Procesamiento no lineal en sistemas WDM de alta capacidad. / Non-linear signal processing in high capacity WDM systems.

Battocchio, Evelin R. (2017) Procesamiento no lineal en sistemas WDM de alta capacidad. / Non-linear signal processing in high capacity WDM systems. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
2285Kb

Resumen en español

En este trabajo se analizan distintos metodos de procesamiento digital de señales orientados a mitigar efectos de dispersion y no linealidades en sistemas de comunicaciones ópticas coherentes de alta capacidad, con el fin de mejorar su rendimiento. Se introducen dos tecnicas estudiadas en la literatura actual: ecualizacion por propagacion digital inversa (DBP) y filtrado de Volterra; y se desarrollan rutinas de procesamiento offine para su implementacion en distintos escenarios de simulacion. Posteriormente se realiza la comparacion de los ecualizadores en funcion de su desempeño y su complejidad computacional. Se consideraron transmisiones de 20 a 100 Gbps, a traves de enlaces ópticos de 800 a 2400 km. Por otro lado, se presentan los resultados de simular un modelo basado en teoria de perturbaciones denominado Gaussian Noise (GN), que permite realizar una estimación de la interferencia no lineal en sistemas de comunicaciones ópticas mediante una sencilla forma de calculo.

Resumen en inglés

In this thesis, dierent signal processing techniques are introduced which aim to mitigate dispersion and non linear eects in high capacity coherent optical communications systems, in order to improve their performance. Two methods which are actively studied in current literature are presented: digital backward propagation (DBP) and Volterra equalization. Oine processing algorithms for both methods are developed and implemented in several simulation scenarios. Next, the equalizers' behaviour is evaluated in terms of their performance and computational complexity. Transmissions rates of 20 to 100 Gbps were considered over 800 to 2400 km optical links. Furthermore, a perturbative model for the estimation of nonlinear interference in optical networks is presented. Simulations were carried out in order to assess its potential application in system analysis and design.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:[High capacity optical communications; Comunicaciones ópticas de alta capacidad; Wavelength division multiplexing; Nonlinear effects compensation; Compensación de efectos no lineales; Digital signal processing; Procesamiento digital de señales; Volterra filtering; Filtro de volterra]
Referencias:[1] TeleGeography. Submarine cable map, 2014. URL https://www. submarinecablemap.com/. xi, 1, 2 [2] ARSAT. Plan federal de internet, 2017. URL http://www.arsat.com.ar/ plan-federal-de-internet/. xi, xiii, 3 [3] Du, L. B., Raque, D., Napoli, A., Spinnler, B., Ellis, A. D., Kuschnerov, M., et al. Digital ber nonlinearity compensation: toward 1-tb/s transport. IEEE signal processing magazine, 31 (2), 46{56, 2014. 1, 2, 3, 4, 17, 21, 23, 24 [4] Ip, E., Kahn, J. M. Compensation of dispersion and nonlinear impairments using digital backpropagation. Journal of Lightwave Technology, 26 (20), 3416-3425, 2008. 4 [5] Goldfarb, G., Taylor, M. G., Li, G. Experimental demonstration of ber impairment compensation using the split-step nite-impulse-response ltering method. IEEE Photonics Technology Letters, 20 (22), 1887{1889, 2008. 4 [6] Du, L. B., Lowery, A. J. Improved single channel backpropagation for intra-channel ber nonlinearity compensation in long-haul optical communication systems. Optics Express, 18 (16), 17075-17088, 2010. 4 [7] Raque, D., Zhao, J., Ellis, A. D. Digital back-propagation for spectrally ecient wdm 112 gbit/s pm m-ary qam transmission. Optics Express, 19 (6), 5219-5224, 2011. 