Radiosurgery; Radiocirugía; Collimators; Colimadores; [Small fields, Pequeños campos; Commissioning; Comisionamiento; TrueBeam STX; TrueBeam STX; Eclipse cone planning] |
Referencias: | [1] Barnett G H, Linskey M E, Adler J R, Cozzens J W, Friedman W A, Heilbrun P et al. Stereotactic radiosurgery- an organized neurosurgery – sanctioned definition. J Neurosurg, 106, 1-5, 2007. [2] ICRU. ICRU Report nº 91: Prescribing, Recording, and Reporting of Stereotactic Treatments With Small Photon Beams. Oxford, Inglaterra. Julio de 2017. [3] Gibbon D, Coste E, Vial S, Vasseur C, Rousseau J. Stereotactic Localization in Medical Imaging: A Technical and Methodological Review. Journal of Radiosurgery, 2 (3), 1999. [4] Leksell L. The stereotactic method and radiosurgery of the brain. ActaChirScand, 102, 3316–3319, 1951. [5] Leksell L. Stereotactic radiosurgery. J NeurolNeurosurg Psychiatry 46, 797–803, 1983. [6] Derechinsky V E, Betti O O. Convergent multibeam unit for radiation. U.S., 4,583,537. A61B6/04, 22 Abr, 1986. Appl. 06/441,595. 12 Nov 1982. [7] Gerszten P C, Burton S A, Welch W C, Brufsky A M, Lembersky B C, Ozhasoglu C et al. Single-Fraction Radiosurgery for the Treatment of Spinal Breast Metastases. Cancer, 104, 2244-2254, 2005. [8] Hamilton A J, Lulu B A, Fosmire H, Gossett L. LINAC-based spinal stereotactic radiosurgery. Stereotact Funct Neurosurg, 66, 1–9, 1996. [9] Adler J R, Murphy M J, Chang S D, Hancock S L. Image-guided robotic radiosurgery. Neurosurgery, 44. 1299–1306, 1999. [10] Flickinger J C, Kondziolka D, Niranjan A, Lunsford D. Results of acoustic neuroma radiosurgery: an analysis of 5 years experience using current methods. J Neurosurg, 94, 1-6, 2001. [11] Gerszten PC, Ozhasoglu C, Burton SA, Vogel W, Atkins B, KalnickiS, et al. Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions. Stereotact Funct Neurosurg, 81. 84–89, 2003. [12] Toyran N, Zorlu F, Severcan F. Effect of Stereotactic Radiosurgery on lipids and proteins of normal and hypoperfused rat brain homogenates: A Fourier transform infrared spectroscopy study. Int F Radiat Biol, 81, 911-918, 2005. [13] Combs SE, Welzel T, Schulz-Ertner D, Huber P E, Debus J. Differences in clinical results after linac-based single-dose radiosurgery versus fractionated stereotactic radiotherapy for patients with vestibular schannomas. IntJ Radiation Oncology Biol Phys, 76 (1), 193-200, 2010. [14] Winston K R, Lutz W. Linear Accelerator as a Neurosurgical Tool for Stereotactic Radiosurgery. Neurosurgery, 22 (3), 1988. [15] Steiner L, Lindquist C, Adler J R, Torner J C, Alves W, Steiner M. Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg, 77, 1-8, 1992. [16] Lorenzana L, Sallabanda K, Samblás J, García R, Peraza C, Gutierrez-Diaz J A et al. Malformaciones arteriovenosas del tronco cerebral tratadas con radiocirugía con acelerador lineal. Resultados a largo plazo. Neurocirugía, 23(6), 234-243. 2012. [17] Santacroce A, Kamp M A, Budach W, Hänggi D. Review Article: Radiobiology of Radiosurgery for the Central Nervous System. BioMed Research International, 2013. [18] Podgorsak E B, Olivier A, Pla M, Lefebvre P Y, Hazel J. Dinamic Stereotactic Radiosurgery. I J Radiation Oncology Biol Phys, 14, 115-126, 1988. [19] Podgorsak E B, Pike B, Olivier A, Pla M, Souhami L. Radiosurgery with High Energy Photon Beams: A Comparison Among Techniques. I J Radiation Oncology Biol Phys, 16, 857-865, 1989. [20] Perez-Andujar A, Descovich M, Chuang C F. Physics of Stereotactic Radiosurgery and Stereotactic Body Radiotherapy. En: Sethi R A, Barani I J, Larson D A, Roach M (Eds). Handbook of Evidence-Based Stereotactic Radiosurgery and Stereotactic Body Radiotherapy. Cham: Springer, 2016. pp. 23-41. [21] Muralidhar K R, Rout B K, Ramesh K K D, Ali M A, Madhusudhan N, Komanduri K et al. Small field dosimetry and analysis of flattening filter free beams in true beam system. Journal of Cancer Research and Therapeuthics, 11, 136-140, 2015. [22] Varian Medical Systems. Eclipse 13 Cone Planning Reference Guide [Versión electrónica]. Palo Alto, USA: 2015. [23] Ouzidane M, Evans J, Djemil T. dedicated linear accelerators for stereotactic radiation therapy. En: Benedict S H, Schlesinger D J, Goetsch S J, Kavanagh B D (Eds). Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. Boca Ratón: CRC Press, 2015. pp. 67-91. [24] Das I J, Ding G X, Ahnesjo A. Small fields: Nonequilibrium radiation dosimetry. Medica Physics. 35 (1), 2008. [25] Li X A, Soubra M, Szanto J, Gerig L H. Lateral electron equilibrium and electron contamination in measurements of head scatter factors using miniphantoms and brass caps. Medical Physics, 22 (7), 1995. [26] Andreo P, Benmakhlouf H. Improved reference and relative dosimetry of small radiation therapy photon beams. Report Number: 2014:26, Swedish Radiation SafetyAuthority. [27] Wuerfel J U. Dose Measurements in Small Fields. Medical Physics International Journal, 1 (1), 2013. [28] Ford E, Evans S. RO ILS launch offers secure incident reporting system to track errors and near-misses. ASTRO News (Summer), 17 (12), 14-15, 2014. [29] British Institute of Radiology. Central Axis Depth Dose Data for Use in Radiotherapy. BJR Suppl. 25. Londres, Inglaterra. 1996. [30] Alfonso R, Andreo P, Capote R, Saiful Huq M, Kilby W, Kjäll P et al. A new formalism for reference dosimetry of small and nonstandard fields. Medical Physics, 35 (11), 2008. [31] Cranmer-Sargison G, Weston S, Evans J A, Sidhu N P, Thwaites D I. Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors. Medical Physics, 38 (12), 2011. [32] Lárraga-Gutiérrez J M. Experimental determination of field factors (𝛺𝑄𝑐𝑙𝑖𝑛,𝑄𝑚𝑠𝑟𝑓𝑐𝑙𝑖𝑛,𝑓𝑚𝑠𝑟) for small radiotherapy beams using the daisy chain correction method. Phys. Med. Biol., 60, 5813-5831, 2015. [33] Varian Medical Systems. TrueBeam Technical Reference Guide. Enero 2016. Documento P1005923-003-C. [34] Paynter D, Weston S J, Cosgrove V P, Evans J A, Thwaites D I. Beam characteristics of energy-matched flattening filter free beams. Medical Physics, 41 (5), 2014. [35] Varian Medical Systems. Intracranial SRS Package. [en línea]. Disponible en: <https://www.varian.com> [36] Darreumaux S, Etard C, Huet C, Trompier F, Clairand I, Bottollier J F et al. Lessons From Recent Accidents in Radiation Therapy in France. Radiation Protection Dosimetry, 131 (1), 130-135, 2008. [37] Spretz T E. Dosimetría de Campos Pequeños de Fotones en Radioterapia. Intercomparación entre Distintos detectores. Tesis (Maestría en Física Médica). Bariloche, Universidad nacional de Cuyo, Instituto Balseiro, 2016. 69 p. [38] PTW. Dosimetry Diode E T60017 User Manual. Julio de 2014. Documento 890.131.00/06. [39] PTW. Manual de usuario microDiamond Tipo 60019. Agosto de 2014. Documento 930.196.00/02 [40] Sun Nuclear Corporation. EDGE DetectorTM User’s Guide. Noviembre de 2014. Documento 1118011. [41] PTW. Manual de Usuario Cámara PinPint 3D Tipo 31016. Octubre de 2008. Documento 730.196.00/05. [42] Sun Nuclear Corporation. 3D ScannerTM Hardware User’s Guide. Abril de 2015. Documento 1230011. [43] Sun Nuclear Corporation. SNC DosimetryTM Software Users’s Guide. Abril de 2015. Documento1230012. [44] Sun Nuclear Corporation. Setting Up 3D TPRTM. Marzo de 2017. Documento 0225011. [45] Sun Nuclear Corporation. StereoPHANTM User’s Guide. Junio de 2015. Documento 1255011. [46] Chalkley A, Heyes G. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry measurements on a Cyberknife. BJR, 87, 1-7, 2014. [47] Dieterich S, Sherouse G W. Experimental comparison of seven comercial dosimetry diodes for measurement of stereotactic radiosurgery cone factors. Medical Physics. 38 (7). 2011. [48] Low, D.A. Gamma Dose Distribution Evaluation Tool. Journal of Physics: Conference Series, 250 (1), 2010. [49] Varian Medical Systems. Portal Dosimetry 13 Reference Guide. 105-106. [Versión electrónica]. Palo Alto, USA: 2015. [50] Andreo P. Incertidumbres y TRS-483. En: Implementación del CoP IAEA TRS-483 (2017, La Habana). [51] Halvorsen P H, Cirino E, Das I J, Garrett J A, Yang J, Yin F F et al. AAPM-RSS Medical Physics Practice Guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys. 2017 |
Materias: | Medicina > Física médica |
Divisiones: | Fundación Centro de Medicina Nuclear y Molecular de Entre Ríos |
Código ID: | 668 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 02 Jul 2018 16:19 |
Última Modificación: | 02 Jul 2018 16:20 |
Personal del repositorio solamente: página de control del documento