Implementación de la funcional de intercambio exacto con la aproximación de KLI en el quantum espresso. / Implementation of the exact exchange funtional with the KLI aproximation on quantum espresso.

Carvajal Rivero, Miguel A. (2017) Implementación de la funcional de intercambio exacto con la aproximación de KLI en el quantum espresso. / Implementation of the exact exchange funtional with the KLI aproximation on quantum espresso. Master in Physical Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

En este trabajo presentamos una implementación númerica de la aproximación de KLI a la funcional de OEP para evaluar el intercambio exacto (EXX) en el marco de la teora de la funcional densidad. Con este fin implementamos un programa para calcular la estructura electronica en su estado fundamental para sistemas atomicos usando DFT. Discutimos los aspectos fundamentales de la implementacion y presentamos los resultados obtenidos para el hidrogeno y el helio. Posteriormente discutimos los aspectos generales del calculo en solidos cristalinos y presentamos dos metodos: el metodo de ondas planas aumentadas (APW) y el metodo de pseudopotenciales semiempricos (EPM). Estos fueron aplicados al cobre y al silicio respectivamente para obtener su estructura de bandas, encontrandose que los resultados obtenidos reproducen correctamente los valores reportados en la literatura. Luego presentamos formalmente el metodo de OEP y en particular la aproximacion de KLI, sus propiedades fundamentales y las ventajas sobre las funcionales tradicionales. Implementamos dentro del programa atomic la funcional de KLI y la aplicamos con exito al calculo del estado fundamental de los atomos mas ligeros de la tabla periodica, incluyendo aquellos con capas semillenas. Finalmente presentamos una implementacion de KLI en el programa pw.x basada en ondas planas y pseudopotenciales, vericandose que se obtuvo el comportamiento correcto al tratar sistemas con numero de electrones fraccionario. Aplicamos la funcional de KLI para el estudio de la disociacion de la molecula de H_2, encontrandose una mejora sustancial con respecto a las funcionales tradicionales.

Abstract in English

In this work, we present a numerical implementation of the KLI aproximation to the optimized effective potential method (OEP) to evaluate the exact exchange in the frame of density functional theory (DFT). With this purpose, we implemented a program to compute the ground state of atomic systems usind DFT. We discuss the fudamental aspects of the implementation and present the results we obtained for the hidrogen and helium atoms. Then, we discuss the general aspects of the computations in crystaline solids and periodic systems and we present two fundamental methods: the augmented plane waves method and the empirical pseudopotential method (EPM).We apply those methods to the calculation of band structure of copper and silicon and we show that the results obtained match the one reported in the literature. Later, we present the OEP method formaly and the KLI aproximation, the fundamental properties and the advantages to traditionals functionals. We implemented inside the atomic program the KLI functional and applied it to the calculation of the ground state of the lightest atoms on the periodic table, including those with semilled subshells. Finally, we present an implementation of the KLI functional in the program pw.x based on plane waves and pseudopotentials, finding the correct behavior for systems with fractional electronic occupancy. We applied this program to the study of the disociation of the H_2 molecule founding a substantial improvement over traditional functionals.