4 [8] Peddanarappagari, K. V., Brandt-Pearce, M. Volterra series transfer function of single-mode bers. Journal of lightwave technology, 15 (12), 2232-2241, 1997. 5, 27, 28 [9] Schetzen, M. The volterra and wiener theories of nonlinear systems, 1980. 5, 27, 28 [10] Gao, Y., Zhang, F., Dou, L., Chen, Z., Xu, A. Intra-channel nonlinearities mitigation in pseudo-linear coherent qpsk transmission systems via nonlinear electrical equalizer. Optics Communications, 282 (12), 2421{2425, 2009. 5, 30, 43, 50, 58, 65, 66 [11] Zhang, F., Gao, Y., Luo, Y., Li, J., Zhu, L., Li, L., et al. Experimental demonstration of intra-channel nonlinearity mitigation in coherent qpsk systems with nonlinear electrical equaliser. Electronics letters, 46 (5), 353-355, 2010. 5 [12] Pan, Z. Intra-channel Nonlinearity Mitigation of Long-haul Single-carrier Coherent Detection Optical Communication Systems Using Digital Signal Processing. Master thesis, McGill University Canada, June 2011. 5, 14, 30, 43, 50, 58, 64, 65, 67, 75 [13] Guiomar, F. P., Reis, J. D., Teixeira, A. L., Pinto, A. N. Mitigation of intra-channel nonlinearities using a frequency-domain volterra series equalizer. Optics express, 20 (2), 1360-1369, 2012. 5, 43, 50, 64, 67 [14] Liu, L., Li, L., Huang, Y., Cui, K., Xiong, Q., Hauske, F. N., et al. Intrachannel nonlinearity compensation by inverse volterra series transfer function. Journal of Lightwave Technology, 30 (3), 310-316, 2012. 5 [15] Bakhshali, A., Chan, W.-Y., Cartledge, J. C., O'Sullivan, M., Laperle, C., Borowiec, A., et al. Frequency-domain volterra-based equalization structures for ecient mitigation of intrachannel kerr nonlinearities. Journal of Lightwave Technology, 34 (8), 1770-1777, 2016. 5 [16] Bakhshali, A., Chan, W.-Y., Gao, Y., Cartledge, J. C., O'Sullivan, M., Laperle, C., et al. Complexity reduction of frequency-domain volterra-based nonlinearity postcompensation using symmetric electronic dispersion compensation. En: Optical Communication (ECOC), 2014 European Conference on, pags. 1-3. IEEE, 2014. 5 [17] Inan, B., Randel, S., Jansen, S. L., Lobato, A., Adhikari, S., Hanik, N. Pilottone- based nonlinearity compensation for optical ofdm systems. En: Optical Communication (ECOC), 2010 36th European Conference and Exhibition on, pags. 1-3. IEEE, 2010. 5 [18] Du, L. B., Lowery, A. J. Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems. Optics letters, 36 (9), 1647-1649, 2011. 5 [19] Poggiolini, P. The gn model of non-linear propagation in uncompensated coherent optical systems. Journal of Lightwave Technology, 30 (24), 3857-3879, 2012. 5, 34, 37, 39, 40, 68, 70 [20] Carena, A., Curri, V., Bosco, G., Poggiolini, P., Forghieri, F. Modeling of the impact of nonlinear propagation eects in uncompensated optical coherent transmission links. Journal of Lightwave Technology, 30 (10), 1524-1539, 2012. [21] Poggiolini, P., Bosco, G., Carena, A., Curri, V., Jiang, Y., Forghieri, F. The gn-model of ber non-linear propagation and its applications. Journal of lightwave technology, 32 (4), 694-721, 2014. 34, 35, 36, 37, 38, 39, 40, 71 [22] Carena, A., Bosco, G., Curri, V., Jiang, Y., Poggiolini, P., Forghieri, F. Egn model of non-linear ber propagation. Optics Express, 22 (13), 16335-16362, 2014. 5 [23] Agazzi, O. E., Crivelli, D. E., Carrer, H. S. Maximum likelihood sequence estimation in the presence of chromatic and polarization mode dispersion in intensity modulation/direct detection optical channels. En: Communications, 2004 IEEE International Conference on, tomo 5, pags. 2787-2793. IEEE, 2004. 