Testé Lino, Eduardo (2018) Entropía de estrelazado en teoría de campos y holografía : aplicaciones al grupo de renormalización. / Entanglement eutropy in quantum field theory and hologaphy: aplications to the renormalization group. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 9Mb |
Resumen en español
En esta Tesis se estudian las Teorías Cuánticas de Campos y algunas de sus propiedades desde el punto de vista de la Teoría de la Información Cuántica. Especificamente, se estudia la entropía de entrelazado y la entropía relativa del vacío con el objetivo de su aplicación a la irreversibilidad del grupo de renormalización. El resultado principal es una prueba del Teorema A (irreveribilidad del grupo de renormaliación en dimensión espacio-temporal d = 4), como consecuencia de la subaditividad fuerte de la entropía de entrelazado del vacío, la invariancia de Lorentz y lo que hemos llamado la propiedad Markoviana del vacío. Demostramos esta última propiedad en detalle, que equivale a la saturación de la subaditividad fuerte de la entropía de von Neumann y a una identidad sobre los Hamiltonianos modulares de regiones con borde en el plano o el cono nulo. Se derivan expresiones explícitas y generales para los Hamiltonianos modulares y las entropías de von Neumann y de Rényi del vacío reducido a estas regiones. Esto nos permite ofrecer un cuadro unificado de los teoremas de irreversibilidad del grupo de renormalización en dimensión d = 2; 3; 4 como consecuencia de propiedades de la entropía de entrelazado del vacío de una Teoría Cuántica de Campos.
Resumen en inglés
In this Thesis we study Quantum Field Theories and some of its properties from the point of view of Quantum Information Theory. Especically, we study the entanglement entropy and relative entropy of the vacuum state with the goal of applying it to the irreversibility of the renormalization group. The main result is a proof of the Atheorem (irreversibility of the renormalization group in d = 4 space-time dimensions), as a consecuence of the strong subadditivity of entanglement entropy, Lorentz invariance and what we have called the Markov property of the vacuum state. We prove this last property in detail, which is equivalent to the saturation of the strong subadditivity of von Neumann entropy and a certain identity between the modular Hamiltonians of space-time regions with boundary on a null plane or a null cone. We obtain explicit and general expressions for the modular Hamiltonian, von Neumann and Renyi entropies for the vacuum state reduced to these regions. With this we are able to give a unied picture of the irreversibility theorems of the renormalization group in d = 2, 3, 4 dimensions as a consecuence of properties of the entanglement entropy of the vacuum of a Quantum Field Theory.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Quantum field theory; Teoría del campo cuántico; [Entanglement entropy; Entropía de entrelazado; Renormalization group; Grupo de renormalización; C theorems; Teorema C] |
Referencias: | [1] Kitaev, A., Preskill, J. Topological entanglement entropy. Physical review letters, 96 (11), 110404, 2006. 1 [2] Ryu, S., Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96, 181602, 2006. 1, 58, 191 [3] Casini, H., Huerta, M. A c-theorem for entanglement entropy. Journal of Physics A: Mathematical and Theoretical, 40 (25), 7031, 2007. 3, 65, 83 [4] Casini, H., Huerta, M. Entanglement entropy in free quantum eld theory. Jour- nal of Physics A: Mathematical and Theoretical, 42 (50), 504007, 2009. 35, 44 [5] Swingle, B. Entanglement Renormalization and Holography. Phys. Rev., D86, 065007, 2012. [6] Vidal, G. Entanglement Renormalization. Phys. Rev. Lett., 99 (22), 220405, 2007. [7] Vedral, V. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 74, 197{234, ene. 2002. 14 [8] Calabrese, P., Cardy, J. Entanglement entropy and conformal eld theory. J. Phys., A42, 504005, 2009. 