Análisis dosimétrico de dos modalidades de tratamiento radiante para lesiones superficiales: braquiterapia de alta tasa de dosis versus electrones. / Dosimetric analysis of two radiation treatment modalities for superficial lesion: high dose rate brachytherapy versus electron beams.

Fernández Herrera, Andrés O. (2017) Análisis dosimétrico de dos modalidades de tratamiento radiante para lesiones superficiales: braquiterapia de alta tasa de dosis versus electrones. / Dosimetric analysis of two radiation treatment modalities for superficial lesion: high dose rate brachytherapy versus electron beams. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3232Kb

Resumen en español

El número de casos de cáncer de piel diagnosticados anualmente a nivel mundial ha ido en aumento, hasta un punto en que su incidencia supera con creces la de todos los demás tipos de cáncer. En Argentina es escasa la información de ocurrencia de enfermedades malignas cutáneas, sin embargo, existen indicios de que la tendencia nacional es similar a la global. Las principales consideraciones en el tratamiento del cáncer de piel son la cura oncológica y la preservación de la función, teniendo en cuenta los resultados estéticos como otro factor importante. La selección del tratamiento está influenciada por diversos factores; las opciones más comunes son quirúrgicas, sin embargo, existen candidatos para los cuales esta alternativa no es conveniente. En la aplicación de la radioterapia a este tipo de cáncer se han reportado altos niveles de control tumoral, en el rango de 87-100%, y excelentes resultados estéticos, sin toxicidades grado 4. En el presente trabajo se determinaron criterios cuantitativos que permiten escoger la modalidad óptima de tratamiento de lesiones cutáneas malignas en cada caso, desde la comparación de la calidad de tratamiento, utilizando técnicas de braquiterapia de alta tasa de dosis con Ir"192 y haces externos de electrones, para varios tamaños de los sitios a tratar. Se planificaron tratamientos de lesiones superficiales para diferentes indicaciones clínicas y tamaños de campo, utilizando braquiterapia de alta tasa de dosis con Ir"192 y haces externos de electrones de 6 MeV. Se caracterizaron estos haces dosimétricamente, mediante la obtención de la dosis absoluta, las curvas de PDD y los perfiles de dosis, a partir de mediciones experimentales y de los datos aportados por los TPS. Se comprobó la coherencia de las medidas dosimétricas experimentales con los resultados de los cálculos de los sistemas de planificación de tratamientos. Se simularon situaciones clínicas, variando las profundidades de prescripción y los tamaños de campo, a partir de las cuales fue posible determinar las profundidades, en relación con los tamaños de campo, a las que es conveniente aplicar cada modalidad de tratamiento.

Resumen en inglés

The number of new cases of skin cancer diagnosed annually worldwide has risen in the last decades, up to a point in which its incidence has far surpassed the incidence of all other cancers. In Argentina, the information on the occurrence of cutaneous malignant diseases is scarce; yet there is evidence supporting the theory that it follows the international trend. The primary considerations in treatment of skin cancer are oncologic cure and preservation of function, with cosmesis as an important secondary concern. Treatment selection is influenced by several factors, most common options being surgical procedures; however, there are candidates for whom this alternative is not viable. Published studies on the application of radiotherapy to skin cancer treatment report high local control, ranging from 87-100%, with excellent to good cosmesis reported in the absence of grade 4 toxicities. In this investigation, quantitative criteria were determined in order to select the optimal treatment option for cutaneous