Item Type:Thesis (Master in Physical Sciences)
Keywords:Fortran; Fortran; Solids; Sólidos; [Atomic structure; Estructura atómica; Density functional theory; Kohn-Sham equations; Ecuación de Kohn-Sham; Condensed nater; Materia condensada]
References:[1] Hohenberg, P.; Kohn, W. Hohenberg, P.; Kohn, W. Phys. Rev., 136 (3B), B864- B871, 1964. URL B864. 1 [2] Kohn, W., Sham, L. J. Self-consistent equations including exchange and correlation effects. Physical Review, 140 (4A), 1965. 1 [3] Seminario, J. M. Recent developments and applications of modern density functional theory, tomo 4. Elsevier, 1996. 1 [4] Grabo, T., Kreibich, T., Kurth, S., Gross, E. Strong coulomb correlations in electronic structure: beyond the local density approximation. V. Anisimov (Gordon and Breach Science Publishers, Amsterdam, 2000), pags. 203-311, 1998. 1, 56 [5] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21 (39), 395502, 2009. URL 395502?key=crossref.c21336c286fa6d3db893262ae3f6e151. 2 [6] Krieger, J., Li, Y., Iafrate, G. Construction and application of an accurate local spin-polarized kohn-sham potential with integer discontinuity: Exchange-only theory. Physical Review A, 45 (1), 101, 1992. 2, 71, 80 [7] Born, M., Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der Physik, 389 (20), 457-484, 1927. 4 [8] Hartree, D. R. The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods. En: Mathematical Proceedings of the Cambridge Philosophical Society, tomo 24, pags. 89-110. Cambridge Univ Press, 1928. 4 [9] PAULI, W. EXCLUSION PRINCIPLE and QUANTUM MECHANICS Discours prononcea la reception du prix Nobel de physique 1945. Dialectica, 1 (2), 204, may 1947. URL tb00495.x. 5 [10] Fermi, E. Un metodo statistico per la determinazione di alcune priorieta dell'atome. Rend. Accad. Naz. Lincei, 6 (602-607), 32, 1927. 7 [11] Thomas, L. H. The calculation of atomic elds. Mathematical Proceedings of the Cambridge Philosophical Society, 23 (05), 542, 1927. 7 [12] Taylor, P., Heinonen, O. S. T. A Quantum Approach to Condensed Matter Physics. Cambridge University Press, 2002. 7 [13] Thijssen, J. Computational physics. Cambridge university press, 2007. 9 [14] Martin, R. M. Electronic structure: basic theory and practical methods. Cambridge university press, 2004. 7, 24 [15] Perdew, J. P., Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23 (10), 5048-5079, 1981. 9, 88 [16] Ceperley, D. M., Alder, B. J. Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 45 (7), 566{569, aug 1980. URL http:// 9 [17] Vosko, S. H., Wilk, L., Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of physics, 58 (8), 1200-1211, 1980. 10 [18] Numerov, B. Note on the numerical integration of d2x/dt2 =f(x,t). Astronomische Nachrichten, 230 (19), 359-364, 1927. URL 1002/asna.19272301903. 12, 85 [19] Verlet, L. Computer experiments on classical uids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159 (1), 98-103, 1967. 14 [20] Singh, D. J., Nordstrom, L. Planewaves, pseudopotentials and the LAPW method: Second edition. 2006. 24 [21] Slater, J. C. An augmented plane wave method for the periodic potential problem. Physical Review, 92 (3), 603-608, 1953. 24 [22] Burden, R. L., Faires, J. D. Numerical Analysis. 2011. URL http://www.{%}5Cnhttp: //{_}Analysis.html? id=zXnSxY9G2JgC{&}pgis=1. 27, 77 [23] Burdick, G. A. Energy band structure of copper. Physical Review, 129 (1), 138- 150, 1963. 29, 31 [24] Simon, N., Drexler, E., Reed, R. P. Properties of copper and copper alloys at cryogenic temperatures. US National Institute of Standards and Technology(USA),, pag. 850, 1992. 30 [25] Chodorow, M. Ph.D. Thesis. Tesis Doctoral, MIT, 1939. 31 [26] Press, W. H. Numerical recipes 3rd edition: The art of scientic computing. Cambridge university press, 2007. 37, 40, 77 [27] Heine, V., Weaire, D. Pseudopotential theory of cohesion and structure. Solid state physics, 24, 249-463, 1970. 41 [28] Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41 (11), 7892-7895, 1990. 41, 61 [29] Fuchs, M., Scheer, M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119 (1), 67{98, 1999. 42 [30] Pfrommer, B. G., Demmel, J., Simon, H. Unconstrained energy functionals for electronic structure calculations. Journal of Computational Physics, 150 (1), 287- 298, 1999. [31] Marx, D., Hutter, J. Ab initio molecular dynamics: Theory and implementation. Modern methods and algorithms of quantum chemistry, 1 (301-449), 141, 2000. 42 [32] Chelikowsky, J. R., Cohen, M. L. Electronic structure of silicon. Physical Review B, 10 (12), 5095, 1974. 43 [33] Chelikowsky, J. R., Cohen, M. L. Electronic structure of silicon. Physical Review B, 10 (12), 5095-5107, 1974. 44 [34] Kittel, C. Introduction to Solid State Physics. 1979. 46 [35] Davidson, E. R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. Journal of Compu- tational Physics, 17 (1), 87{94, 1975. 51 [36] Li, Y., Krieger, J. B., Iafrate, G. J. Negative ions as described by Kohn|Sham exchange-only theory. Chemical physics letters, 191 (1), 38-46, 1992. 57 [37] Krieger, J. B., Li, Y., Iafrate, G. J. Systematic approximations to the optimized eective potential: Application to orbital-density-functional theory. Physical Review A, 46 (9), 5453{5458, 1992. 57, 58 [38] Gu, Y. M., Bylander, D. M., Kleinman, L. Semiconductor energy gaps in the average Fock approximation. Physical Review B, 50 (4), 2227-2231, 1994. 58, 67, 75 [39] Hamann, D., Schluter, M., Chiang, C. Norm-Conserving Pseudopotentials. Phy- sical Review Letters, 43 (20), 1494-1497, 1979. 61 [40] Abramowitz, M., Stegun, I. A. Handbook of Mathematical Functionsv with Formulas, Graphs, and Mathematical Tables. 1972. 61 [41] Perdew, J. P., Parr, R. G., Levy, M., Balduz, J. L. Density-functional theory for fractional particle number: Derivative discontinuities of the energy. Physical Review Letters, 49 (23), 1691-1694, 1982. 69 [42] Makov, G. Chemical Hardness in Density Functional Theory. The Journal of Physical Chemistry, 99 (23), 9337-9339, 1995. URL doi/abs/10.1021/j100023a006. 69 [43] Aschcroft, N., Mermin. Solid State Physics. W. B. Saunders Company, 1976. 73 [44] Bracewell, R. N. The Fourier Transform And Its Applications, 2000. URL http: // 74 [45] Kotochigova, S., Levine, Z. H., Shirley, E. L., Stiles, M. D., Clark, C. W. Localdensity- functional calculations of the energy of atoms. Phys. Rev. A, 55, 191{ 199, Jan 1997. URL 55.191. 83 [46] Chachiyo, T. Communication: Simple and accurate uniform electron gas correlation energy for the full range of densities. Journal of Chemical Physics, 145 (2), 9-12, 2016. URL 88 [47] Mattheiss, L. Energy Bands for Solid Argon. Physical Review, 133 (1962), A1399{ A1403, 1964. 123 [48] Jones, H. W. Lowdin -function, overlap integral, and computer algebra. Inter- national Journal of Quantum Chemistry, 41 (5), 749-754, 1992. URL http: // 123
Subjects:Physics > Materia condensada
Divisions:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
ID Code:682
Deposited By:Tamara Cárcamo
Deposited On:28 May 2018 13:55
Last Modified:28 May 2018 13:55

Repository Staff Only: item control page