1, 36, 37, 40, 152 [9] Calabrese, P., Cardy, J. Time dependence of correlation functions following a quantum quench. Physical review letters, 96 (13), 136801, 2006. [10] Nishioka, T. Entanglement entropy: holography and renormalization group. ar- Xiv preprint arXiv:1801.10352, 2018. 1 [11] Nielsen, M. A., Chuang, I. L. Quantum computation and quantum information. Cambridge university press, 2010. 1 [12] Levin, M., Wen, X.-G. Detecting topological order in a ground state wave function. Physical review letters, 96 (11), 110405, 2006. [13] Holzhey, C., Larsen, F., Wilczek, F. Geometric and renormalized entropy in conformal eld theory. Nucl. Phys., B424, 443{467, 1994. 1, 36, 40, 42 [14] Vidal, G., Latorre, J. I., Rico, E., Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90, 227902, 2003. [15] Fradkin, E., Moore, J. E. Entanglement entropy of 2d conformal quantum critical points: hearing the shape of a quantum drum. Physical review letters, 97 (5), 050404, 2006. 1 [16] Jaeris, D. L., Lewkowycz, A., Maldacena, J., Suh, S. J. Relative entropy equals bulk relative entropy. JHEP, 06, 004, 2016. 1, 17 [17] Faulkner, T., Lewkowycz, A., Maldacena, J. Quantum corrections to holographic entanglement entropy. Journal of High Energy Physics, 2013 (11), 74, 2013. 94 [18] Aharony, O., Gubser, S. S., Maldacena, J., Ooguri, H., Oz, Y. Large n eld theories, string theory and gravity. Physics Reports, 323 (3-4), 183{386, 2000. 56, 107 [19] Maldacena, J. The large-n limit of superconformal eld theories and supergravity. International journal of theoretical physics, 38 (4), 1113{1133, 1999. 1, 56 [20] Van Raamsdonk, M. Building up spacetime with quantum entanglement. General Relativity and Gravitation, 42 (10), 2323{2329, 2010. 1 [21] Wolf, M. M., Verstraete, F., Hastings, M. B., Cirac, J. I. Area laws in quantum systems: mutual information and correlations. Physical review letters, 100 (7), 070502, 2008. 1, 15, 43 [22] Srednicki, M. Entropy and area. Physical Review Letters, 71 (5), 666, 1993. [23] Eisert, J., Cramer, M., Plenio, M. B. Area laws for the entanglement entropy - a review. Rev. Mod. Phys., 82, 277{306, 2010. 1, 43 [24] Bombelli, L., Koul, R. K., Lee, J., Sorkin, R. D. Quantum source of entropy for black holes. Physical Review D, 34 (2), 373, 1986. 1, 94 [25] Susskind, L., Uglum, J. Black hole entropy in canonical quantum gravity and superstring theory. Physical Review D, 50 (4), 2700, 1994. 94, 95 [26] Solodukhin, S. N. Entanglement entropy of black holes. Living Reviews in Rela- tivity, 14 (1), 8, 2011. 1, 94 [27] Solodukhin, S. N. Entanglement entropy, conformal invariance and extrinsic geometry. Phys. Lett., B665, 305{309, 2008. 1, 188, 240 [28] Casini, H., Huerta, M. Analytic results on the geometric entropy for free elds. Journal of Statistical Mechanics: Theory and Experiment, 2008 (01), P01012, 2008. 36 [29] Casini, H., Huerta, M., Myers, R. C., Yale, A. Mutual information and the f-theorem. Journal of High Energy Physics, 2015 (10), 3, 2015. 1 [30] Casini, H., Huerta, M. A nite entanglement entropy and the c-theorem. Physics Letters B, 600 (1-2), 142{150, 2004. 2, 3, 65 [31] Casini, H., Landea, I. S., Torroba, G. The g-theorem and quantum information theory. JHEP, 10, 140, 2016. 2, 16, 127, 128 [32] Casini, H., Teste, E., Torroba, G. Relative entropy and the RG ow. JHEP, 03, 089, 2017. 2, 16, 64, 127, 214 [33] Casini, H., Mazzitelli, F. D., Teste, E. Area terms in entanglement entropy. Phys. Rev., D91 (10), 104035, 2015. 94, 96, 102, 103, 105, 137 [34] Casini, H. Relative entropy and the Bekenstein bound. Class. Quant. Grav., 25, 205021, 2008. 16 [35] Blanco, D. D., Casini, H. Localization of Negative Energy and the Bekenstein Bound. Phys. Rev. Lett., 111 (22), 221601, 2013. 2, 16, 162, 166 [36] Hofman, D. M., Maldacena, J. Conformal collider physics: Energy and charge correlations. JHEP, 05, 012, 2008. 2, 166 [37] Faulkner, T., Leigh, R. G., Parrikar, O., Wang, H. Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition. JHEP, 09, 038, 2016. 