malignant diseases, by comparing treatment quality of high dose rate brachytherapy and external electron beam radiotherapy, for several field sizes. Superficial lesions treatments were planned for several clinical indications and field sizes, employing high dose rate brachytherapy with a source of Ir"192 and 6 MeV external electron beams. All beams were dosimetrically characterized by obtaining absolute doses, PDD curves and dose profiles, both from data obtained experimentally and the TPS. Coherence of the experimental dosimetry measures with the results of the treatment planning systems was proven. Clinical situations were simulated, by varying prescription depths and field sizes, so it was possible to determine depths, related to field sizes, to which it is convenient to apply each treatment option.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Skin cancer; Cáncer de piel; Brachyteraphy; Braquiterapia; Dose; Dosis; Electron beams; Haces de electrones; [Profiles; Perfiles]
Referencias:1. World Health Organization 2017. WHO/Skin cancers. Disponible en: http://www.who.int/uv/faq/skincancer/en/index1.html [Consultado el 15/8/2017]. 2. Verkouteren JAC, Ramdas KHR, Wakkee M, Nijsten T. Epidemiology of basal cell carcinoma: scholarly review. Br J Dermatol. Aug;177(2):359-372, 2017. 3. AIM at Melanoma Foundation. Copyright© 2014. Melanoma Stats, Facts, and Figures. Disponible en: https://www.aimatmelanoma.org/about-melanoma/melanoma-stats-facts-and-figures [Consultado el 15/8/2017]. 4. World Cancer Research Fund International. Nd. Worldwide data. Disponible en: http://www.wcrf.org/int/cancer-facts-figures/worldwide-data [Consultado el 17/8/2017]. 5. American Cancer Society. Global Cancer Facts &Figures 3rd Edition. Atlanta: American Cancer Society; 2015. 6. Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. May;166(5):1069-80, 2012 7. Mendenhall WM, Mancuso AA, Kirwan JM, Werning JW, Flowers FP. Skin. En: Halperin EC, Perez CA, Brady LW (eds). Principles and Practice of Radiation Oncology (Chapter 33), 5th Ed. Philadelphia, Pa: Lippincott Williams & Wilkins 2008. 8. Registro Argentino de Melanoma Cutáneo (RAMC). Epidemiología del melanoma cutáneo en Argentina: análisis del Registro Argentino de Melanoma Cutáneo. Disponible en: https://www.rosario.gov.ar/mr/epidemiologia/areas-programaticas/registro-de-cancer/registro-nacional-de-melanomas/registro-argentino-de-melanoma-cutaneo-ramc [Consultado el 1/9/2017]. 9. Sociedad Argentina de Dermatología. Estadísticas de la 23 Campaña Nacional de Prevención del Cáncer de Piel. Disponible en: http://cancerdepiel.org.ar/prensa/CDP2016_Estadisticasramc.pdf [Consultado el 1/9/2017]. 10. Programa Nacional de Consensos Inter-Sociedades, Programa Argentino de Consensos de Enfermedades Oncológicas. CONSENSO NACIONAL INTER-SOCIEDADES SOBRE MELANOMA CUTÁNEO. 2011. Disponible en: http://www.sad.org.ar/wp-content/uploads/2016/04/CONSENSO-MELANOMA.pdf [Consultado el 1/9/2017]. 11. Grossi GP, Jacquier M, Quattrocchi CM, Dagatti MS, Bergero AI, Sánchez AE et al. Estudio epidemiológico y de concordancia clínico-patológica del cáncer de piel en el Hospital Provincial del Centenario, Rosario, Argentina. Arch. Argent. Dermatol. 62: 179-184, 2012. 12. M. Haseltine, Justin & Wernicke, Alla & C. Formenti, Silvia & Parashar, Bhupesh. Treatment of Non-Melanomatous Skin Cancer with Radiotherapy. Current Dermatology Reports. 4. 10.1007/s13671-015-0117-2, 2015. 13. Bhatnagar A, Loper A. The initial experience of electronic brachytherapy for the treatment of non-melanoma skin cancer. Radiation Oncology 5:87, 2010. Disponible en: http://www.ro-journal.com/content/5/1/87 14. Alam M, Nanda S, Mittal BB, Kim NA, Yoo S. The use of brachytherapy in the treatment of nonmelanoma skin cancer: a review. J Am Acad Dermatol. Aug; 65(2):377-88, 2011. 15. Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol, 4:462-469, 2007. 