Gomez Búxo, Martín D. (2017) PET/MR gatillado para detección de nódulos pulmonares. / PET/ MR trigger for detection of pulmonary nodules. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 3638Kb |
Resumen en español
Hace más de dos décadas los equipos híbridos han cobrado importancia en el ambiente médico. La capacidad de brindar información anatómica y funcional los convierte en una herramienta de diagnóstico importante. Un ejemplo de estos equipos es el PET/MR, que por su reciente desarrollo hace que no se tenga una dimensión exacta de su potencial. Para extender el conocimiento sobre el alcance del PET/MR, en el presente trabajo se busca establecer un protocolo para la modalidad PET-MR para la detección de nódulos pulmonares. La región pulmonar presenta dificultades para el estudio por PET y MR. Se buscaran las secuencias de resonancia magnética capaces de sobrepasar los inconvenientes de la región pulmonar. Mientras que en PET, haciendo uso de las opciones más avanzadas que brinda el equipo, se ajusta el algoritmo de reconstrucción para maximizar la detección de lesiones nodulares. Fijado el protocolo para la evaluación pulmonar, se comparan los resultados obtenidos contra la técnica estándar para la evaluación de nódulos en la región pulmonar, el PET-CT. El protocolo de PET-RM elegido, incluye para el estudio de resonancia, las secuencias STIR gatillada y LAVA, la combinación de estas dos secuencias tiene un mayor poder de detección; sin embargo con grandes errores en los valores de representación. En tanto que la adquisición PET en la región pulmonar se realiza en forma gatillada, usando para la reconstrucción TOF y PSF. El algoritmo de reconstrucción se fijó en 3 iteraciones 16 subset y 3mm de filtrado. Por otro lado las diferencias entre los bloques PET de ambos sistemas, fue muy grande presentando mayor detección de nódulos pulmonares el sistema PET/MR.
Resumen en inglés
More than two decades ago, hybrid equipment has gained importance in the medical environment. The ability to provide anatomical and functional information makes them an important diagnostic tool. An example of this equipment is the PET / MR, which due to its recent development does not have an exact dimension of its potential. To extend the knowledge about the scope of the PET / MR, in the present work we seek to establish a protocol for the PET-MR modality for the detection of pulmonary nodules. The pulmonary region presents difficulties for the study by PET and MR. Magnetic resonance sequences capable of overcoming the disadvantages of the lung region will be sought. While in PET, making use of the most advanced options offered by the equipment, the reconstruction algorithm is adjusted to maximize the detection of nodular lesions. The protocol for pulmonary evaluation was established, comparing the results obtained against the standard technique for the evaluation of nodules in the lung region, the PET-CT. The chosen PET-MRI protocol includes, for the resonance study, the triggered STIR and LAVA sequences; the combination of these two sequences has a greater detection power; however with large errors in NP sizes. While PET acquisition in the lung region is performed in a triggered manner, using TOF and PSF reconstruction. The reconstruction algorithm was set to 3 iterations 16 subset and 3mm filtering. On the other hand, the differences between the PET blocks of both systems were very large, with greater detection of pulmonary nodules in the PET / MR system.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Computerized tomography; Tomografía computerizada; Magnetic resonance; Resonancia magnética; [ Pulmonary nodules; Nódulos pulmonares; Trigger; Gatillado] |