2, 16, 62, 145, 146, 166 [38] Balakrishnan, S., Faulkner, T., Khandker, Z. U., Wang, H. A General Proof of the Quantum Null Energy Condition, 2017. [39] Lashkari, N., Lin, J., Ooguri, H., Stoica, B., Van Raamsdonk, M. Gravitational positive energy theorems from information inequalities. Progress of Theoretical and Experimental Physics, 2016 (12), 2016. 2, 61 [40] Casini, H., Huerta, M. A Finite entanglement entropy and the c-theorem. Phys. Lett., B600, 142{150, 2004. 2, 64, 203 [41] Casini, H., Huerta, M. On the RG running of the entanglement entropy of a circle. Phys. Rev., D85, 125016, 2012. 3, 64, 65, 88, 203, 225 [42] Casini, H., Teste, E., Torroba, G. Markov Property of the Conformal Field Theory Vacuum and the a Theorem. Phys. Rev. Lett., 118 (26), 261602, 2017. 3, 203, 205, 209 [43] Lashkari, N. Entanglement at a Scale and Renormalization Monotones, 2017. 2 [44] Zamolodchikov, A. B. Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory. JETP Lett., 43, 730{732, 1986. [Pisma Zh. Eksp. Teor. Fiz.43,565(1986)]. 2, 63, 64, 65, 68, 94, 139 [45] Cardy, J. L. Is There a c Theorem in Four-Dimensions? Phys. Lett., B215, 749{752, 1988. 2, 64 [46] Komargodski, Z., Schwimmer, A. On Renormalization Group Flows in Four Dimensions. JHEP, 12, 099, 2011. 2, 64, 65, 76, 185, 189, 221 [47] Myers, R. C., Sinha, A. Seeing a c-theorem with holography. Phys. Rev., D82, 046006, 2010. 2, 3, 45, 64, 104 [48] Jaeris, D. L., Klebanov, I. R., Pufu, S. S., Safdi, B. R. Towards the F-Theorem: N=2 Field Theories on the Three-Sphere. JHEP, 06, 102, 2011. 2, 45, 64 [49] Casini, H., Huerta, M., Myers, R. C. Towards a derivation of holographic entanglement entropy. JHEP, 05, 036, 2011. 2, 4, 16, 27, 45, 46, 50, 64, 149 [50] Liu, H., Mezei, M. A Renement of entanglement entropy and the number of degrees of freedom. JHEP, 04, 162, 2013. 3, 213, 215 [51] Giombi, S., Klebanov, I. R. Interpolating between a and F. JHEP, 03, 117, 2015. 3 [52] Casini, H., Teste, E., Torroba, G. All the entropies on the light-cone. arXiv, hep-th, 1802.04278, 2018. 3, 143, 205 [53] Casini, H., Teste, E., Torroba, G. Modular hamiltonians on the null plane and the markov property of the vacuum state. Journal of Physics A: Mathematical and Theoretical, 50 (36), 364001, 2017. 3, 143 [54] Hislop, P. D., Longo, R. Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory. Commun. Math. Phys., 84, 71, 1982. 4, 27, 46, 149 [55] Casini, H., Huerta, M. Reduced density matrix and internal dynamics for multicomponent regions. Classical and quantum gravity, 26 (18), 185005, 2009. 4 [56] Shannon, C. E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5 (1), 3{55, 2001. 8 [57] Ohya, M., Petz, D. Quantum entropy and its use. Springer Science & Business Media, 2004. 9, 12 [58] Petz, D. Quantum information theory and quantum statistics. Springer Science & Business Media, 2007. 13, 19, 20, 174 [59] Haag, R. Local quantum physics: Fields, particles, algebras. 1992. 16, 24, 46, 47, 49, 74 [60] Borchers, H. J. On revolutionizing quantum eld theory with tomitas modular theory. Journal of Mathematical Physics, 41 (6), 3604{3673, 2000. URL http: //dx.doi.org/10.1063/1.533323. 16, 32, 146, 161, 163 [61] Casini, H., Huerta, M., Myers, R. C. Towards a derivation of holographic entanglement entropy. Journal of High Energy Physics, 2011 (5), 36, 2011. 16 [62] Hartman, T., Kundu, S., Tajdini, A. Averaged Null Energy Condition from Causality. JHEP, 07, 066, 2017. 16, 146 [63] Blanco, D. D., Casini, H., Hung, L.-Y., Myers, R. C. Relative Entropy and Holography. JHEP, 08, 060, 2013. 17, 62, 97 [64] Wong, G., Klich, I., Pando Zayas, L. A., Vaman, D. Entanglement Temperature and Entanglement Entropy of Excited States. JHEP, 12, 020, 2013. [65] Herzog, C. P. Universal Thermal Corrections to Entanglement Entropy for Conformal Field Theories on Spheres. JHEP, 10, 28, 2014. [66] Jaeris, D. L., Suh, S. J. The Gravity Duals of Modular Hamiltonians. JHEP, 09, 068, 2016. [67] Lashkari, N. Modular Hamiltonian for Excited States in Conformal Field Theory. Phys. Rev. Lett., 117 (4), 041601, 2016. [68] Faulkner, T., Leigh, R. G., Parrikar, O. Shape Dependence of Entanglement Entropy in Conformal Field Theories. JHEP, 04, 088, 2016. [69] Cardy, J., Tonni, E. Entanglement hamiltonians in two-dimensional conformal eld theory. J. Stat. Mech., 1612 (12), 123103, 2016. [70] Sarosi, G., Ugajin, T. Relative entropy of excited states in two dimensional conformal eld theories. JHEP, 07, 114, 2016. 