5 [24] Crivelli, D., Hueda, M., Carrer, H., Zachan, J., Gutnik, V., Del Barco, M., et al. A 40nm cmos single-chip 50gb/s dp-qpsk/bpsk transceiver with electronic dispersion compensation for coherent optical channels. En: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, pags. 328-330. IEEE, 2012. 5 [25] Maggio, G. N., Hueda, M. R., Agazzi, O. E. Reduced complexity mlsd receivers for nonlinear optical channels. IEEE Photonics Technology Letters, 26 (4), 398-401, 2014. 5 [26] Agrawal, G. P. Fiber-optic communication systems, tomo 222. John Wiley & Sons, 2012. 7, 8, 11, 12, 13, 14, 38 [27] Serena, P., Bertolini, M., Vannucci, A. Optilux toolbox. Disponible en: optilux. sourceforge. net/Documentation/optilux doc. pdf, 2009. 8, 9, 10, 15 [28] Kikuchi, K. Coherent optical communications: Historical perspectives and future directions. High Spectral Density Optical Communication Technologies, pags. 11{49, 2010. 18, 19 [29] Savory, S. J. Digital lters for coherent optical receivers. Optics express, 16 (2), 804-817, 2008. 22, 23 [30] Agrawal, G. P. Nonlinear ber optics. Academic press, 2007. 24, 25, 26 [31] Sinkin, O. V., Holzlohner, R., Zweck, J., Menyuk, C. R. Optimization of the splitstep fourier method in modeling optical-ber communications systems. Journal of lightwave technology, 21 (1), 61, 2003. 26 [32] Diniz, P. Adaptive ltering: Algorithms and practical implementation. springer. New York, NY, USA, 2008. 30 [33] Haykin, S. S. Adaptive lter theory. Pearson Education India, 2008. 30, 33 [34] Jiang, Y. The EGN model of nonlinear propagation in coherent optical transmission systems and its applications. Phd thesis, Politecnico di Torino, Diciembre 2014. 40 [35] Nespola, A., Straullu, S., Carena, A., Bosco, G., Cigliutti, R., Curri, V., et al. Gnmodel validation over seven ber types in uncompensated pm-16qam nyquist-wdm links. IEEE Photonics Technology Letters, 26 (2), 206-209, 2014. 40 [36] Fatadin, I. Estimation of ber from error vector magnitude for optical coherent systems. En: Photonics, tomo 3, pag. 21. Multidisciplinary Digital Publishing Institute, 2016. 42, 43 [37] Xu, T. DSP based Chromatic Dispersion Equalization and Carrier Phase Estimation in High Speed Coherent Optical Transmission Systems. Tesis Doctoral, KTH Royal Institute of Technology, 2012. 50 [38] Savory, S. J., Gavioli, G., Killey, R. I., Bayvel, P. Electronic compensation of chromatic dispersion using a digital coherent receiver. Optics express, 15 (5), 2120-2126, 2007. [39] Pan, J., Cheng, C.-H. Nonlinear electrical compensation for the coherent optical ofdm system. Journal of Lightwave Technology, 29 (2), 215-221, 2011. 50 [40] ITU, O. Series g: Transmission systems and media, digital systems and networks international telephone connections and circuits{general denitions. 50 [41] Behrens, C. Mitigation of nonlinear impairments for advanced optical modulation formats. Tesis Doctoral, UCL (University College London), 2012. 64, 75 [42] Xilinx UltraScale Architecture and Product Data Sheet: Overview. URL: https://www.xilinx.com/support/documentation/data_sheets/ ds890-ultrascale-overview.pdf. Acceso: 2017-15-12. 67 [43] Berten Digital Signal Processing: GPU vs FPGA Performance Comparison. URL: http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_ FPGA_Performance_Comparison_v1.0.pdf. Acceso: 2017-15-12. [44] Radeon RX: Bring gaming to life. URL: https://gaming.radeon.com/en/ product/vega/radeon-rx-vega-64/. Acceso: 2017-15-12. [45] Texas Instruments: C66x multicore DSP. URL: http://www.ti.com/processors/ dsp/c6000-dsp/c66x/overview.html. Acceso: 2017-15-12. 67
Materias:Ingeniería en telecomunicaciones
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
Código ID:672
Depositado Por:Tamara Cárcamo
Depositado En:24 Abr 2018 12:31
Última Modificación:25 Abr 2018 11:54

Personal del repositorio solamente: página de control del documento