Propiedades electrónicas de los estados normal y superconductor de FeSe. / Electronic properties of the normal and superconducting states of FeSe.

Amigó , María Lourdes (2017) Propiedades electrónicas de los estados normal y superconductor de FeSe. / Electronic properties of the normal and superconducting states of FeSe. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
12Mb

Resumen en español

FeSe es uno de los miembros más importantes de la familia de superconductores basados en hierro debido a la simpleza de su estructura cristalina y a las propiedades electrónicas que presenta. El objetivo de esta tesis fue entender, a partir de mediciones de transporte y de la estructura cristalina, distintas características electrónicas propias de FeSe, FeSe_1-xTe_x y FeSe_1-xS_x. Se estudiaron dos tipos de cristales, unos que solo presentan la fase tetragonal superconductora, , y otros, que además presentan una fase espuria, deciente en hierro, regularmente encontrada en esta clase de materiales. Cada uno de estos dos tipos de materiales tiene sus propias características en el estado normal y en el superconductor. En el caso de cristales con mezcla de fases, se observan caractersticas propias de defectos correlacionados. Estos actúan como centros de anclaje para los vórtices en el estado superconductor y se reflejan en mínimos en la resistividad para un angulo entre la normal del cristal y el campo magnético de ±34º . De la caracterización estructural y magnética, se obtiene que la fase espuria tiene un orden de vacancias de hierro que forman un plano denso para este mismo angulo. Por otro lado, la unión entre esta fase y la superconductora puede estar actuando como defecto correlacionado. Al reemplazar selenio por teluro, desaparece el orden de vacancias en la fase deciente en hierro. Por lo tanto, ya no hay un plano denso de vacancias por el cual se unan ambas fases. Esto se refleja en que ya no se observan mínimos extras en la resistividad y presentan un comportamiento similar al que se espera por la presencia solo de defectos puntuales. Al comparar cristales con mezcla de fases con β-FeSe se observa una característica muy distintiva en la temperatura crítica. Los cristales con menor contenido de hierro y que presentan coexistencia de fases tienen una temperatura crítica mayor (Tc=12.2(2) K) que los de β-FeSe (T_c=9.5(1) K) en mediciones de resistividad. Para estudiar esta diferencia, se utilizaron mediciones de difracción de neutrones en policristales con caracterí sticas similares a los monocristales. De la comparación entre las mediciones para ambos tipos de policristales se observaron tensiones debidas al intercrecimiento en las muestras con mezcla de fases. Esto puede ser la causa microscópica del aumento de Tc. Por otro lado, los cristales con solo la fase β-FeSe presentan características propias de un material con múltiples bandas. A temperaturas cercanas a la ambiente se hace muy relevante la contribución a la resistividad de los portadores térmicamente activados debido a que β-FeSe es un semimetal. Esto se refleja en que la resistividad presenta un máximo en T*=228(1)K para la corriente en el eje c y mientras que para el caso del plano ab se encuentra a una temperatura mayor a 300 K. Este material presenta una transición estructural de tetragonal a ortorrómbica a una temperatura T_s=90(1) K. Por debajo de esta temperatura aparece magnetorresistencia transversal anisotrópica. Nuevamente, esta relacionada con las múltiples bandas presentes en el material y a la reestructuración que sufren en T_s. Por otro lado, la magnetorresistencia longitudinal es negativa para la corriente y el campo magnético en la dirección del eje c. En este caso se la puede asociar con las fluctuaciones magnéticas anisotrópicas que comienzan, al igual que la magnetorresistencia negativa, a temperaturas menores que T_s. En el estado superconductor también se observa un comportamiento relacionado con las múltiples bandas en la dependencia del campo crítico superconductor, H_c2, con la temperatura. Además, se obtienen indicios de la reconfiguración de maclas, que se forman por debajo de la transición estructural, con la presión y su in fluencia en la corriente crítica. Finalmente, se estudiaron sustituciones en el lugar del selenio por teluro o azufre en cristales con solo la fase tetragonal. En ambos casos, se observa una disminución de la temperatura de la transición estructural. De la extrapolación de T_s en función del contenido de teluro, se obtiene que para x≃0.22 en FeSe_1-xTe_x, la transición estructural y la superconductora tendrán temperaturas críticas similares. Sin embargo, en la región 0.1<x<0.35 se obtienen cristales con dos fases tetragonales, una rica y otra pobre en teluro, por lo que no se puede llegar a la condición anterior. Por otro lado, se obtiene que T* disminuye fuertemente con el contenido de teluro tanto en muestras con como sin mezcla de fases.