17 [71] Hayden, P., Jozsa, R., Petz, D., Winter, A. Structure of states which satisfy strong subadditivity of quantum entropy with equality. Communications in mat- hematical physics, 246 (2), 359{374, 2004. 18, 179 [72] Lieb, E. H. Convex trace functions and the wigner-yanase-dyson conjecture. Advances in Mathematics, 11 (3), 267 { 288, 1973. URL http://www. sciencedirect.com/science/article/pii/000187087390011X. 19 [73] Streater, R. F., Wightman, A. S. PCT, spin and statistics, and all that. Princeton University Press, 2016. 21, 33, 74 [74] Casini, H. The logic of causally closed spacetime subsets. Classical and Quantum Gravity, 19 (24), 6389, 2002. 23 [75] Casini, H., Huerta, M., Rosabal, J. A. Remarks on entanglement entropy for gauge elds. Physical Review D, 89 (8), 085012, 2014. 24 [76] Borchers, H.-J., et al. On the converse of the reeh-schlieder theorem. Communi- cations in Mathematical Physics, 10 (4), 269{273, 1968. 26 [77] Schlieder, S. Some remarks about the localization of states in a quantum eld theory. Communications in Mathematical Physics, 1 (4), 265{280, 1965. [78] Summers, S. J. Yet more ado about nothing: the remarkable relativistic vacuum state. Deep Beauty, pags. 317{341, 2011. [79] Jaekel, C. D. The Reeh-Schlieder property for ground states. Annalen Phys., 12, 289{299, 2003. 26 [80] Wall, A. C. A proof of the generalized second law for rapidly changing elds and arbitrary horizon slices. Phys. Rev., D85, 104049, 2012. [Erratum: Phys. Rev.D87,no.6,069904(2013)]. 26, 145, 166, 223 [81] Bisognano, J. J., Wichmann, E. H. On the Duality Condition for a Hermitian Scalar Field. J. Math. Phys., 16, 985{1007, 1975. 27 [82] Arias, R., Blanco, D., Casini, H., Huerta, M. Local temperatures and local terms in modular Hamiltonians. Phys. Rev., D95 (6), 065005, 2017. 27 [83] Lledo, F. Modular theory by example. Aspects of Operator Algebras and Appli- cations, Contemp. Math, 534, 73{95, 2011. 32 [84] Takesaki, M. Tomita's theory of modular Hilbert algebras and its applications, tomo 128. Springer, 2006. [85] Summers, S. J. Tomita-takesaki modular theory. arXiv preprint math- ph/0511034, 2005. 32 [86] Witten, E. Notes on some entanglement properties of quantum eld theory. arXiv preprint arXiv:1803.04993, 2018. 33 [87] Rangamani, M., Takayanagi, T. Holographic entanglement entropy. En: Holographic Entanglement Entropy, pags. 35{47. Springer, 2017. 35 [88] Lewkowycz, A., Maldacena, J. Generalized gravitational entropy. JHEP, 08, 090, 2013. 36, 60, 222 [89] Dong, X., Lewkowycz, A., Rangamani, M. Deriving covariant holographic entanglement. JHEP, 11, 028, 2016. 36, 222 [90] Cardy, J. Some results on the mutual information of disjoint regions in higher dimensions. Journal of Physics A: Mathematical and Theoretical, 46 (28), 285402, 2013. URL http://stacks.iop.org/1751-8121/46/i=28/a=285402. 95, 152 [91] Agn, C., Faulkner, T. Quantum Corrections to Holographic Mutual Information. JHEP, 08, 118, 2016. 36 [92] Cardy, J. L., Castro-Alvaredo, O. A., Doyon, B. Form factors of branch-point twist elds in quantum integrable models and entanglement entropy. Journal of Statistical Physics, 130 (1), 129{168, 2008. 38 [93] Bousso, R., Casini, H., Fisher, Z., Maldacena, J. Entropy on a null surface for interacting quantum eld theories and the Bousso bound. Phys. Rev., D91 (8), 084030, 2015. 39, 145, 152, 153, 154, 155, 156, 157 [94] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B. Innite conformal symmetry in two-dimensional quantum eld theory. Nuclear Physics B, 241 (2), 333{380, 1984. 40, 41 [95] Cardy, J. L. Conformal invariance and statistical mechanics. Les Houches, 1988. 40 [96] Cardy, J. The ubiquitous c: from the stefan{boltzmann law to quantum information. Journal of Statistical Mechanics: Theory and Experiment, 2010 (10), P10004, 2010. 