Taborda Pulgarin, Oscar A. (2018) Estudios de anisotropías a grandes escalas angulares de los rayos cósmicos de alta energía detectados por el observatorio Pierre Auger. / Studies of large angular scale anisotropies of high energy cosmic rays detected by the Pierre Auger observatory. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 14Mb | |
| PDF (Resumen) Español 307Kb | |
| PDF (Abstract) Español 306Kb |
Resumen en español
El resumen se encuentra como un archivo pdf.
Resumen en inglés
The abstract is provided as pdf file
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Anisotropy; Anisotropía; Analisis (Fourier); Análisis (Fourier); Magnetic fields; Campos magnéticos; Astrophysics; Astrofísica; [Cosmic rays; Rayos cósmicos; Detectors; Detectores] |
Referencias: | [1] Aab, A., The Pierre Auger Collaboration. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory. J. Instr., 12 (P02006), 2017. 3, 50 [2] Aab, A., The Pierre Auger Collaboration. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8-1018 eV. Science, 357, 12661270, 2017. 3, 45, 66, 83 [3] Aab, A., The Pierre Auger Collaboration. Large-scale cosmic ray anisotropies above 4 EeV. En preparación, 2018. 3 [4] Aab, A., The Pierre Auger Collaboration. Cosmic ray anisotropies in right ascension measured by the Pierre Auger Observatory. En preparación, 2018. 3 [5] Mollerach, S., Roulet, E. Progress in high-energy cosmic ray physics. Prog. in part. and nucl. phys., 98, 85-118, 2018. arXiv:1710.11155 [astro-ph.HE]. 6, 8, 10, 11, 12, 13, 15, 19, 21 [6] Patrignani, C., et al. Review of particle physics. Chin. Phys. C, 40 (100001), 2017. pdg.lbl.gov. 6 [7] Aab, A., The Pierre Auger Colaboration. Depth of maximum of air-shower pro- les at the Pierre Auger Observatory I. Measurements at energies above 1017:8 eV. Phys. Rev. D, 90 (122005), 2014. 8 [8] Abreu, P., The Pierre Auger Collaboration. Large-scale distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory. Astrophys. J. Suppl., 203, 34, 2012. 8, 45, 50, 65, 70, 82, 85, 102 [9] Abreu, P., The Pierre Auger Collaboration. Constraints on the origin of cosmic rays above 1018 eV from large scale anisotropy searches in data of the Pierre Auger Observatory. Astrophys. J., 762, L13, 2012. 8, 45, 50, 65, 84, 85, 102 [10] Greisen, K. End to the cosmic-ray spectrum? Phys. Rev. Lett., 16 (7), 748-750, 1966. 8 [11] Zatsepin, G., Kuzmin, V. Upper limit of the spectrum of cosmic rays. JETP Lett., 4 (78), 1966. 8 [12] Harari, D., Mollerach, S., Roulet, E. Anisotropies of ultrahigh energy cosmic ray nuclei diffusing from extragalactic sources. Phys. Rev. D, 92 (063014), 2015. 9, 103, 112, 116, 124, 125 [13] Harari, D., Mollerach, S., Roulet, E. On the ultrahigh energy cosmic ray horizon. J. Cosmol. Astropart. Phys., 11 (012), 2006. 10, 124 [14] Fermi, E. On the origin of cosmic radiation. Physical Review, 75, 1949. 11 [15] Axford, W. I., Leer, E., Skadron, G. The acceleration of cosmic rays by shock waves. En: 15th International Cosmic Ray Conference, tomo 11, págs. 132-137. 1977. 12 [16] Bell, A. R. The acceleration of cosmic rays in shock fronts - I. Mon. Not. R. Astron. Soc., 182, 1978. [17] Blandford, R. D., Ostriker, J. P. Particle acceleration by astrophysical shocks. Astrophys. J., 221, 1978. [18] Krymsky, G. F. Sov. Phys. Dokl., 23, 1977. 12 [19] Kachelriess, M. Lecture notes on high energy cosmic rays. arXiv:0801.4376v1 [astro-ph], 2008. 13 [20] Kotera, K., Olinto, A. V. The astrophysics of ultrahigh energy cosmic rays. arXiv:1101.4256v1 [astro-ph.HE], 2011. 13 [21] Hillas, A. M. The astrophysics of ultrahigh energy cosmic rays. ARAA, 22, 1984. 13 [22] Heitler, W. En: International series of monographs on physics, 3a edón. Oxford: Clarendon, 1954. 14 [23] Landau, L., Pomeranchuk, I. Y. Dokl. Akad. Nauk SSSR, 92 (735), 1953. 15 [24] Migdal, A. B. Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev., 103 (1811), 1956. 15 [25] McBreen, B., Lambert, C. J. Interactions of high-energy (E > 5 -1019 eV) photons in the Earth's magnetic field. Phys. Rev. D, 24, 2523, 1981. 16 [26] Matthews, J. A heitler model of extensive air showers. Astropart. Phys., 22, 387-397, 2005. 16 [27] Sciutto, S. AIRES: A system for air shower simulations (Version 2.2.0). arXiv:astro-ph/9911331. 17 [28] Heck, D., et al. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. 