Resumen en inglés

FeSe is one of the most important members among the iron based superconductors. This is due to the simplicity of its crystalline structure and the richness of its electronic properties. The aim of this thesis is to understand dierent electronic properties of FeSe, FeSe_1-xTe_x and FeSe_1-xS_x, using transport and crystal structure measurements. We studied two dierent kinds of crystals, one of the pure tetragonal superconducting phase and another which includes a spurious phase, decient in iron and commonly found in these materials. Each of these types of crystals has its own interesting properties in the normal and in the superconducting states. The crystals with mixture of phases present a behavior that is characteristic of the presence of correlated defects. These defects act as pinning centers for the vortex lattice in the superconducting state and, as a result, an extra minimum in the resistivity is observed for an angle of ±34º between the magnetic eld and the normal to the crystal plane. The spurious phase presents order of the iron vacancies that form a dense plane at this same angle. This suggests that the interface between the spurious and the tetragonal phases act as a correlated defect. When replacing selenium by tellurium, the vacancy order disappears from the iron decient phase. Therefore, there is no longer a dense plane of vacancies where the two phases can be joined, and accordingly, no extra minimum in the resistivity is observed. A very distinctive characteristic is observed on the critical temperature, T_c, when comparing the crystals with mixture of phases with β-FeSe. In resistivity measurements, the crystals with less iron content and phase coexistence show a higher critical temperature (T_c=12.2(2) K) than the crystals of β-FeSe (T_c=9.5(1) K). To study this dierence, we use neutron diraction measurements in polycrystals with similar characteristics to the crystals. From the comparison between the measurements of both types of polycrystals, we observed that there is stress due to the intergrowth in the samples with mixture of phases. We identify this as a possible microscopic cause for the enhancement of T_c. Crystals with only tetragonal β-FeSe present several signatures proper of a multiband material. We nd that the contribution of the thermally activated carriers is very important near room temperature given that β-FeSe is a semimetal. This is re flected in a maximum in the resistivity at T*=228(1)K for the current in the c axis and at a temperature higher than 300K for the current in the ab plane. The material presents a structural transition from a tetragonal to an orthorhombic phase, at a temperature T_s=90(1) K. For T<T_s, there is anisotropic transversal magnetoresistance. This is related with the multiband behavior of the material and with the reconstruction of the band structure at Ts. On the other hand, there is negative longitudinal magnetoresistance for the case of the current and the magnetic eld parallel to the c axis. This could be related with the anisotropic spin uctuation beginning below Ts. In the superconducting state, we also inferred a multiband behavior from the dependence of the critical eld Hc2 with temperature. Additionally, we obtain indications of a twin boundary reconguration with pressure and of its in uence on the critical current. Finally, we study the substitution in the selenium place for tellurium or sulphur on crystals with only the tetragonal phase. In both cases, we observe a decrease on the structural transition temperature. From the extrapolation of Ts as a function of the tellurium content, we obtain that for x≃0.22 in FeSe_1-xTe_x, the structural and the superconducting transition should have similar critical temperatures. However, in the range 0.1<x<0.35 we obtain crystals with two tetragonal phases, one rich and the other poor in tellurium, so it is not possible to reach the above condition. On the other hand, in both samples with or without mixture of phases, we obtain a fast decrease of T* with the tellurium content.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Superconductors; Superconductores; [Low temperature; Bajas temperaturas; Electronic properties; Propiedades electrónicas]