16. Rosen LR, Willett A, Fischer-Valuck B, Katz S, Durci M, Wu Tet al. Comparison of HDR Brachytherapy, Orthovoltage X-ray, and Electron Beam Radiation in the Treatment of Nonmelanoma Skin Cancers-A Single Institution Experience of Individualized Radiation Therapy. Int J Radiat Oncol Biol Phys, 87(2), S165, 2013. 17. Locke J, Karimpour S, Young G, Lockett MA, Perez CA. Radiotherapy for epithelial skin cancer. Int J Radiat Oncol Biol Phys, 51(3):748-755, 2011. 18. Kwan W, Wilson D, Moravan V. Radiotherapy for locally advanced basal cell and squamous cell carcinomas of the skin. Int J Radiat Oncol Biol Phys, 60(2):406-411, 2004. 19. Caccialanza M, Piccinno R, Kolesnikova L, Gnecchi L: Radiotherapy of skin carcinomas of the pinna: a study of 115 lesions in 108 patients. Int J Dermatol, 44:513-517, 2005. 20. Chan S, Dhadda S, Swindell R. Single fraction radiotherapy for small carcinoma of the skin. Clin Oncol, 19:256-259, 2007. 21. Kohler-Brock A, Pragger W. The Indications for and results of HDR afterloading therapy in diseases of the skin and mucosa with standardized surface applicators (The Leipzig Applicator). Strahlenther Onkol, 175(4):170-174, 1999. 22. Guix B, Finestres F, Tello J, Palma C, Martinez A, Guix J, Guix R: Treatment of Skin Carcinomas of the Face by High Dose Rate Brachytherapy and Custom Made Surface Molds. Int J Radiat Oncol Biol Phys, 47(1):95-102, 2000. 23. Buzurovic I, Bhagwat MS, James SS, O’Farrell DA, Friesen SA, Damato AL et al. Numerical Comparison between High-Dose-Rate Brachytherapy and Electron Beam Therapy in Cutaneous Oncology. Brachytherapy, Volume 13, S24, 2014. 24. Ouhib Z, Kasper M, Perez Calatayud J, Rodriguez S, Bhatnagar A, Pai S, Strasswimmer J. Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report. Brachytherapy. Nov-Dec; 14(6):840-58, 2015. 25. Instituto Nacional del Cáncer 2017. Prevención del cáncer de piel. Disponible en: https://www.cancer.gov/espanol/tipos/piel/paciente/prevencion-piel-pdq#section/_4 Consultado el [2/10/2017]. 26. Lacouture ME (ed). Dermatologic Principles and Practice in Oncology: Conditions of the Skin, Hair, and Nails in Cancer Patients. ISBN: 978-0-470-62188-2. New Jersey: Wiley-Blackwell, January 2014. 27. Patterson J. Practical Skin Pathology: A Diagnostic Approach, 1st Ed. ISBN: 9781437719963. Philadelphia: Saunders 2013. 28. American Cancer Society 2017. Etapas de los cánceres de piel de células basales y de células escamosas. Disponible en: https://www.cancer.org/es/cancer/cancer-de-piel-de-celulas-basales-y-escamosas/deteccion-diagnostico-clasificacion-por-etapas/clasificacion-por-etapas.html#referencias [Consultado el 17/10/2017]. 29. Mendenhall WM, Amdur RJ, Grobmyer SR, et al. Adjuvant radiotherapy for cutaneous melanoma. Cancer. 2008 Mar 15;112(6):1189-96. 30. American Cancer Society 2017. Clasificación por etapas el cáncer de piel tipo melanoma. Disponible en: https://www.cancer.org/es/cancer/cancer-de-piel-tipo-melanoma/deteccion-diagnostico-clasificacion-por-etapas/clasificacion-por-etapas-el-cancer-de-piel-tipo-melanoma.html [Consultado el 18/10/2017]. 31. Schmid-Wendtner MD, Walter Burgdorf MD. Ultrasound scanning I dermathology. Arch Dermatol 2005;141: 217-24. 32. Ballester Sanchez R, Pons Llanas O, Perez-Calatayud J, Botella Estrada R. Dermoscopy margin delineation in radiotherapy planning for superficial or nodular basal cell carcinoma. Br J Dermatol 2015;172: 1162-3. 33. Rodríguez S, Arenas M, Gutierrez C, et al. Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy. Clin Transl Oncol. 2017 Aug 14. doi: 10.1007/s12094-017-1733-z. [Epub ahead of print]. 34. International Atomic Energy Agency, Vienna (Austria) Podgorsak, E.B. (Ed.). (2005). Radiation oncology physics: A handbook for teachers and students. International Atomic Energy Agency (IAEA): IAEA. 35. Khan FM and Gibbons JP. The Physics of Radiation Therapy, 5th Ed. Gibbons, Lippincott Williams & Wilkins, Baltimore and Philadelphia, 2014. ISBN 1451182457. 