Guarín González, Nicolás (2017) Eficiencia de un detector Cherenkov en agua para la detección de neutrones. / Efficiency of a water Cherenkov detector for nutron detection. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 18Mb |
Resumen en español
La caracterización del detector Cherenkov en agua (WCD, por sus siglas en inglés) como detector de neutrones es una aplicación importante para este tipo de detector no solo por uso en investigación básica, sino su potencial para hacer meteorología espacial, además de que por su gran volumen activo, su facilidad de instalación y bajo costo de construcción puede ser utilizado como una opción viable para reemplazar los detectores de 3"He como salvaguardia nuclear en pasos fronterizos y puestos aduaneros. En el desarrollo de este proyecto se realizaron simulaciones detalladas con diferentes geometrías para comprender los procesos físicos más importantes que ocurren dentro del detector. Primero se simuló un haz de neutrones que incide dentro de un volumen infinito de agua para ver todas las reacciones posibles que puede realizar el neutrón dentro de esta. Luego se trabajó con un volumen cúbico de 1 m"3 de agua pura lo que permitió cuantificar la cantidad de radiación que abandona el volumen y la energía depositada, así como realizar histogramas en energía de las partículas secundarias (gamma y electrones) que fueron creadas dentro de este volumen. Finalmente las últimas simulaciones se hicieron con una geometría compleja lo más parecida al montaje experimental, además de simular los blindajes que se utilizaron, la respuesta del PMT y las dos fuentes de neutrones que iban a ser utilizadas en la parte experimental: AmBe y 252"Cf. En esta simulación se calculó la eficiencia del WCD para detectar neutrones probando diferentes montajes experimentales, se realizaron simulaciones con el detector con y sin el recubierto del Tyvek, además de dos tamaños diferentes de detector y varias configuraciones de blindajes: Plomo; Plomo y Parafina; y Plomo, Parafina y Cadmio. En el proyecto también se realizaron mediciones experimentales con dosWCD de diferente alturas, las mediciones fueron realizadas con dos fuentes de neutrones, una de Am-Be y otra de 252"Cf a diferentes distancias y con las mismas configuraciones de blindajes que se usaron en la simulación, luego con los histogramas obtenidos se calculó la eficiencia de ambos detectores. Finalmente se contrastaron las simulaciones y experimentos y se describieron las similitudes y diferencias entre ambos.
Resumen en inglés
The characterization of the Water Cherenkov Detector (WCD) as a neutron detector is an important application for this type of detector, not only for applications in basic research, but also for its potential as a complementary detector for space weather. In addition to its large active volume, it is easy to install and have a low cost. This work suggest that WCD can be used as a viable option to replace the 3"He detectors as a nuclear safeguard at border crossings and customs posts. In the development of this project, previous simulations were performed with different geometries to understand the most important physical processes that occur within the detector. First, it was simulated a neutron beam that hits within an infinite volume of water to observe all the possible reactions of neutrons within the water volume. Then, a simulation was made with a volume of 1 m"3 of water which allowed us to quantify the amount of radiation that leaves the volume and the deposited energy, as well as to obtain the energy histograms of the secondary particles (gamma and electrons) that were created within the volume. Finally, the last simulations were made with a complex geometry similar to the experimental setup, besides simulating the shielding that was used, the response of the PMT and the two neutron sources that were used in the experimental part: AmBe and 252"Cf. In this simulation the efficiency of the WCD was calculated to detect neutrons by testing