Referencias:[1] Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., et al. Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 128 (31), 10012{10013, 2006. 1 [2] Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H. Iron-based layered superconductor LaO1-xFxFeAs (x=0.05-0.12) with Tc= 26 K. Journal of the American Chemical Society, 130 (11), 3296{3297, 2008. 1 [3] Norman, M. R. High-temperature superconductivity in the iron pnictides. Physics, 1, 21, Sep 2008. URL http://link.aps.org/doi/10.1103/Physics. 1.21. 1 [4] Kordyuk, A. Iron-based superconductors: Magnetism, superconductivity, and electronic structure (review article). Low Temperature Physics, 38 (9), 888{899, 2012. 2, 4 [5] P M Aswathy, P. M. S. y. U. S., J B Anooja. Supercond. Sci. Technol., 23, 073001, 2010. 2 [6] Parker, D. R., Smith, M. J. P., Lancaster, T., Steele, A. J., Franke, I., Baker, P. J., et al. Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count. Physical Review Letters, 104, 057007, Feb 2010. URL http://link.aps.org/doi/10. 1103/PhysRevLett.104.057007. 2 [7] Chen, F., Xu, M., Ge, Q. Q., Zhang, Y., Ye, Z. R., Yang, L. X., et al. Electronic identication of the parental phases and mesoscopic phase separation of KxFe2-ySe2 superconductors. Physical Review X, 1, 021020, Dec 2011. URL http://link.aps.org/doi/10.1103/PhysRevX.1.021020. 3, 5 [8] Izumi, M., Zheng, L., Sakai, Y., Goto, H., Sakata, M., Nakamoto, Y., et al. Emergence of double-dome superconductivity in ammoniated metal-doped FeSe. Scientic reports, 5, 2015. 3 [9] Watson, M., Kim, T., Haghighirad, A., Davies, N., McCollam, A., Narayanan, A., et al. Emergence of the nematic electronic state in FeSe. Physical Review B, 91 (15), 155106, 2015. 3, 11, 12 [10] Shimojima, T., Sonobe, T., Malaeb, W., Shinada, K., Chainani, A., Shin, S., et al. Pseudogap formation above the superconducting dome in iron pnictides. Physical Review B, 89 (4), 045101, 2014. 3 [11] Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Advances in Physics, 59 (6), 803{1061, 2010. URL http://www.tandfonline.com/doi/abs/10.1080/00018732.2010.513480. 3 [12] Watson, M. D., Yamashita, T., Kasahara, S., Knafo, W., Nardone, M., Beard, J., et al. Dichotomy between the hole and electron behavior in multiband superconductor FeSe probed by ultrahigh magnetic elds. Physical Review Letters, 115, 027006, Jul 2015. URL http://link.aps.org/doi/10.1103/PhysRevLett. 115.027006. 4, 19, 76, 81 [13] Kittel, C. Introduction to Solid State Physics. 7a edon. New York: John Wiley & Sons, Inc., 1996. 4 [14] Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Reviews of Modern Physics, 87 (3), 855, 2015. 5, 109 [15] Mazin, I. I. Superconductivity gets an iron boost. Nature, 464, 183{186, 2010. URL http://dx.doi.org/10.1038/nature08914. 5 [16] Fernandes, R., Chubukov, A., Schmalian, J. What drives nematic order in ironbased superconductors? Nature physics, 10 (2), 97{104, 2014. 5 [17] Luetkens, H., Klauss, H.-H., Kraken, M., Litterst, F., Dellmann, T., Klingeler, R., et al. The electronic phase diagram of the LaO1-xFxFeAs superconductor. Nature materials, 8 (4), 305{309, 2009. 5 [18] Iimura, S., Matsuishi, S., Sato, H., Hanna, T., Muraba, Y., Kim, S. W., et al. Two-dome structure in electron-doped iron arsenide superconductors. Nature communications, 3, 943, 2012. 6 [19] Das, T., Panagopoulos, C. Two types of superconducting domes in unconventional superconductors. New Journal of Physics, 18 (10), 103033, 2016. URL http://stacks.iop.org/1367-2630/18/i=10/a=103033. 6, 109 [20] Vaknin, D. Magnetic nematicity: A debated origin. Nature materials, 15 (2), 131{132, 2016. 6, 10, 13 [21] Kasahara, S., Watashige, T., Hanaguri, T., Kohsaka, Y., Yamashita, T., Shimoyama, Y., et al. Field-induced superconducting phase of FeSe in the BCSBEC cross-over. Proceedings of the National Academy of Sciences, 111 (46), 16309{16313, 2014. 6, 19, 20, 63, 71, 87, 88, 122 [22] Kasahara, S., Yamashita, T., Shi, A., Kobayashi, R., Shimoyama, Y., Watashige, T., et al. Giant superconducting uctuations in the compensated semimetal FeSe at the BCS{BEC crossover. Nature Communications, 7, 12843, 2016. 6, 19, 20, 83 [23] Watashige, T., Arsenijevic, S., Yamashita, T., Terazawa, D., Onishi, T., Opherden, L., et al. Quasiparticle excitations in the superconducting state of FeSe probed by thermal hall conductivity in the vicinity of the BCS{BEC crossover. Journal of the Physical Society of Japan, 86 (1), 014707, 2016. 