40 [97] Simmons-Dun, D. Tasi lectures on the conformal bootstrap. arXiv preprint arXiv:1602.07982, 2016. 41, 74 [98] Francesco, P., Mathieu, P., Senechal, D. Conformal eld theory. Springer Science & Business Media, 2012. 41 [99] Bueno, P., Myers, R. C., Witczak-Krempa, W. Universality of corner entanglement in conformal eld theories. Physical review letters, 115 (2), 021602, 2015. 44 [100] Myers, R. C., Singh, A. Entanglement entropy for singular surfaces. Journal of High Energy Physics, 2012 (9), 13, 2012. [101] Elvang, H., Hadjiantonis, M. Exact results for corner contributions to the entanglement entropy and renyi entropies of free bosons and fermions in 3d. Physics Letters B, 749, 383{388, 2015. 44 [102] Casini, H., Huerta, M. Entanglement entropy for the n-sphere. Physics Letters B, 694 (2), 167{171, 2010. 45 [103] Casini, H., Huerta, R. C., Marina and, Yale, A. Mutual information and the F-theorem. JHEP, 10, 003, 2015. 45, 233 [104] Bekenstein, J. D. Black holes and entropy. Physical Review D, 7 (8), 2333, 1973. 56 [105] Lloyd, S. Ultimate physical limits to computation. Nature, 406 (6799), 1047, 2000. 56 [106] Maldacena, J., Shenker, S. H., Stanford, D. A bound on chaos. Journal of High Energy Physics, 2016 (8), 106, 2016. 56 [107] Hooft, G. Dimensional reduction in quantum gravity. arXiv preprint gr- qc/9310026, 1993. 56 [108] Susskind, L. The world as a hologram. Journal of Mathematical Physics, 36 (11), 6377{6396, 1995. 56, 94 [109] Klebanov, I. R., Tarnopolsky, G. On large n limit of symmetric traceless tensor models. Journal of High Energy Physics, 2017 (10), 37, 2017. 57 [110] Nishioka, T., Ryu, S., Takayanagi, T. Holographic entanglement entropy: an overview. Journal of Physics A: Mathematical and Theoretical, 42 (50), 504008, 2009. 58, 104 [111] Hubeny, V. E., Rangamani, M., Takayanagi, T. A Covariant holographic entanglement entropy proposal. JHEP, 07, 062, 2007. 59, 191 [112] Brown, J. D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: an example from three dimensional gravity. Communications in Mathematical Physics, 104 (2), 207{226, 1986. 59 [113] Headrick, M., Takayanagi, T. Holographic proof of the strong subadditivity of entanglement entropy. Physical Review D, 76 (10), 106013, 2007. 60, 124 [114] Bao, N., Nezami, S., Ooguri, H., Stoica, B., Sully, J., Walter, M. The holographic entropy cone. Journal of High Energy Physics, 2015 (9), 130, 2015. 61 [115] Wall, A. C. Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy. Classical and Quantum Gravity, 31 (22), 225007, 2014. 61 [116] Lin, J., Marcolli, M., Ooguri, H., Stoica, B. Locality of gravitational systems from entanglement of conformal eld theories. Physical review letters, 114 (22), 221601, 2015. 61 [117] Koeller, J., Leichenauer, S. Holographic proof of the quantum null energy condition. Physical Review D, 94 (2), 024026, 2016. 62 [118] Komargodski, Z. The Constraints of Conformal Symmetry on RG Flows. JHEP, 07, 069, 2012. 64, 65, 76, 81, 185, 189 [119] Cappelli, A., Friedan, D., Latorre, J. I. C theorem and spectral representation. Nucl. Phys., B352, 616{670, 1991. 72, 94, 98, 124 [120] Polyakov, A. M. Nonhamiltonian approach to conformal quantum eld theory. Zh. Eksp. Teor. Fiz., 39, 23{42, 1974. 74 [121] Rychkov, S. Ep Lectures on Conformal Field Theory in D 3 Dimensions. Springer, 2017. 74 [122] Osterwalder, K., Schrader, R. Axioms for euclidean green's functions. Commu- nications in mathematical physics, 31 (2), 83{112, 1973. 74 [123] Elvang, H., Freedman, D. Z., Hung, L.-Y., Kiermaier, M., Myers, R. C., Theisen, S. On renormalization group ows and the a-theorem in 6d. Journal of High Energy Physics, 2012 (10), 11, 2012. 76 [124] Schwimmer, A., Theisen, S. Spontaneous Breaking of Conformal Invariance and Trace Anomaly Matching. Nucl. Phys., B847, 590{611, 2011. 81, 185, 188 [125] Anselmi, D. Anomalies, unitarity, and quantum irreversibility. Annals of Physics, 276 (2), 361{390, 1999. 