Referencias: | 1. L. Sawicki1, J. Grueneisen, (2016), Comparative Performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in Detection and Characterization of Pulmonary Lesions in 121 Oncologic Patients. The journal of nuclear medicine Vol. 57 (4) 582-586 2. Chandarana, H., Heacock, L., Rakheja, R., DeMello, L., Bonavita, J.,(2013) Pulmonary Nodules in Patients with Primary Malignancy: Comparison of Hybrid PET/MR and PET/CT Imaging. Radiology: Vol268 (3) 874-881. 3. C. Fink, M. Puderbach,(2007) Lung MRI at 1.5 and 3 Tesla Observer Preference Study and Lesion Contrast Using Five Different Pulse Sequences. Investigative Radiology. Vol 42(6). 377–383 4 J. Gili, (2002) introducción biofísica a la resonancia magnética v: 03-2 en neuroimagen. Barcelona. España. 5 H. Schild,(1992) Resonancia hecha fácil. Barcelona. España. 6. Muller CJ, Loffler R, Deimling M, Peller M, Reiser M (2001) MR lung imaging at 0.2 T with T1-weighted true FISP: native and oxygen-enhanced. J Magn Reson Imaging 14(2):164–168 7. Griswold MA, Blaimer M, Breuer F, Heidemann RM, Mueller M, Jakob PM (2005) Parallel magnetic resonance imaging using the GRAPPA operator formalism. Magn Reson Med 54(6):1553–1556 8. Heidemann RM, Griswold MA, Kiefer B, Nittka M, Wang J, Jellus V et al (2003) Resolution enhancement in lung 1H imaging using parallel imaging methods. Magn Reson Med 49(2):391– 394 9 Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M et al (2012) MRI of the lung (2/3). Why… when… how? Insights Imaging, doi:10.1007/s13244-011-0146- 8 10. Wilman AH, Riederer SJ (1997) Performance of an elliptical centric view order for signal enhancement and motion artifact suppression in breath-hold three-dimensional gradient echo imaging. Magn Reson Med 38(5):793–802 11. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Timeresolved contrast-enhanced 3D MR angiography. Magn Reson Med 36(3):345–351 12. Leutner C, Gieseke J, Lutterbey G, et al. MRT versus CT in the diagnosis of pneumonias: an evaluation of a T2-weighted ultrafast turbo-spin-echo sequence (UTSE). Rofo 1999;170(5):449–56. 13 Henzler T, Dietrich O, Krissak R, Wichmann T, Lanz T, Reiser MF et al (2009) Half-Fourier-acquisition single-shot turbo spin-echo (HASTE) MRI of the lung at 3 Tesla using parallel imaging with 32-receiver channel technology. J Magn Reson Imaging 30 (3):541–546 14 Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ. Magnetic resonance imaging at 3.0 tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 2003;38(7):385–402. 15 Kuhl CK, Träber F, Schild HH. Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. and Technical considerations and clinical applications. Radiology 2008;246(3):675–696. 16 Wild JM, Marshall H, Bock M et al (2012) MRI of the lung (1/3): methods. Insights Imaging 3:345–353 17. Biederer J, Mirsadraee S, BeerMet al (2012)MRI of the lung (3/3)- current applications and future perspectives. Insights Imaging 3:373–386 18. Leutner CC, Gieseke J, Lutterbey G et al (2000) MR imaging of pneumonia in immunocompromised patients: comparison with helical CT. AJR Am J Roentgenol 175:391–397 19. Rajaram S, Swift AJ, Capener D, Telfer A, Davies C, Hill C et al (2012) Lung morphology assessment with balanced steady-state free precession MR imaging compared with CT. Radiology 6:6 20. Rampton JW, Young PM, Fidler JL et al (2013) Putting the fat and water protons to work for you: a demonstration through clinical cases of how fat-water separation techniques can benefit your body MRI practice. AJR Am J Roentgenol 201:1303–1308 21. Boellaard R., (2009) Standards for PET Image Acquisition and Quantitative Data Analysis. the journal of nuclear medicine. Vol. 50 (5) 11-18 22 S. Vandenberghe1 and P. K Marsden. (2015) PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys. Med. Biol. 60 R115–R154 doi:10.1088/0031-9155/60/4/R115 23 J.M.. Martí. (2010) Neuroimagen: Fundamentos técnicos y prácticos. Rev Esp Med Nucl Imagen 29:189-210. 24 Ross, S., Stearns, C., (2010)SharpIR White Paper. GE Healthcare 25 M. Iatrou, R. M. Manjeshwar, S. G. Ross. (2006). 3D implementation of Scatter Estimation in 3D PET. Nuclear Science Symposium Conference Record, 2006. IEEE. DOI:10.1109/NSSMIC.2006.354338 26 A.Kohana, J.Vercher, M.Gaeta, 2013 Tomografía por emisión de positrones/resonancia magnética: presente y futuro. Vol 32 (3) 167-176 27 A. García, A. Soriano, P. Talavera. 2009. 18F-FDG PET-TAC y sincronización respiratoria: efecto en la detección y catalogación de lesiones pulmonares. Rev Esp Med Nucl Imagen Vol. 28:181-7 - DOI: 10.1016/S0212-6982(09)00009 28 Ting Sim Y., Wui Poon F., (2013). Imaging of solitary pulmonary nodule—a clinical review. Quant Imaging Med Surg Vol: 3(6):316-326 29 Boellaard R., Delgado-Bolton R., Oyen W. y Giammarile F.