6 [24] Ge, J.-F., Liu, Z.-L., Liu, C., Gao, C.-L., Qian, D., Xue, Q.-K., et al. Superconductivity above 100K in single-layer FeSe lms on doped SrTiO3. Nature materials, 14 (3), 285{289, 2015. 7, 10 [25] Katayama, N., Ji, S., Louca, D., Lee, S., Fujita, M., J. Sato, T., et al. Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+ySexTe1-x. Journal of the Physical Society of Japan, 79 (11), 113702, 2010. 7, 44 [26] Mizuguchi, Y., Takano, Y. Review of Fe chalcogenides as the simplest Fe-based superconductor. Journal of the Physical Society of Japan, 79 (10), 102001, 2010. 7, 101 [27] Fang, M. H., Pham, H. M., Qian, B., Liu, T. J., Vehstedt, E. K., Liu, Y., et al. Superconductivity close to magnetic instability in Fe(Se1-xTex)0:82. Physical Review B, 78, 224503, Dec 2008. URL http://link.aps.org/doi/10.1103/ PhysRevB.78.224503. 7, 38 [28] Imai, Y., Sawada, Y., Nabeshima, F., Maeda, A. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe1-xTex thin lms. Proceedings of the National Academy of Sciences, 112 (7), 1937{1940, 2015. 7, 104 [29] Watson, M., Kim, T., Haghighirad, A., Blake, S., Davies, N., Hoesch, M., et al. Suppression of orbital ordering by chemical pressure in FeSe1-xSx. Physical Review B, 92 (12), 121108, 2015. 7, 8, 9 [30] Abdel-Haez, M., Zhang, Y.-Y., Cao, Z.-Y., Duan, C.-G., Karapetrov, G., Pudalov, V., et al. Superconducting properties of sulfur-doped iron selenide. Physical Review B, 91 (16), 165109, 2015. 89, 92, 107 [31] Abdel-Haez, M., Pu, Y., Brisbois, J., Peng, R., Feng, D., Chareev, D., et al. Impurity scattering eects on the superconducting properties and the tetragonalto- orthorhombic phase transition in FeSe. Physical Review B, 93 (22), 224508, 2016. 8, 12, 69 [32] Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y. Substitution eects on FeSe superconductor. Journal of the Physical Society of Japan, 78 (7), 074712, 2009. URL http://jpsj.ipap.jp/link?JPSJ/78/074712/. 8 [33] Lai, X., Zhang, H., Wang, Y., Wang, X., Zhang, X., Lin, J., et al. Observation of superconductivity in tetragonal FeS. Journal of the American Chemical Society, 137 (32), 10148{10151, 2015. 8 [34] Lin, H., Li, Y., Deng, Q., Xing, J., Liu, J., Zhu, X., et al. Multiband superconductivity and large anisotropy in FeS crystals. Physical Review B, 93 (14), 144505, 2016. 8 [35] Wu, M., Hsu, F., Yeh, K., Huang, T., Luo, J., Wang, M., et al. The development of the superconducting PbO-type -FeSe and related compounds. Physica C: Superconductivity, 469 (9), 340{349, 2009. 8 [36] Yadav, A. K., Thakur, A. D., Tomy, C. Enhanced superconducting properties in FeCrxSe. Solid State Communications, 151 (7), 557{560, 2011. 8 [37] Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., et al. Superconductivity at 27K in tetragonal FeSe under high pressure. Applied Physics Letters, 93, Oct 2008. 8 [38] Medvedev, S., McQueen, T., Troyan, I., Palasyuk, T., Eremets, M., Cava, R., et al. Electronic and magnetic phase diagram of -Fe1:01Se with superconductivity at 36.7K under pressure. Nature materials, 8 (8), 630{633, 2009. [39] Masaki, S., Kotegawa, H., Hara, Y., Tou, H., Murata, K., Mizuguchi, Y., et al. Precise pressure dependence of the superconducting transition temperature of FeSe: Resistivity and 77Se-NMR study. Journal of the Physical Society of Japan, 78 (6), 063704, 2009. 8 [40] Sun, J. P., Matsuura, K., Ye, G. Z., Mizukami, Y., Shimozawa, M., Matsubayashi, K., et al. Dome-shaped magnetic order competing with high-temperature super conductivity at high pressures in FeSe. Nature Communications, 7 (12146), 2016. 8, 9, 109 [41] Lee, D.-H. What makes the Tc of FeSe/SrTiO3 so high? Chinese Physics B, 24 (11), 117405, 2015. 10 [42] Lee, J., Schmitt, F., Moore, R., Johnston, S., Cui, Y.-T., Li, W., et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe lms on SrTiO3. Nature, 515 (7526), 245{248, 2014. 10 [43] Liu, T. J., Ke, X., Qian, B., Hu, J., Fobes, D., Vehstedt, E. K., et al. Chargecarrier localization induced by excess fe in the superconductor Fe1+yTe1-xSex. Physical Review B, 80, 174509, Nov 2009. URL http://link.aps.org/doi/10. 1103/PhysRevB.80.174509. 