94, 126 [126] Anselmi, D. Exact results on quantum eld theories interpolating between pairs of conformal eld theories. arXiv preprint hep-th/9910255, 1999. [127] Anselmi, D. A universal ow invariant in quantum eld theory. Classical and Quantum Gravity, 18 (21), 4417, 2001. [128] Anselmi, D. Quantum irreversibility in arbitrary dimension. Nuclear Physics B, 567 (1-2), 331{359, 2000. 94, 126 [129] Larsen, F., Wilczek, F. Renormalization of black hole entropy and of the gravitational coupling constant. Nuclear Physics B, 458 (1-2), 249{266, 1996. 94, 95 [130] Fursaev, D. V., Solodukhin, S. N. On one-loop renormalization of black-hole entropy. Physics Letters B, 365 (1-4), 51{55, 1996. [131] Cooperman, J. H., Luty, M. A. Renormalization of entanglement entropy and the gravitational eective action. Journal of High Energy Physics, 2014 (12), 45, 2014. [132] Jacobson, T., Satz, A. Black hole entanglement entropy and the renormalization group. Physical Review D, 87 (8), 084047, 2013. [133] Solodukhin, S. N. One-loop renormalization of black hole entropy due to nonminimally coupled matter. Physical Review D, 52 (12), 7046, 1995. [134] Solodukhin, S. N. Newton constant, contact terms, and entropy. Physical Review D, 91 (8), 084028, 2015. 94 [135] Adler, S. L. Einstein Gravity as a Symmetry Breaking Eect in Quantum Field Theory. Rev. Mod. Phys., 54, 729, 1982. [Erratum: Rev. Mod. Phys.55,837(1983)]. 94, 96, 140 [136] Zee, A. Spontaneously Generated Gravity. Phys. Rev., D23, 858, 1981. 94, 96 [137] Hertzberg, M. P., Wilczek, F. Some Calculable Contributions to Entanglement Entropy. Phys. Rev. Lett., 106, 050404, 2011. 95, 102, 137 [138] Kabat, D., Strassler, M. A comment on entropy and area. Physics Letters B, 329 (1), 46{52, 1994. [139] Hertzberg, M. P. Entanglement entropy in scalar eld theory. Journal of Physics A: Mathematical and Theoretical, 46 (1), 015402, 2012. 95, 102 [140] Hung, L.-Y., Myers, R. C., Smolkin, M. Some calculable contributions to holographic entanglement entropy. Journal of High Energy Physics, 2011 (8), 39, 2011. 95 [141] Lewkowycz, A., Myers, R. C., Smolkin, M. Observations on entanglement entropy in massive QFT's. JHEP, 04, 017, 2013. 102, 104, 137 [142] Liu, H., Mezei, M. Probing renormalization group ows using entanglement entropy. JHEP, 01, 098, 2014. 95, 137, 215 [143] Liu, H., Mezei, M. A renement of entanglement entropy and the number of degrees of freedom. Journal of High Energy Physics, 2013 (4), 162, 2013. 95 [144] Casini, H., Huerta, M. Remarks on the entanglement entropy for disconnected regions. Journal of High Energy Physics, 2009 (03), 048, 2009. 95 [145] Adler, S. L. Einstein gravity as a symmetry-breaking eect in quantum eld theory. Reviews of Modern Physics, 54 (3), 729, 1982. 96 [146] Muratani, H., Wada, S. Divergent parts of quantum uctuation in curved space from the adler-zee formulas. Physical Review D, 29 (4), 637, 1984. 96 [147] Rosenhaus, V., Smolkin, M. Entanglement entropy, planar surfaces, and spectral functions. Journal of High Energy Physics, 2014 (9), 119, 2014. 97, 98, 137 [148] Rosenhaus, V., Smolkin, M. Entanglement entropy for relevant and geometric perturbations. Journal of High Energy Physics, 2015 (2), 15, 2015. 97, 98, 101 [149] Hung, L.-Y., Myers, R. C., Smolkin, M. Some Calculable Contributions to Holographic Entanglement Entropy. JHEP, 08, 039, 2011. 101, 104, 137 [150] Ryu, S., Takayanagi, T. Aspects of Holographic Entanglement Entropy. JHEP, 08, 045, 2006. 104, 197 [151] Ryu, S., Takayanagi, T. Holographic derivation of entanglement entropy from ads. CFT, h ep-th/0603001. 104 [152] Maldacena, J. Non-gaussian features of primordial uctuations in single eld in ationary models. Journal of High Energy Physics, 2003 (05), 013, 2003. 104, 111 [153] Kaplan, J., Wang, J. An eective theory for holographic rg ows. Journal of High Energy Physics, 2015 (2), 56, 2015. 104, 111, 114, 117, 126 [154] Casini, H., Teste, E., Torroba, G. Holographic RG ows, entanglement entropy and the sum rule. JHEP, 03, 033, 2016. 104, 137 [155] Bianchi, M., Freedman, D. Z., Skenderis, K. Holographic renormalization. Nu- clear Physics B, 631 (1-2), 159{194, 2002. 