36. Klevenhagen SC. Physics and Dosimetry of Therapy Electron Beams. Medical Physics Publishing. Madison, WI, 1993. 37. International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy, Technical Reports Series No. 398. IAEA, Vienna (2000). 38. Linos E, VanBeek M, Resneck JS. A Sudden and Concerning Increase in the Use of Electronic Brachytherapy for Skin Cancer. JAMA Dermatol. 2015;151(7):699-700. 39. Martinez AA. Brachytherapy. In: Gunderson LL, Tepper JE, editors. Clinical radiation oncology. 2nd ed. London: Churchill Livingstone; 2006. pp. 255-82. 40. Semrau S, Kunz M, Baggesen K, Vogel H, Fietkau R, Gross G, et al. Successful treatment of field cancerization of the scalp by surface mould brachytherapy. Br J Dermatol. 2008;159:753-5. 41. Skowronek J. Brachytherapy in the treatment of skin cancer: an overview. Postep Derm Alergol 2015; XXXII (5): 362–367. 42. Svoboda V, Kovarik J, Morris F. High dose-rate microselectron molds in the treatment of skin tumors. Int J Radiat Oncol Biol Phys 1995;31:967-72. 43. Safigholi H, Song WY, Meigooni AS. Optimum radiation source for radiation therapy of skin cancer. J Appl Clin Med Phys. 2015 Sep 8;16(5):219–227. 44. Greene D, Williams PC. Linear Accelerators for Radiation Therapy, 2nd ed. ISBN 9780750304764. Medical Science Series, Taylor&Francis Group, New York (1997). 45. Karzmark CJ, Nunan CS, Tanabe E. Medical electron accelerators. Health Professions Division. New York: McGraw-Hill Inc. 1993. 46. International Atomic Energy Agency. Implementation of High Dose Rate Brachytherapy in Limited Resource Settings. Human Health Series No. 30. IAEA, Vienna (2015). 47. American Association of Physicist in Medicine, Remote Afterloading Technology, AAPM Rep. 41, American Institute of Physics, New York (1993). 48. International Electrotechnical Commission, Medical Electrical Equipment. Particular Requirements for the Safety of Remote-controlled Automatically driven Gamma-ray Afterloading Equipment, IEC 601-2-17:1989, IEC, Geneva (1989). 49. International Atomic Energy Agency. Setting Up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects. IAEA, Vienna (2008). 50. Neunschwander H, Mackie TR & Reckwerdt PJ: MMC—a high performance Monte Carlo code for electron beam treatment planning. Physics in Medicine and Biology, 1995 April; 40(4) 543–574. 51. M. K. Fix et al.: Monte Carlo dose calculation improvements for low energy electron beams using eMC. Physics in Medicine and Biology, 2010; 55: 4577-4588. 52. M. K. Fix et al.: Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types. Physics in Medicine and Biology, 2013; 58: 2841-2859. 53. VARIAN Medical Systems. Eclipse Photon and Electron Algorithms, Reference Guide. P1015026-001-A. USA, 2015. 54. I. Kawrakow and D.W.O. Rogers: The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Ionizing Radiation Standards, National Research Council of Canada, NRCC Report PIRS-701, April 19, 2002. 55. Berger M. J. et al.: XCOM: Photon Cross Section Database version 1.5. National Institute of Standards and Technology, Gaithersburg, MD. 2010. 56. Oncentra - Physics and Algorithms. Nucletron. NUC-T380-34, REF 192.739ENG-09. 57. Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31:633–674. 58. Nath R, Anderson LL, Jones D, et al. Specification of brachytherapy source strength: A report by Task Group 32 of the American Association of Physicists in Medicine, AAPM Report No. 21. American Institute of Physics, New York, 1987. 59. Nath R, Anderson LL, Luxton G, et al. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995;22:209–234. 60. Almond, P. R., Biggs, P. J., Coursey, B. M., Hanson, W. F., Huq, M. S., Nath, R. and Rogers, D. W. O. (1999), AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med. Phys., 26: 1847–1870. doi:10.1118/1.598691. 