10, 42, 71 [44] Chen, T.-K., Chang, C.-C., Chang, H.-H., Fang, A.-H., Wang, C.-H., Chao, W.-H., et al. Fe-vacancy order and superconductivity in tetragonal -Fe1-xSe. Proceedings of the National Academy of Sciences, 111 (1), 63{68, 2014. 10 [45] Li, D., Pan, D., Liu, W., Li, X., Chen, M., Li, S., et al. Controllable phase transition for layered -FeSe superconductor synthesized by solution chemistry. Chemistry of Materials, 2016. 10 [46] Liu, T., Hu, J., Qian, B., Fobes, D., Mao, Z. Q., Bao, W., et al. From (, 0) magnetic order to superconductivity with (, ) magnetic resonance in Fe1:02Te1-xSex. Nature Materials, 9 (9), 718{720, 2010. 10 [47] Li, S., de La Cruz, C., Huang, Q., Chen, Y., Lynn, J., Hu, J., et al. First-order magnetic and structural phase transitions in Fe1+ySexTe1-x. Physical Review B, 79 (5), 054503, 2009. 10 [48] Shimojima, T., Suzuki, Y., Sonobe, T., Nakamura, A., Sakano, M., Omachi, J., et al. Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe. Physical Review B, 90 (12), 121111, 2014. 11, 12, 13, 77 [49] Watson, M., Kim, T., Rhodes, L., Eschrig, M., Hoesch, M., Haghighirad, A., et al. Evidence for unidirectional nematic bond ordering in FeSe. Physical Review B, 94 (20), 201107, 2016. 12, 13, 14, 73, 110, 127 [50] Nakayama, K., Miyata, Y., Phan, G., Sato, T., Tanabe, Y., Urata, T., et al. Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. Physical review letters, 113 (23), 237001, 2014. 12, 77 [51] Zhang, P., Qian, T., Richard, P., Wang, X., Miao, H., Lv, B., et al. Observation of two distinct dxz/dyz band splittings in FeSe. Physical Review B, 91 (21), 214503, 2015. 12 [52] Fedorov, A., Yaresko, A., Kim, T. K., Kushnirenko, Y., Haubold, E., Wolf, T., et al. Eect of nematic ordering on electronic structure of FeSe. Scientic Reports, 6 (36834), 7, 2016. URL http://dx.doi.org/10.1038/srep36834. 12, 13, 14, 77 [53] Baek, S., Efremov, D., Ok, J., Kim, J., Van Den Brink, J., Buchner, B. Orbitaldriven nematicity in FeSe. Nature materials, 14 (2), 210{214, 2015. 14 [54] Wang, Q., Shen, Y., Pan, B., Hao, Y., Ma, M., Zhou, F., et al. Strong interplay between stripe spin uctuations, nematicity and superconductivity in FeSe. Nature materials, 2015. 14, 70, 80 [55] Massat, P., Farina, D., Paul, I., Karlsson, S., Strobel, P., Toulemonde, P., et al. Charge-induced nematicity in FeSe. Proceedings of the National Academy of Sciences, pag. 201606562, 2016. 14 [56] Ma, M., Bourges, P., Sidis, Y., Xu, Y., Li, S., Hu, B., et al. Prominent role of spin-orbit coupling in FeSe. arXiv preprint arXiv:1610.01277, 2016. 14, 62, 70, 80, 115 [57] Luo, C., Cheng, P., Wang, S.-H., Chiang, J.-C., Lin, J., Wu, K., et al. Unveiling the hidden nematicity and spin subsystem in FeSe. arXiv preprint arXiv: 1603.08710, 2016. 14, 73 [58] Bohmer, A., Arai, T., Hardy, F., Hattori, T., Iye, T., Wolf, T., et al. Origin of the tetragonal-to-orthorhombic phase transition in FeSe: A combined thermodynamic and NMR study of nematicity. Physical review letters, 114 (2), 027001, 2015. 13, 14 [59] Ziman, J. M. Principles of the Theory of Solids. Cambridge university press, 1972. 15, 18 [60] Ashcroft, N. W., Mermin, N. D. Solid state physics. Brooks/Cole, Cengage Learning, 1976. 17, 83 [61] Pallecchi, I., Caglieris, F., Putti, M. Thermoelectric properties of iron-based superconductors and parent compounds. Superconductor Science and Technology, 29 (7), 073002, 2016. 19 [62] Huynh, K. K., Tanabe, Y., Urata, T., Oguro, H., Heguri, S., Watanabe, K., et al. Electric transport of a single-crystal iron chalcogenide FeSe superconductor: Evidence of symmetry-breakdown nematicity and additional ultrafast Dirac conelike carriers. Physical Review B, 90, 144516, Oct 2014. URL http://link.aps. org/doi/10.1103/PhysRevB.90.144516. 19, 20, 81 [63] Okamoto, H. The FeSe (iron-selenium) system. Journal of phase equilibria, 12 (3), 383{389, 1991. 21 [64] Chareev, D., Osadchii, E., Kuzmicheva, T., Lin, J.-Y., Kuzmichev, S., Volkova, O., et al. Single crystal growth and characterization of tetragonal FeSe1-x superconductors. CrystEngComm, 15 (10), 1989{1993, 2013. 24 [65] Cullity, B. D. Elements of X-ray diraction. Addison-Wesley publishing company, Inc., 1956. 26, 28 [66] Pynn, R. Neutron scattering. A primer. Los Alamos neutron science center. 