108 [156] Skenderis, K. Lecture notes on holographic renormalization. Classical and Quan- tum Gravity, 19 (22), 5849, 2002. 108 [157] Balasubramanian, V., Kraus, P. A stress tensor for anti-de sitter gravity. Com- munications in Mathematical Physics, 208 (2), 413{428, 1999. 109 [158] Arnowitt, R., Deser, S., Misner, C. W. Republication of: The dynamics of general relativity. General Relativity and Gravitation, 40 (9), 1997{2027, 2008. 109 [159] De Boer, J., Verlinde, E., Verlinde, H. On the holographic renormalization group. Journal of High Energy Physics, 2000 (08), 003, 2000. 109 [160] Papadimitriou, I., Skenderis, K. Ads/cft correspondence and geometry. arXiv preprint hep-th/0404176, 2004. [161] Papadimitriou, I., Skenderis, K. Correlation functions in holographic rg ows. Journal of High Energy Physics, 2004 (10), 075, 2004. 109 [162] Heemskerk, I., Polchinski, J. Holographic and wilsonian renormalization groups. Journal of High Energy Physics, 2011 (6), 31, 2011. 109 [163] Faulkner, T., Liu, H., Rangamani, M. Integrating out geometry: Holographic wilsonian rg and the membrane paradigm. Journal of High Energy Physics, 2011 (8), 51, 2011. [164] Dong, X., Horn, B., Silverstein, E., Torroba, G. Moduli stabilization and the holographic rg for ads and ds. Journal of High Energy Physics, 2013 (6), 89, 2013. 109 [165] Fukuma, M., Matsuura, S., Sakai, T. A note on the weyl anomaly in the holographic renormalization group. Progress of Theoretical Physics, 104 (5), 1089{1108, 2000. 109 [166] Poisson, E. A relativist's toolkit: the mathematics of black-hole mechanics. Cambridge university press, 2004. 109 [167] Bianchi, M., Freedman, D. Z., Skenderis, K. How to go with an rg ow. Journal of High Energy Physics, 2001 (08), 041, 2001. 114 [168] Berg, M., Samtleben, H. Holographic correlators in a ow to a xed point. Journal of High Energy Physics, 2002 (12), 070, 2003. 114 [169] Hoyos, C., Kol, U., Sonnenschein, J., Yankielowicz, S. The a-theorem and conformal symmetry breaking in holographic rg ows. Journal of High Energy Physics, 2013 (3), 63, 2013. 115 [170] Bajc, B., Lugo, A. R. On the matching method and the goldstone theorem in holography. Journal of High Energy Physics, 2013 (7), 56, 2013. 115, 117 [171] Hoyos, C., Kol, U., Sonnenschein, J., Yankielowicz, S. The holographic dilaton. Journal of High Energy Physics, 2013 (10), 181, 2013. 115, 117 [172] Casini, H., Huerta, M. Positivity, entanglement entropy, and minimal surfaces. Journal of High Energy Physics, 2012 (11), 87, 2012. 124 [173] Balasubramanian, V., Heckman, J. J., Maloney, A. Relative Entropy and Proximity of Quantum Field Theories. JHEP, 05, 104, 2015. 126 [174] Gaite, J. C. Relative entropy in eld theory, the H theorem and the renormalization group. En: 3rd International Conference on Renormalization Group (RG 96) Dubna, Russia, August 26-31, 1996. 1996. 126 [175] Rosenhaus, V., Smolkin, M. Entanglement entropy, planar surfaces, and spectral functions. JHEP, 09, 119, 2014. 137 [176] Rosenhaus, V., Smolkin, M. Entanglement Entropy for Relevant and Geometric Perturbations. JHEP, 02, 015, 2015. [177] Rosenhaus, V., Smolkin, M. Entanglement entropy: a perturbative calculation. Journal of High Energy Physics, 2014 (12), 179, 2014. 137 [178] Bousso, R., Fisher, Z., Leichenauer, S.,Wall, A. C. Quantum focusing conjecture. Phys. Rev., D93 (6), 064044, 2016. 145 [179] Bousso, R., Fisher, Z., Koeller, J., Leichenauer, S., Wall, A. C. Proof of the Quantum Null Energy Condition. Phys. Rev., D93 (2), 024017, 2016. 145 [180] Koeller, J., Leichenauer, S., Levine, A., Shahbazi Moghaddam, A. Local Modular Hamiltonians from the Quantum Null Energy Condition, 2017. 145 [181] Wiesbrock, H.-W. Half-sided modular inclusions of von-neumann-algebras. Com- munications in Mathematical Physics, 157 (1), 83{92, 1993. 146, 161 [182] Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2, 253{291, 1998. 150 [183] Weinberg, S. Six-dimensional Methods for Four-dimensional Conformal Field Theories. Phys. Rev., D82, 045031, 2010. 