(2014). FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. Vol 42 328–354 30 GE Healthcare, Signa TMSeria:24 Operator Manual, 5485960-1 EN. Revision 1.2007, General electric Company 31 Diederich S., (2006) Solitary pulmonary nodule: detection and management. Cancer Imaging 6, S42–S46. DOI: 10.1102/1470-7330.2006.9004 32 Cieszanowski, A., Lisowska1, A. Dabrowska, M., Korczynski, P., Zukowska1, M., Grudzinski, I., Pacho1, R., Rowinski1, O., Krenke, R.,. (2016). MR Imaging of Pulmonary Nodules: Detection Rate and Accuracy of Size Estimation in Comparison to Computed Tomography. PLOS ONE. DOI: 10.1371 33 National Electrical Manufacturers Association. NEMA Standards Publication NU 2–2007, Performance measurements of positron emission tomographs. 2007. Rosslyn, VA. 26–33. 34 T Taniguchi, G. Akamatsu, Y. Kasahara, K., Mitsumoto, (2014) Improvement in PET/CT image quality in overweight patients with PSF and TOF. The Japanese Society of Nuclear Medicine. DOI 10.1007/s12149-014-0912-z. 35 J. Yan1, J. Schaefferkoetter, M Conti y D. Townsend.(2016) A method to assess image quality for Lowdose PET: analysis of SNR, CNR, bias and image noise. Cancer Imaging 16:26 36 B. Chin, E. Green, T. Turkington, T. Hawk. (2009). Increasing Uptake Time in FDG-PET: Standardized Uptake Values in Normal Tissues at 1 versus 3 h. Mol Imaging Biol 11:118Y122 37 Cieszanowski, A., Lisowska1, A. Dabrowska, M., Korczynski, P., Zukowska1, M., Grudzinski, I., Pacho1, R., Rowinski1, O., Krenke, R.,. (2016). MR Imaging of Pulmonary Nodules: Detection Rate and Accuracy of Size Estimation in Comparison to Computed Tomography. PLOS ONE. DOI: 10.1371 38 Biederer, J, Hintze C., y Fabel, M.,.( 2008) MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging 8, 125_130. DOI: 10.1102/1470-7330.2008.0018 39 Rajaram, S., Swift, A., Capener, D., Telfer, A.,Davies, C.( 2012) Lung Morphology Assessment with Balanced Steady-State Free Precession MR Imaging Compared with CT1. Radiology: Vol. 263.(2) 569-577. 40 Mori, T., Nomori, H., Ikeda, K., (2008) ,Diffusion-Weighted Magnetic Resonance Imaging for Diagnosing Malignant Pulmonary Nodules/Masses. Journal of Thoracic Oncology. Vol.3(4). 358-364. 41 Jaskowiak, C., Bianco, J., Perlman, S.(2005). Influence of Reconstruction Iterations on 18F-FDG PET/CT Standardized Uptake Values. The journal of nuclear medicine Vol. 46 ( 3). 424-428. 42 Ross, S., Stearns, C., (2010) SharpIR White Paper. GE Healthcare 43 Manjeshwar, R., Ross, S., Iatrou, M., Deller, T., and Stearns, C.( 2006,), Fully 3D PET iterative reconstruction using distance-driven projectors and native scanner geometry, IEEE Nuclear Science Symposium Conference Record, pp 2804-2807. 44 A. Alessio, C. Stearns, S. Tong, S. Ross, S. Kohlmyer, A. Ganin, and P. Kinahan (2010) Application and evaluation of a measured spatially variant system model for PET image reconstruction, IEEE Transactions on Medical Imaging, vol 29, (3), pp 938-949. 45 T. Taniguchi, G Akamatsu, Y Kasahara Improvement in PET/CT Image Quality with a Combination of Point-Spread Function and Time-of-Flight in Relation to Reconstruction Parameters. The Japanese Society of Nuclear Medicine. DOI 10.1007/s12149-014-0912-z 46 A.M. Garcıa, A. Soriano, P. Talavera.(2009) 18F-FDG PET-TAC y sincronización respiratoria: efecto en la detección y catalogación de lesiones pulmonares. DOI:10.1016/S0212-6982(09)00009-3 47 Mori, T., Nomori, H., Ikeda, K., (2008) ,Diffusion-Weighted Magnetic Resonance Imaging for Diagnosing Malignant Pulmonary Nodules/Masses. Journal of Thoracic Oncology. Vol.3(4). 358-364. 48 J. Rahmer, P. Bornert, J Groen y C. Bos (2006). Three-Dimensional Radial Ultrashort Echo-Time Imaging with T2 Adapted Sampling. Magnetic Resonance in Medicine 55:1075–1082 49 Y Sun, M. Ventura, Et Oosterwijk, (2011) Zero Echo Time Magnetic Resonance Imaging of Contrast-Agent-Enhanced Calcium Phosphate Bone Defect Fillers. TISSUE ENGINEERING: Volu 19,(4), 2013. DOI: 10.1089/ten.tec.2011.0745 50 M. Regier S. Kandel M. G. Kaul B. (2007) Hoffman Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur Radiol 17: 1341–1351 51 M. Puderbach, C. Hintze, S. Ley, M. Eichinger, H.-U. Kauczor. Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. European Journal of Radiology 64 (2007) 345–355. |
Materias: | Medicina > Medicina nuclear |
Divisiones: | Gerencia de Area Medicina Nuclear |
Código ID: | 677 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 09 Aug 2018 14:01 |
Última Modificación: | 09 Aug 2018 14:01 |
Personal del repositorio solamente: página de control del documento