29 [67] Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering. Cambridge university press, 2012. 30 [68] Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., et al. Scanning Electron Microscopy and X-ray Microanalysis. Springer science + Business Media New York, 2003. 30 [69] Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., et al. Scanning Electron Microscopy and X-ray Microanalysis. 3a edon. 233 Spring Street, New York, N.Y. 10013: Kluwer Academic/Plenum Publishers, 2003. 31 [70] McElfresh, M. Fundamentals of magnetism and magnetic measurements featuring quantum design's magnetic property measurement system. Quantum Design, 1994. 36 [71] Okazaki, A., Hirakawa, K. Structural study of iron selenides FeSex. I ordered arrangement of defects of Fe atoms. Journal of the Physical Society of Japan, 11 (9), 930{936, 1956. URL http://jpsj.ipap.jp/link?JPSJ/11/930/. 38 [72] Gawryluk, D. J., Fink-Finowicki, J., Wisniewski, A., Puzniak, R., Domukhovski, V., Diduszko, R., et al. Growth conditions, structure and superconductivity of pure and metal-doped FeTe1-xSex single crystals. Superconductor Science and Technology, 24 (6), 065011, 2011. URL http://stacks.iop.org/0953-2048/ 24/i=6/a=065011. 38 [73] Sales, B. C., Sefat, A. S., McGuire, M. A., Jin, R. Y., Mandrus, D., Mozharivskyj, Y. Bulk superconductivity at 14K in single crystals of Fe1+yTexSe1-x. Physical Review B, 79, 094521, Mar 2009. URL http://link.aps.org/doi/10.1103/ PhysRevB.79.094521. [74] Gresty, N. C., Takabayashi, Y., Ganin, A. Y., McDonald, M. T., Claridge, J. B., Giap, D., et al. Structural phase transitions and superconductivity in Fe1+ySe0:57Te0:43 at ambient and elevated pressures. Journal of the American Chemical Society, 131 (46), 16944{16952, 2009. URL http://pubs.acs.org/ doi/abs/10.1021/ja907345x, pMID: 19863098. 38 [75] Terzie, P. The magnetism of the NiAs-type solid solution Fe-Se-Te. Physica B+ C, 103 (2-3), 158{164, 1981. 38, 39 [76] Grnvold, F., Haraldsen, H., Vihovde, J. Phase and structural relations in the system iron tellurium. Acta chemica scandinavica, 8, 1927, 1954. URL http: //actachemscand.dk/pdf/acta_vol_08_p1927-1942.pdf. [77] Zhang, S. B., Sun, Y. P., Zhu, X. D., Zhu, X. B., Wang, B. S., Li, G., et al. Crystal growth and superconductivity of FeSex. Superconductor Science and Technology, 22 (1), 015020, 2009. URL http://stacks.iop.org/0953-2048/ 22/i=1/a=015020. 38 [78] Terzie, P., Komarek, K. L. The antiferromagnetic and ferrimagnetic properties of iron selenides with NiAs-type structure. Monatshefte fur Chemie/Chemical Monthly, 109 (5), 1037{1047, 1978. 40 [79] Kawaminami, M., Okazaki, A. Neutron diraction study of Fe7Se8. II. Journal of the Physical Society of Japan, 29 (3), 649{655, 1970. URL http://jpsj.ipap. jp/link?JPSJ/29/649/. 40 [80] Fang, M., Yang, J., Balakirev, F. F., Kohama, Y., Singleton, J., Qian, B., et al. Weak anisotropy of the superconducting upper critical eld in Fe1:11Te0:6Se0:4 single crystals. Physical Review B, 81, 020509, Jan 2010. URL http://link. aps.org/doi/10.1103/PhysRevB.81.020509. 42, 45 [81] Sudesh, Rani, S., Das, S., Rawat, R., Bernhard, C., Varma, G. D. Eect of Fe composition on the superconducting properties (Tc, Hc2 and Hirr) of FexSe1=2Te1=2 (x=0.95, 1.00, 1.05 and 1.10). Journal of Applied Physics, 111, 2012. URL http://dx.doi.org/10.1063/1.3672858. [82] McQueen, T. M., Huang, Q., Ksenofontov, V., Felser, C., Xu, Q., Zandbergen, H., et al. Physical Review B, 79, 014522, Jan 2009. URL http://link.aps. org/doi/10.1103/PhysRevB.79.014522. 42, 44 [83] Horigane, K., Takeshita, N., Lee, C.-H., Hiraka, H., Yamada, K. First investigation of pressure eects on transition from superconductive to metallic phase in FeSe0:5Te0:5. Journal of the Physical Society of Japan, 78 (6), 063705, 2009. URL http://dx.doi.org/10.1143/JPSJ.78.063705. 42, 43 [84] Karlsson, S., Strobel, P., Sulpice, A., Marcenat, C., Legendre, M., Gay, F., et al. Study of high-quality superconducting FeSe single crystals: crossover in electronic transport from a metallic to an activated regime above 350 K. Superconductor Science and Technology, 28 (10), 105009, 2015. URL http://stacks.iop.org/ 0953-2048/28/i=10/a=105009. 