Evaluación del modelo EPID AS1200 y puesta en funcionamiento de la dosimetría portal para diferentes energías de fotones. / Evaluation of the EPID AS1200 model setting up portal dosimetry for different photon energies.

Mancuzo , Ariel D. (2017) Evaluación del modelo EPID AS1200 y puesta en funcionamiento de la dosimetría portal para diferentes energías de fotones. / Evaluation of the EPID AS1200 model setting up portal dosimetry for different photon energies. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
2978Kb

Resumen en español

El uso de detectores de radiación basados en silicio amorfo se ha convertido en el estándar para la adquisición de imágenes empleando haces de megavoltaje en radioterapia. A partir del hecho de que las imágenes obtenidas contienen información sobre la distribución de dosis, estos instrumentos han encontrado utilidad en el control de calidad paciente especifico. El presente trabajo tuvo como objetivos examinar las características dosimétricas del dispositivo electrónico de imágenes portales (EPID) aS1200, analizando sus bondades y limitaciones. Asimismo, se pretendió evaluar el algoritmo de predicción de imágenes portales y comisionar el sistema de dosimetría portal para diferentes haces de fotones de la unidad de tratamiento TrueBeam STx®. Las pruebas dosimétricas arrojaron resultados positivos en los que se observaron mejoras concretas con respecto a versiones de EPIDs anteriores. El comisionamiento se aplicó con éxito, verificando la efectividad del algoritmo mediante un conjunto de experimentos y planes de tratamiento, utilizando el método gamma. Se concluyó que el sistema de dosimetría portal propuesto por Varian para la realización de verificación pre-tratamiento es una herramienta de uso sencilla y precisa que permite determinar con rapidez y objetividad la aplicación del tratamiento sobre el paciente.

Resumen en inglés

The use of radiation detectors based on amorphous silicon has become the standard for image acquisition using megavoltage beams in radiotherapy. From the fact that the obtained images contain information about the dose distribution, these instruments have found utility in the patient-specific quality assurance. The goal of this work was to examine the dosimetric characteristics of the electronic portal image device (EPID) aS1200, analyzing its benefits and limitations. Likewise, it was intended to evaluate the portal image prediction algorithm and commission the portal dosimetry system for different photon beams from the TrueBeam STx® treatment unit. The dosimetric tests yielded positive results in which concrete improvements were observed with respect to previous versions of EPIDs. The commissioning was applied successfully, verifying the effectiveness of the algorithm through a set of experiments and treatment plans, using the gamma method. It was concluded that the portal dosimetry system proposed by Varian for the realization of pre-treatment verification is a simple and precise tool that allows to quickly and objectively determine the application of the treatment on the patient.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Dosimetry; Dosimetría; Radioterapy; Radioterapia; [Portal dosimetry; Dosimetría portal; Pre-treatment verification; Verificación pre-tratamiento; Amorphous silicon; Silicio amorfo]
Referencias:[1] Bailey D W, Kumaraswamy L, Bakhatiari M, Malhortra H K, Podgorsak M B. “EPID dosimetry for pretreatment quality assurance with two commercial systems” Journal of Applied Clinical Medical Physics, 13 (4), 82-99, 2012. [2] Stasi M, Bresciani S, Miranti A, Maggio A, Sapino V, Gabriele P. “Pretreatment patient-specific IMRT quality assurance: A correlation study between gamma index and patient clinical dose volume histogram” Med. Phys, 39 (12), 7626-7634, 2012. [3] Hurkmans C W, Remeijer P, Lebesque J V, Mijnheer B J. “Set-up verification using portal imaging; review of current clinical