different experimental assemblies, simulation was performed with the detector with and without the Tyvek coating, in addition to two different detector’s height and several configurations of shielding: Lead; Lead and Paraffin; and Lead, Paraffin and Cadmium. The project also carried out measurements with WCD of different heights, the measurements were made with two neutron sources, one of Am-Be and another of 252"Cf at different distances and with the same configurations of shielding as used in the simulation, then with the histograms obtained, the efficiency of both detectors was calculated. Finally, the simulations and experiments were contrasted and the similarities and differences between the two were described.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Información Adicional: | Área Temática: Física de neutrones. |
Palabras Clave: | Neutron capture; Captura neutrónica; Photoelectric effect; Efecto fotoeléctrico; [Cherenkov effect; Efecto Cherenkov; Water Cherenkov; Detector Cherenkov en agua; Neutron moderation; Moderación de neutrones] |
Referencias: | [1] The Pierre Auger Collaboration. The Pierre Auger Cosmic Ray Observatory. Nuclear Instruments and Methods in Physics Research A, 798, 172–213, 2015. [2] The Latin American Giant Observatory - LAGO. URL http://lagoproject.org/ wcd.html, accessed: 2017-10-05. [3] High Altitude Water Cherenkov Gamma-Ray Observatory - HAWC. URL https: //www.hawc-observatory.org, accessed: 2017-10-05. [4] Fukuda, S., Fukuda, Y., Hayakawa, T., Ichihara, E., Ishitsuka, M., Itow, Y., et al. The super-kamiokande detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 501 (2), 418–462, 2003. [5] Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H., et al. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81 (8), 1562, 1998. [6] Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H., et al. Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days. Physical Review Letters, 81 (6), 1158, 1998. [7] Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H., et al. Measurement of the solar neutrino energy spectrum using neutrino-electron scattering. Physical Review Letters, 82 (12), 2430, 1999. [8] Zhang, Y. Search for Supernova Relic Neutrinos with 2.2 MeV Gamma Tagging at Super-Kamiokande-IV. Physics Procedia, 61, 384–391, 2015. [9] Watanabe, H., Zhang, H., Abe, K., Hayato, Y., Iida, T., Ikeda, M., et al. First study of neutron tagging with a water cherenkov detector. Astroparticle Physics, 31 (4), 320–328, 2009. [10] Bell, Z. W., Boatner, L. A. Neutron detection via the cherenkov effect. IEEE Transactions on Nuclear Science, 57 (6), 3800–3806, 2010. [11] Dazeley, S., Bernstein, A., Bowden, N., Carr, D., Ouedraogo, S., Svoboda, R., et al. Neutron detection with water cerenkov based detectors. En: Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), 2009 First International Conference on, págs. 1–4. IEEE, 2009. [12] Cho, A. Helium-3 shortage could put freeze on low-temperature research. Science, 326 (5954), 778–779, 2009. [13] Shea, D. A., Morgan, D. The helium-3 shortage: Supply, demand, and options for congress. En: Congressional Research Service, Library of Congress. 2010. [14] Kouzes, R. T., Ely, J. H., Erikson, L. E., Kernan, W. J., Lintereur, A. T., Siciliano, E. R., et al. Neutron detection alternatives to 3He for national security applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 623 (3), 1035–1045, 2010. [15] Henzlova, D., Kouzes, R., McElroy, R., Peerani, P., Aspinall, M., Baird, K., et al. Current status of 3He alternative technologies for nuclear safeguards. En: final report from series of workshops on 3He alternatives, LA-UR-15-21201 ver, tomo 3. 2015. [16] Sidelnik, I., Asorey, H., Blostein, J. J., Berisso, M. G. Neutron detection using a water cherenkov detector with pure water and a single pmt. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017. [17] The NIST reference on constants, units, and uncertainty. URL https:// physics.nist.gov/cgi-bin/cuu/Value?mnc2mev|search_for=neutron+mass, accessed: 2017-10-05. [18] The PDG Particle Data Group. URL http://pdg.lbl.gov/2017/tables/ contents_tables_baryons.html, accessed: 2017-10-05. [19] Podgorsak, E. B. Radiation Physics for Medical Physicists, cap. 6, pág. 170. 1a edón. Springer, 2006. [20] Shultis, J. K., Faw, R. E. Fundamentas of nuclear science and engineering, cap. 6, pág. 135. 1a edón. Markel Dekker, Inc., 2002. [21] Heyde, K. Basic ideas and concepts in nuclear physics. 2a edón. Institute Of Physics Publishing Ltd, 1999. [22] Weston, M. S. Nuclear reactor physics, cap. 1, pág. 13. 2a edón. WILEY-VCH Verlag GmbH & Co, 2007. [23] Beckurts, K. H., Wirtz, K. Neutron Physics, cap. 2, págs. 22–34. 1a edón. Springer- Verlag, 1964. [24] Geiger, K. W., Hargrove, C. K. Neutron spectrum of an Am241-Be (, n) source. Physical Review, 53, 204–208, 1964. [25] Smith, B., Fields, P. R., Roberts, J. H. Spontaneous fission neutron spectrum of 252Cf. Physical Review, 108 (2), 411–413, 1957. [26] Coelho, P. R., Da Silva, A. A., Maiorino, J. R. Neutron energy spectrum measurements of neutron sources with an NE-213 spectrometer. Nuclear Instruments and Methods in Physics Research, 280, 270–272, 1989. [27] Watt, B. E. Energy spectrum of neutrons from thermal fission of 235U. Physical Review, 87 (6), 1037–1041, 1952. [28] Verbinski, V. V., Weber, H., Sund, R. E. Prompt gamma rays from 235U(n; f), 239Pu(n; f) and spontaneous fission of 252Cf. Physical Review C, 7 (3), 1173–1185, 1973. [29] Knoll, G. F. Radiation detection and measurement. 3a edón. John Wiley & Sons, Inc, 2000. [30] El efecto Compton: fotones en una mesa de billar. URL http://espiadellabo.com/ 2013/03/el-efecto-compton-vamos-a-hacer-rebotar-fotones/, accessed: 2017- 10-19. [31] Robley, D. E. The Atomic nucleus, cap. 25, pág. 712. 1a edón. McGraw-hill Inc., 1955. [32] A. Cherenkov, P. Visible light from clear liquids under the action of gamma radiation. C. R. (Doklady) Akad. Sci. URSS, 2, 451–454, 1934. [33] Jelley, J. V. Cerenkov radiation and its applications. 1a edón. Springer-Verlag, 1987. [34] Frank, I., Tamm, I. Coherent Visible Radiation of Fast Electrons Passing Through Matter, págs. 29–35. Springer Berlin Heidelberg, 1991. URL https://doi.org/10. 1007/978-3-642-74626-0_2. [35] The Spectrum of Riemannium: The Cherenkov effect. URL https:// thespectrumofriemannium.wordpress.com/tag/tamm-frank-formula/, accessed: 2017-10-26. [36] Leo, W. V. Thecniques for nuclear and particle physics experiments. 1a edón. Pergamon Press, 1958. [37] Cristancho, F. Instrumentación nuclear, 8 2012. Notas de clase. [38] Asorey, H. Física de rayos cósmicos, 7 2016. Notas de clase. [39] Stéphane, C., James, B., Esmé, F., James, H. Surface Detector PMT Tests, 2008. GAP 99-045. [40] DuPont - Tyvek. URL http://www.dupont.com, accessed: 2017-10-05. [41] Sofo Haro, M., Arnaldi, L. H. The data acquisition system of the Latin American Giant Observatory (LAGO). Nuclear Instruments and Methods in Physics Research A, 820, 34–39, 2016. [42] Sofo Haro, M. LAGO Official Electronics guide. Laboratorio Detección de Partículas y radiación. Centro Atómico Bariloche, 1a edón., 10 2011. Guía de conexión de hardware. [43] Digilentinc: A National Instruments Company. URL http://store.digilentinc. com/, accessed: 2017-10-19. [44] Agostinelli, S., Allison, J., Amako, K. a., Apostolakis, J., Araujo, H., Arce, P., et al. GEANT4-a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3), 250–303, 2003. [45] SLAC HyperNews. Finding all particles involved in an interaction. URL http: //hypernews.slac.stanford.edu/HyperNews/geant4/get/eventtrackmanage/ 1266/1.html?inline=-1, accessed: 2017-10-05. [46] Ángulo sólido. URL https://en.wikipedia.org/wiki/Solid_angle, accessed: 2017-12-5. |
Materias: | Física |
Divisiones: | Energía nuclear > Ingeniería nuclear > Física de neutrones |
Código ID: | 681 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 29 May 2018 11:21 |
Última Modificación: | 29 May 2018 11:21 |
Personal del repositorio solamente: página de control del documento