42, 69, 71, 73 [85] Lei, H., Hu, R., Choi, E. S., Warren, J. B., Petrovic, C. Pauli-limited upper critical eld of Fe1+yTe1-xSex. Physical Review B, 81, 094518, Mar 2010. URL http://link.aps.org/doi/10.1103/PhysRevB.81.094518. 45, 46, 92 [86] Ge, J., Cao, S., Shen, S., Yuan, S., Kang, B., Zhang, J. Superconducting properties of highly oriented Fe1:03Te0:55Se0:45 with excess Fe. Solid State Communications, 150 (35-36), 1641 { 1645, 2010. URL http://www.sciencedirect.com/ science/article/pii/S0038109810003674. 45, 46 [87] Kida, T., Kotani, M., Mizuguchi, Y., Takano, Y., Hagiwara, M. Weak superconducting uctuations and small anisotropy of the upper critical elds in an Fe1:05Te0:85Se0:15 single crystal. Journal of the Physical Society of Japan, 79 (7), 074706, 2010. [88] Kida, T., Matsunaga, T., Hagiwara, M., Mizuguchi, Y., Takano, Y., Kindo, K. Upper critical elds of the 11-system iron-chalcogenide superconductor FeSe0:25Te0:75. Journal of the Physical Society of Japan, 78 (11), 113701, 2009. [89] Khim, S., Kim, J. W., Choi, E. S., Bang, Y., Nohara, M., Takagi, H., et al. Evidence for dominant Pauli paramagnetic eect in the upper critical eld of single-crystalline FeTe0:6Se0:4. Physical Review B, 81, 184511, May 2010. URL http://link.aps.org/doi/10.1103/PhysRevB.81.184511. [90] Yadav, C. S., Paulose, P. L. Upper critical eld, lower critical eld and critical current density of FeTe0:60Se0:40 single crystals. New Journal of Physics, 11 (10), 103046, 2009. URL http://stacks.iop.org/1367-2630/11/i=10/a=103046. 46 [91] Lei, H., Graf, D., Hu, R., Ryu, H., Choi, E., Tozer, S., et al. Multiband eects on -FeSe single crystals. Physical Review B, 85 (9), 094515, 2012. 91 [92] Yeh, K. W., Hsu, H. C., Huang, T. W., Wu, P. M., Huang, Y. L., Chen, T. K., et al. Se and Te doping study of the FeSe superconductors. Journal of the Physical Society of Japan, 77SC (Supplement C), 19{22, 2008. URL http: //jpsj.ipap.jp/link?JPSJS/77SC/19/. 45, 46 [93] Werthamer, N. R., Helfand, E., Hohenberg, P. C. Temperature and purity dependence of the superconducting critical eld, Hc2. III. electron spin and spin-orbit eects. Physical Review, 147, 295{302, Jul 1966. URL http: //link.aps.org/doi/10.1103/PhysRev.147.295. 45, 46, 91 [94] Palstra, T. T. M., Batlogg, B., van Dover, R. B., Schneemeyer, L. F., Waszczak, J. V. Dissipative ux motion in high-temperature superconductors. Physical Review B, 41, 6621{6632, Apr 1990. URL http://link.aps.org/doi/10.1103/ PhysRevB.41.6621. 46 [95] Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F., Waszczak, J. V. Physical Review Letters, 61, 1662{1665, Oct 1988. URL http://link.aps.org/doi/10. 1103/PhysRevLett.61.1662. 46 [96] Patel, U., Hua, J., Yu, S. H., Avci, S., Xiao, Z. L., Claus, H., et al. Growth and superconductivity of FeSex crystals. Applied Physics Letters, 94, 082508, 2009. URL http://dx.doi.org/10.1063/1.3093838. 48 [97] Blatter, G., Feigel'man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66, 1125{1388, Oct 1994. URL http://link.aps.org/doi/10.1103/RevModPhys.66.1125. 48, 50 [98] Okazaki, A. The superstructures of iron selenide Fe7Se8. Journal of the Physical Society of Japan, 16 (6), 1162{1170, 1961. 51 [99] McQueen, T. M., Williams, A. J., Stephens, P. W., Tao, J., Zhu, Y., Ksenofontov, V., et al. Tetragonal-to-orthorhombic structural phase transition at 90K in the superconductor Fe1:01Se. Physical Review Letters, 103, 057002, Jul 2009. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.057002. 59 [100] Millican, J.~N., Phelan, D., Thomas, E. L., Le~ao, J. B., Carpenter, E. Pressureinduced eects on the structure of the FeSe superconductor. Solid State Communications, 149 (17), 707{710, 2009. 65 [101] Heine, G., Lang, W., Wang, X., Dou, S. Positive in-plane and negative outof- plane magnetoresistance in the overdoped high-temperature superconductor Bi2Sr2CaCu2O8+x. Physical Review B, 59 (17), 11179, 1999. 70 [102] Yoshida, K., Maeno, Y., Nishizaki, S., Ikeda, S., Fujita, T. Crossover from 3D to 2D metallic conduction in Sr2RuO4. Journal of Low Temperature Physics, 105 (5-6), 1593{1598, 1996. 70 [103] Terashima, T., Kikugawa, N., Kiswandhi, A., Choi, E.-S., Brooks, J. S., Kasahara, S., et al. Anomalous Fermi surface in fese seen by Shubnikov{de Haas oscillation measurements. Physical Review B, 90 (14), 144517, 2014. 71 [104] Pavlosiuk, O., Kaczorowski, D., Fabreges, X., Gukasov, A., Wisniewski, P. Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi. Scientic reports, 6, 2016. 71, 72, 127 [105] Brandt, N., Kulbachinskii, V. Pressure spectroscopy of impurity states and band structure of bismuth telluride. Semiconductor science and technology, 7 (7), 907, 1992. 71 [106] Zvyagina, G., Gaydamak, T., Zhekov, K., Bilich, I., Fil, V., Chareev, D., et al. Acoustic characteristics of FeSe single crystals. EPL (Europhysics Letters), 101 (5), 56005, 2013. 72, 126 [107] Luo, C., Wu, I., Cheng, P., Lin, J.-Y., Wu, K., Uen, T., et al. Quasiparticle dynamics and phonon softening in FeSe superconductors. Physical Review Letters, 108 (25), 257006, 2012. 73 [108] Gnezdilov, V., Pashkevich, Y. G., Lemmens, P., Wulferding, D., Shevtsova, T., Gusev, A., et al. Interplay between lattice and spin states degree of freedom in the FeSe superconductor: Dynamic spin state instabilities. Physical Review B, 87 (14), 144508, 2013. 73 [109] Audouard, A., Duc, F., Drigo, L., Toulemonde, P., Karlsson, S., Strobel, P., et al. Quantum oscillations and upper critical magnetic eld of the iron-based superconductor FeSe. EPL (Europhysics Letters), 109 (2), 27003, 2015. 74 [110] Kesternich, W. Low-eld magnetoresistance in metals. Physical Review B, 13 (10), 4227, 1976. 74 [111] Jaroszynski, J., Hunte, F., Balicas, L., Jo, Y.-j., Raicevic, I., Gurevich, A., et al. Upper critical elds and thermally-activated transport of NdFeAsO0:7F0:3 single crystal. Physical Review B, 78 (17), 174523, 2008. 76, 91 [112] Arnold, F., Shekhar, C., Wu, S.-C., Sun, Y., Dos Reis, R. D., Kumar, N., et al. Negative magnetoresistance without well-dened chirality in the Weyl semimetal TaP. Nature communications, 7, 2016. 79 [113] Dos Reis, R., Ajeesh, M., Kumar, N., Arnold, F., Shekhar, C., Naumann, M., et al. On the search for the chiral anomaly in Weyl semimetals: The negative longitudinal magnetoresistance. New Journal of Physics, 18 (8), 085006, 2016. 80 [114] Xu, X.-T., Jia, S. Recent observations of negative longitudinal magnetoresistance in semimetal. Chinese Physics B, 25 (11), 117204, 2016. 79 [115] Rullier-Albenque, F., Colson, D., Forget, A. Longitudinal magnetoresistance in Co-doped BaFe2As2 and LiFeAs single crystals: Interplay between spin uctuations and charge transport in iron pnictides. Physical Review B, 88 (4), 045105, 2013. 80 [116] Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism. Springer-Verlag Berlin Heidelberg GmbH, 1985. 80 [117] Querales-Flores, J., Amigo, M., Nieva, G., Ventura, C. Normal-state magnetotransport properties of -FeSe superconductors. EPL (Europhysics Letters), 113 (1), 17005, 2016. 81, 82 [118] Tanatar, M., Bohmer, A., Timmons, E., Schutt, M., Drachuck, G., Taufour, V., et al. Origin of the resistivity anisotropy in the nematic phase of FeSe. Physical Review Letters, 117 (12), 127001, 2016. 85, 87, 126 [119] Knoner, S., Zielke, D., Kohler, S., Wolf, B., Wolf, T., Wang, L., et al. Resistivity and magnetoresistance of FeSe single crystals under helium-gas pressure. Physical Review B, 91 (17), 174510, 2015. 85, 86, 96, 103, 104 [120] Vedeneev, S., Piot, B., Maude, D., Sadakov, A. Temperature dependence of the upper critical eld of FeSe single crystals. Physical Review B, 87 (13), 134512, 2013. 92 [121] Fasano, Y., Menghini, M. Magnetic-decoration imaging of structural transitions induced in vortex matter. Superconductor Science and Technology, 21 (2), 023001, 2008. 92 [122] Pasquini, G., Luna, D., Nieva, G. Oscillatory dynamics in the vortex matter of twinned and untwinned YBa2Cu3O7 crystals. Physical Review B, 76 (21), 212302, 2007. 97 [123] Jung, S.-G., Kang, J.-H., Park, E., Lee, S., Lin, J.-Y., Chareev, D. A., et al. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe. Scientic Reports, 5 (16385), 2015. 97 [124] Eskildsen, M. R. Vortex lattices in type-II superconductors studied by smallangle neutron scattering. Frontiers of Physics, 6 (4), 398{409, 2011. 107
Materias:Física > Materia condensada
Divisiones:Investigación y aplicaciones no nucleares > Física > Bajas temperaturas
Código ID:711
Depositado Por:Marisa G. Velazco Aldao
Depositado En:13 Aug 2018 13:41
Última Modificación:13 Aug 2018 13:41

Personal del repositorio solamente: página de control del documento