practice” Radiotherapy and Oncology, 58, 105-120, 2001. [4] Hernandez A V. Equipos de radioterapia. En: Brosed Serreta A, Lizuain Arroyo M C. “Fundamentos de Física Médica. Radioterapia externa I. Bases físicas, equipos, determinación de la dosis absorbida y programa de garantía de calidad” Sociedad Española de Física Médica, 2012, pp. 23-94. [5] Langmack A K. “Portal Imaging” The British Journal of Radiology, 74, 789-804, 2001. [6] Perera T, Moseley J, Munro P. “Subjectivity in interpretation of portal films” Int. J. Radiation Oncology Biol. Phys, 45 (2), 529-534, 1999. [7] Marques Ladeira T. “Initial testing of EPID pre-treatment dosimetry for the Varian Linac” Tesis ( Maestría en Ingeniería Biomédica y Biofísica). Lisboa, Universidad de Lisboa, Departamento de Física, 2016. [8] Podgorsak E B (ed.). “Radiation Oncology Physics: A Handbook for Teachers and Students”. Viena: International Atomic Energy Agency, 2005. [9] Wåhlin E. Dosimetric pre-treatment verification with an electronic portal imaging device. Tesis de grado. Estocolmo, Universidad de Estocolmo, Facultad de Ciencias, Física de Radiaciones Medicas, 2006. [10] Clivio A, Vanetti E, Rose S, Nicolini G, Belosi M F, Cozzi L, et al. “Evaluation of the Machine Performance Check” Radiation Oncology, 10, 1-11, 2015. [11] Van Elmpt W, Mc Dermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B. “A literature review of electronic portal imaging for radiotherapy dosimetry” Radiother. Oncol., 88, 289-309, 2008. [12] Antonuk L E. “Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research” Phys Med Biol, 47, 31-65, 2002. [13] Wowk B, Shalev S, Radcliffe T. “Grooved phosphor screens for on-line portal imaging” Med. Phys., 20 (6), 1641-1651, 1993. [14] Wong J W, Cheng A Y, Binns W R, Epstein J W, Klarmann J, Perez C A. “Development of a second-generation fiber-optic on-line image verification system” Int. J. Radiat Oncol Biol Phys, 26, 311-320, 1993. [15] Meertens H, van Herk M, Weeda J. “A liquid ionisation detector for digital radiography of terapeutic megavoltage photon beams” Phys Med Biol, 30 (4), 313-321, 1985. [16] Kirby M C, Glendinning A G. “Developments in electronic portal imaging systems” The British Journal of Radiology, 79, 50-65, 2006. [17] Herman M G, Balter J M, Jaffray D A, McGee K P, Munro P, Shalev S, et al “Clinical use of electronic portal imaging: Report of AAPM Radiation Therapy Committee Task Group 58” Med Phys, 28 (5), 712-737, 2001. [18] Naizzir Olave O E. “Caracterización y Comisionamiento de un Sistema de Imágenes Portales para Verificación Pre-tratamiento en Radioterapia de Intensidad Modulada” Tesis (Maestría en Física Médica), Bogotá, Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Física, 2014. [19] El-Mohri Y, Antonuk L E, Yorkston J, Jee K W, Maolinbay M, Lam K L. “Relative Dosimetry using Active Matrix Flat-Panel Imager (AMFPI) Technology” Med Phys, 26, 1530-1541, 1999. [20] Partridge M, Hesse B M, Müller L. “A performance comparison of direct- and indirect- detection flat-panel imagers” Nuclear Instruments and Methods in Physics Research, 484, 351-363, 2002. [21] Hernando I, Torres R, Pifarré X. La imagen radiológica y su generación. En: Brosed Serreta A, Ruiz Manzano P. “Fundamentos de Física Médica. Radiodiagnóstico: bases físicas, equipos y control de calidad” Sociedad Española de Física Médica, 2012, pp. 53-103. [22] King B W. “Development and testing of an improved dosimetry system using a backscatter shielded electronic portal imaging device.” Med Phys, 39 (5), 2839-1847, 2012. [23] Kirkby C, Sloboda R. “Consequences of the spectral response of an a-Si EPID and implications for dosimetric calibration,” Med Phys, 32 (8), 2649-2658, 2005. [24] Boudry J M, Antonuk, L E. “Radiation damage of amorphous silicon photodiode sensors” IEEE Trans. Nucl. Sci., 41, 703-707, 1994. [25] Boudry J M, Antonuk L E. “Radiation damage of amorphous silicon thin-film, filed-effect transistors,” Med