150, 183 [184] Candelas, P., Dowker, J. S. Field theories on conformally related space-times: Some global considerations. Phys. Rev., D19, 2902, 1979. 151 [185] Komargodski, Z., Zhiboedov, A. Convexity and Liberation at Large Spin. JHEP, 11, 140, 2013. 154 [186] Wald, R. M. General relativity. University of Chicago press, 2010. 159 [187] Borchers, H.-J. The cpt-theorem in two-dimensional theories of local observables. Communications in Mathematical Physics, 143 (2), 315{332, 1992. 161 [188] Borchers, H. Symmetry groups of c-algebras and associated von neumann algebras. Dynamics of Complex and Irregular Systems, pags. 12{21, 1993. 163 [189] Borchers, H. On modular inclusion and spectrum condition. letters in mathema- tical physics, 27 (4), 311{324, 1993. 163 [190] Strominger, A. Lectures on the Infrared Structure of Gravity and Gauge Theory, 2017. 169 [191] Casini, H., Huerta, M. Remarks on the entanglement entropy for disconnected regions. JHEP, 03, 048, 2009. 178 [192] Swingle, B. Mutual information and the structure of entanglement in quantum eld theory, 2010. 178 [193] Solodukhin, S. N. The a-theorem and entanglement entropy, 2013. 181, 185, 222 [194] Penedones, J. TASI lectures on AdS/CFT. En: Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1-26, 2015, pags. 75{136. 2017. URL https://inspirehep.net/record/1481834/files/arXiv: 1608.04948.pdf. 183 [195] Kapec, D., Mitra, P. A d-Dimensional Stress Tensor for Minkd+2 Gravity, 2017. 183 [196] Elvang, H., Freedman, D. Z., Hung, L.-Y., Kiermaier, M., Myers, R. C., Theisen, S. On renormalization group ows and the a-theorem in 6d. JHEP, 10, 011, 2012. 185, 189, 223 [197] Luty, M. A., Polchinski, J., Rattazzi, R. The a-theorem and the Asymptotics of 4D Quantum Field Theory. JHEP, 01, 152, 2013. 185 [198] Elvang, H., Olson, T. M. RG ows in d dimensions, the dilaton eective action, and the a-theorem. JHEP, 03, 034, 2013. 185, 189, 190 [199] Banerjee, S. Wess-Zumino Consistency Condition for Entanglement Entropy. Phys. Rev. Lett., 109, 010402, 2012. 185 [200] Banerjee, S. Trace Anomaly Matching and Exact Results For Entanglement Entropy, 2014. [201] Herzog, C. P., Huang, K.-W., Jensen, K. Universal Entanglement and Boundary Geometry in Conformal Field Theory. JHEP, 01, 162, 2016. 185, 189 [202] Wess, J., Zumino, B. Consequences of anomalous Ward identities. Phys. Lett., 37B, 95{97, 1971. 187, 188 [203] Deser, S., Schwimmer, A. Geometric classication of conformal anomalies in arbitrary dimensions. Phys. Lett., B309, 279{284, 1993. 188 [204] Polchinski, J. String theory. Vol. 1: An introduction to the bosonic string. Cambridge University Press, 2007. 188 [205] Weinberg, S. Gravitation and Cosmology. New York: John Wiley and Sons, 1972. URL http://www-spires.fnal.gov/spires/find/books/www?cl=QC6. W431. 189 [206] Neuenfeld, D., Saraswat, K., Van Raamsdonk, M. Positive gravitational subsystem energies from CFT cone relative entropies, 2018. 195 [207] Dong, X. Holographic Entanglement Entropy for General Higher Derivative Gravity. JHEP, 01, 044, 2014. 199 [208] Camps, J. Generalized entropy and higher derivative Gravity. JHEP, 03, 070, 2014. 199 [209] Dong, X., Lewkowycz, A. Entropy, Extremality, Euclidean Variations, and the Equations of Motion. JHEP, 01, 081, 2018. 200 [210] Hung, L.-Y., Myers, R. C., Smolkin, M. On Holographic Entanglement Entropy and Higher Curvature Gravity. JHEP, 04, 025, 2011. 200 [211] Faulkner, T., Lewkowycz, A., Maldacena, J. Quantum corrections to holographic entanglement entropy. JHEP, 11, 074, 2013. 201 [212] Huerta, M. Numerical Determination of the Entanglement Entropy for Free Fields in the Cylinder. Phys. Lett., B710, 691{696, 2012. 215 [213] Dong, X. The Gravity Dual of Renyi Entropy. Nature Commun., 7, 12472, 2016. 222 |
Materias: | Física > Teoría de campos |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Partículas y campos |
Código ID: | 715 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 05 Jun 2019 15:04 |
Última Modificación: | 05 Jun 2019 15:04 |
Personal del repositorio solamente: página de control del documento