61. Zink, K., Czarnecki, D., Looe, H. K., von Voigts-Rhetz, P. and Harder, D. (2014), Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams. Med. Phys., 41: n/a, 111707. doi:10.1118/1.4897389. 62. L. A. Buckley and D. W. O. Rogers, Wall correction factors, Pwall, for parallel-plate ionization chambers, Med. Phys. 33, 1788-1796 (2006). 63. Muir BR, McEwen MR (2017), Technical Note: On the use of cylindrical ionization chambers for electron beam reference dosimetry. Med. Phys. doi:10.1002/mp.12582. 64. Wuerfel JU. Dose measurements in small fields. MEDICAL PHYSICS INTERNATIONAL Journal, Vol.1, No.1, 2013. 65. Azangwe G, Grochowska P, Georg D, Izewska J, Hopfgartner et al. (2014), Detector to detector corrections: A comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med. Phys., 41: n/a, 072103. doi:10.1118/1.4883795. 66. Venencia D, Garrigó E, Filipuzzi M, Germanier A. Comparación experimental de perfiles de campos pequeños adquiridos con cámaras de ionización, diodos, películas radiocrómicas y TLD. XIV International Symposium on Solid State Dosimetry, ISSSD 2014, Cuzco, Perú. 67. Bahreyni Toossi MT, Khorshidi F, Ghorbani M, Mohamadian N, Davenport D. Comparison of EBT and EBT3 RadioChromic Film Usage in Parotid Cancer Radiotherapy. Journal of Biomedical Physics & Engineering. 2016;6(1):1-12. 68. Efficient Protocols for Accurate Radiochromic Film Calibration and Dosimetry. Disponible en: http://www.gafchromic.com/documents/Efficient%20Protocols%20for%20Calibration%20and%20Dosimetry.pdf [Consultado el 6/11/2017]. 69. Sjöström D, Bjelkengren U, Ottosson W & Behrens CF. A beam-matching concept for medical linear accelerators. Acta Oncologica Vol. 48 , Iss. 2,2009. 70. Varian Medical Systems, Inc. Specifications Novalis TxTM image-guided radiosurgery linear accelerator. RAD 10011B. USA, 2008. 71. ELEKTA. microSelectron® Digital Brachytherapy Afterloading Platform. Disponible en: https://www.elekta.com/dam/jcr:cbc09f98-d04e-4262-a082-/37d7d189577a/MicroSelectron%20brochure.pdf Consultado el [7/11/2017]. 72. Nucletron. Oncentra, Manual de usuario. Doc.No. 192.729ES-08. 73. RIT Family of Products, Technical Manual Version 6.5.32 and 6.5.64. RIT113 V6.5.X Technical Manual - RIT Confidential. Rev. 2016-07-26. 74. IBA Dosimetry. Blue Phantom2 with OmniPro-Accept (V 7). Disponible en: http://www.ferromed97.com/images/content/Produkts/Radiologia/Uredi_za_dozimet FERNÁNDEZ HERRERA Andrés Omelio 81 Análisis dosimétrico de dos modalidades de tratamiento radiante para lesiones superficiales: braquiterapia de alta tasa de dosis versus electrones ria_v_lachelechenieto/RT-BR-E-BP2%20with%20OPA%200211.pdf [Consultado el 8/11/2017]. 75. PTW-Freiburg. SOLUTIONS, Radiation Medicine QA (2017). D587.211.00/10 2017-05. Disponible en: http://www.ptw.de/fileadmin/data/download/catalogviewer/Radiation_Medicine_Cat_en_58721100_09/blaetterkatalog/blaetterkatalog/pdf/complete.pdf 76. Elekta. User Guide Brachytherapy Applicators and Accesories. Disponible en: https://www.elekta.com/dam/jcr:bac0f2d8-1b55-43ee-bb96-2073cbf9f2eb/brachytherapy-applicator-guide.pdf#page=86 [Consultado el 8/11/2017]. 77. Organismo Internacional de Energía Atómica. Calibración de fuentes de fotones y rayos beta usadas en braquiterapia-Guía de procedimientos estandarizados en Laboratorios Secundarios de Calibración Dosimétrica (LSCD) y en hospitales. TECDOC-1274/S. OIEA, Viena (2004). 78. An analysis of calibration coefficients measured in water and in air for Farmer-type cylindrical ionization chambers. Pol J Med Phys Eng. 2008;14(2):113-121. PL ISSN 1425-4689 doi: 10.2478/v10013-008-0010-4.
Materias:Medicina > Física médica
Divisiones:Instituto Zunino. Fundación Marie Curie, Córdoba
Código ID:694
Depositado Por:Tamara Cárcamo
Depositado En:21 Aug 2018 12:03
Última Modificación:28 Aug 2018 13:28

Personal del repositorio solamente: página de control del documento