Phys, 23, 743-754, 1996. [26] Bushberg J T, Seibert J A, Leidholdt E M, Boone J M. “The Essential Physics of Medical Imaging” (2 ed.). Philadelphia, USA: Lippoincott Williams & Wilkins, 2002. [27] van Herk M. “Physical aspects of a liquid-filled ionization chamber with pulsed polarizing voltage” Med Phys, 18 (4), 692-702, 1991. [28] Heijmen B J, Pasma K L, Kroonwijk M, Althof V G, de Boer J C, Visser A G, et al. “Portal dose measurement in radiotherapy using an electronic portal imaging device (EPID)” Phys Med Biol, 40 (11), 1845-1855, 1995. [29] Pasma K L, Kroonwijk M, de Boer J C, Visser A G, Heijmen B J. “Accurate portal dose measurement with a fluoroscopic electronic portal imaging device (EPID) for open and wedged beams and dynamic multileaf collimation” Phys Med Biol, 43 (8), 2047-2060, 1998. [30] Antonuk LE, El-Mohri Y, Huang W, Jee K W, Siewerdsen J H, Maolinbay M, et al. “Initial performance evaluation of an indirect-detection, active matrix flat-panel imager (AMFPI) prototype for megavoltage imaging” Int J Radiat Oncol Biol Phys, 42 (2), 437-454, 1998. [31] Sabet M, Menk F W, Greer P B. “Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry” Med Phys, 37 (4), 1459-1467, 2010. [32] McDermott L N, Louwe R J W, Sonke J J, van Herk M B, Mijnheer B J. “Dose–response and ghosting effects of an amorphous silicon electronic portal imaging device” Med Phys, 31 (2), 285-295, 2004. [33] McCurdy B M C, Luchka K, Pistorius S. “Dosimetric Investigation and Portal Dose Image Prediction using an Amorphous Silicon Electronic Portal Imaging Device” Med Phys, 28 (6), 911-924, 2001. [34] Van Esch A, Depuydt T, Huyskens D P. “The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields” Radiotherapy and Oncology, 71 (2), 223-234, 2004. [35] Greer P B, Popescu. “Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy” Med Phys, 30 (7), 1618-1627, 2003 [36] Grein E E, Lee R, Luchka K. “An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry,” Med Phys, 29 (10), 2262-2268, 2002. [37] Winkler P, Hefner A, Georg D. “Dose-response characteristics of an amorphous silicon EPID” Med Phys, 32 (10), 3095-3105, 2005. [38] Vial P, Greer P, Oliver L, Baldock C. “Initial evaluation of a commercial EPID modified to a direct-detection configuration for radiotherapy dosimetry” Med Phys, 35 (10), 4362-4374, 2008. [39] Mijnheer B, Olaciregui-Ruiz I, Rozendaal R, Sonke J J, Spreeuw H, Tielenburg R, et al. “3D EPID-based in vivo dosimetry for IMRT and VMAT” En: International Conference on 3D Radiation Dosimetry (7°, 2013) J. Phys.: Conf. Ser. 444 012011. [40] van Elmpt W J, Nijsten S M, Schiffeleers R F, Dekker A L, Mijnheer B J, Lambin P, et al. “A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images” Med Phys, 33 (7), 2426-2434, 2006. [41] Nijsten S M, van Elmpt W J C. “A global calibration model for a Si EPIDs used for transit dosimetry” Med Phys, 34 (10), 3872-3884, 2007. [42] Depuydt T, Van Esch A, Huyskens D P. “A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation” Radiotherapy and Oncology, 62 (3), 309-319, 2002. [43] Van Dyk J, Barnett R B, Cygler J E, Shragge P C. “Commissioning and quality assurance of treatment planning computers” Int J Radiat Oncol Biol Phys, 26 (2), 261-273, 1993. [44] Low D A, Harms W B, Mutic S, Purdy J A. “A technique for the quantitative evaluation of dose distributions” Med Phys, 25 (5), 656-661, 1998. [45] Low D A. “Gamma Dose Distribution Evaluation Tool” En: International Conference on 3D Radiation Dosimetry (6°, 2010) J. Phys.: Conf. Ser. 250 012071. [46] Varian Medical System, “TrueBeam STx System Specifications” [version electronica]. Palo Alto USA: 2015. Documento RAD 100931. [47] Varian Medical System, “Portal Dosimetry 13” [Version electronica]. Palo Alto USA: 2015. Documento PD13.6-CEM-01-C. [48] Reiterer J, Abderhalden J, Krauss H, Papauschek M, Mailat D., “KFJ goes DMI: We Upgraded our MV Imaging Detectors,” Institute of Radiooncology, KFJ Hospital,Vienna., 2016. [En línea]. Disponible en: http://www.wienkav.at/kav/kfj/91033454/physik/tb/tb_dmi.html. [49] Varian Medical System. “TrueBeam Technical Reference Guide - Volume 2: Imaging” [Versión Electrónica], Documento P1011696-00-2B, Palo Alto USA: 2015. [50] Varian Medical System. “Portal Dosimetry Reference Guide” [Version electrónica]. Palo Alto USA: 2015. Documento P1001364, Revisión B. [51] Varian Medical System. “On-Board Imager (OBI) Advanced Imaging” [Version electronica]. Palo Alto USA: 2015. Documento B505010R01B. [52] Gao S, Du W, Balter P, Munro P, Jeung A. “Evaluation of IsoCal geometric calibration system for Varian linacs equipped with on-board imager and electronic portal imaging device imaging systems” Journal of Applied Clinical Medical Physics, 15 (3), 164-181, 2014. [53] Varian Medical System. “TrueBeam 2.5 Administration and Physics” [Version electronica]. Palo Alto USA: 2015. Documento TB2.5-CEM-02-B. [54] Reiterer J, Abderhalden J, Krauss H, Papauschek M, Mailat D. “Portal Dosimetry - Overview” Institute of Radiooncology, KFJ Hospital,Vienna, 2007. [En línea]. Disponible en: http://www.wienkav.at/kav/kfj/91033454/physik/pd/pd_overview.htm. [55] Van Esch A, Huyskens D P, Hirschi L, Scheib S, Baltes C. “Optimized Varian aSi portal dosimetry: development of datasets for collective use” Journal of Applied Clinical Medical Physics, 14 (6), 82-99, 2013. [56] Storchi P, Woudstra E. “Calculation of the absorbed dose distribution due to irregularly shaped photon beams using pencil beam kernels derived from basic beam data” Phys Med Biol, 41 (4), 637-656, 1996. [57] Varian Medical System. “Eclipse Photon and Electron Algorithms 13.6 Reference Guide” [Version electrónica]. Palo Alto USA: 2015. Documento P1008611-003-C . [58] Varian Medical System. “Instalaltion and Verification of the Portal Dosimetry Pre-Configuration Package for TrueBeam Family of Products v1.0” [Version electrónica]. Palo Alto USA: 2015. Documento P1014035. [59] Falco E. “Dosimetria Basada en Sistema Electrónico de Imagen Portal EPID” Tesis (Licenciatura en Física). Cordoba, Universidad Nacional de Cordoba, Facultad de Matemática, Astronomía y Física, 2015. [60] Siewerdsen J H, Jaffray D A. “A ghost story: spatio-temporal response characteristics of an indirect-detection flat-panel imager” Med Phys, 26 (8), 1624-1641, 1999. [61] Overdick M, Solf T, Wischmann H. “Temporal artefacts in flat dynamic x-ray detectors” Proc. SPIE, 4320, 47-54, 2001. [62] Van Esch A, Bohsung G, Sorvari P, Tenhunen M, Paiusco M, Iori M, et al. “Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments” Radiotherapy and Oncology, 65 (1), 53-70, 2002. [63] Miri N, Keller P, Zwan B J, Greer P. “EPID-based dosimetry to verify IMRT planar dose distribution for the aS1200 EPID and FFF beams” Journal of Applied Clinical Medical Physics, vol. 17 (6), 292-304, 2016. [64] Reilly A. “Evaluation of a new electronic portal imaging device (EPID) for in vivo dosimetry applications” Abstracts/Physica Medica, vol. 32 (2), 416, 2016. [65] Nicolini G, Clivio A, Vanetti E, Tomatis S, Reggiori G, Cozzi L, et al. “Dosimetric testing of the new aS1200 MV imager with FF and FFF beams” [Poster-0863]. Radiother Oncol, 115 (2), S439, 2015. [66] Greer P B, Cadman P, Lee C, Bzdusek K. “An energy fluence-convolution model for amorphous silicon EPID dose prediction” Med Phys, 36 (2), 547-555, 2009. [67] McDermott L N, Nijsten S M J J G, Sonke J J, Patridge M, van Herk M, Mijnheer B J. “Comparison of ghosting effects for three commercial a - Si EPIDs” Med Phys, 36 (7), 2448-2451, 2006.
Materias:Medicina > Imagenología
Medicina > Dosimetría
Medicina > Física médica
Divisiones:Fundación Centro de Medicina Nuclear y Molecular de Entre Ríos
Código ID:669
Depositado Por:Tamara Cárcamo
Depositado En:06 Jul 2018 16:05
Última Modificación:06 Jul 2018 16:05

Personal del repositorio solamente: página de control del documento