17 [29] Ostapchenko, S. Monte Carlo treatment of hadronic interactions in enhanced pomeron scheme: QGSJET-II model. Phys. Rev. D, 83 (014018), 2011. 17 [30] Pierog, T., et al. EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C, 92 (034906), 2015. 17 [31] Riehn, F., et al. A new version of the event generator Sibyll. En: Proceedings of the 34th International Cosmic Ray Conference (ICRC). The Hague, The Netherlands, 2015. arXiv:1510.00568. 17 [32] Kampert, K.-H., Unger, M. Measurements of the cosmic ray composition with air shower experiments. Atropart. Phys., 35, 660, 2012. 19 [33] Gaisser, T., Hillas, A. Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers. En: Proceedings of the 15th International Cosmic Ray Conference (ICRC). Plovdiv, Bulgaria, 1977. 20 [34] Greisen, K. Prog. Cosm. Ray Phys., 3, 1, 1956. 20 [35] Kamata, K., Nishimura, J. The lateral and the angular structure functions of electron showers. Progr. Theoret. Phys. Suppl., 6, 93-155, 1958. 20 [36] Abraham, J., The Pierre Auger Collaboration. Trigger and aperture of the surface detector array of the Pierre Auger Observatory. Nucl. Instr. and Meth. A, 613, 2939, 2010. 23, 26 [37] Aab, A., The Pierre Auger Collaboration. The Pierre Auger cosmic ray observatory. Nucl. Instr. and Meth. A, 798, 172-213, 2015. 25, 27, 29, 30, 33, 36 [38] Asorey, H. Los detectores cherenkov del Observatorio Pierre Auger y su aplicaci ón al estudio de fondos de radiación. Tesis (Doctorado en física), Universidad Nacional de Cuyo, Instituto Balseiro, Bariloche, 2012. 334p. 25, 26, 29, 30, 59 [39] Abraham, J., The Pierre Auger Collaboration. The fluorescence detector of the Pierre Auger observatory. Nucl. Instr. and Meth. A, 620, 227-251, 2010. 28 [40] Bonifazi, C., The Pierre Auger Collaboration. The angular resolution of the Pierre Auger Observatory. Nucl. Phys. Proc. Suppl., 190, 20, 2009. 31 [41] Hersil, J., et al. Observations of extensive air showers near the maximum of their longitudinal development. Phys. Rev. Lett. 6, 22, 1961. 31 [42] Pesce, R. Energy calibration of data recorded with the surface detectors of the Pierre Auger observatory: an update. En: Proceedings of the 32nd International Cosmic Ray Conference (ICRC). Beijing, China, 2011. arXiv:1107.4809. 32 [43] Dembinski, H. The cosmic ray spectrum above 4 -1018 eV as measured with inclined showers recorded at the Pierre Auger Observatory. En: Proceedings of the 32nd International Cosmic Ray Conference (ICRC). Beijing, China, 2011. arXiv:1107.4809. 32, 34 [44] Fenu, F. The cosmic ray energy spectrum measured using the Pierre Auger Observatory. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. 32 [45] Aab, A., The Pierre Auger Collaboration. Reconstruction of inclined air showers detected with the Pierre Auger Observatory. J. Cosm. Astropart. Phys., 08 (019), 2014. 33, 34, 84 [46] Ostapchenko, S. Nonlinear screening effects in high energy hadronic interactions. Phys. Rev. D, 74 (014026), 2006. 33 [47] Ferrari, A., et al. FLUKA: A multi-particle transport code (Program version 2005). CERN-2005-010, SLAC-R-773, INFN-TC-05-11, 2005. 34 [48] Agostinelli, S., GEANT4 Collaboration. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth. A, 506, 250-303, 2003. 34 [49] Maris, I. The AMIGA infill detector of the Pierre Auger Observatory: performance and first data. En: Proceedings of the 32nd International Cosmic Ray Conference (ICRC). Beijing, China, 2011. arXiv:1107.4809. 35 [50] Mathes, H. J. The HEAT telescopes of the Pierre Auger Observatory. status and first data. En: Proceedings of the 32nd International Cosmic Ray Conference (ICRC). Beijing, China, 2011. arXiv:1107.4809. 35 [51] Unger, M. Highlights from the Pierre Auger Observatory. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1710.09478. 36, 37, 39, 45, 48 [52] Sanchez-Lucas, P. hXmaxi measurements and tests of hadronic models using the surface detector of the Pierre Auger Observatory. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1708.06592. 38 [53] Bellido, J. Reducing the model dependence in the cosmic ray composition interpretation of Xmax distributions. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. 38 [54] Abreu, P., The Pierre Auger Collaboration. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory. JCAP, 1302 (026), 2013. 38, 121 [55] Bellido, J. Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above 1017:2 eV and composition implications. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1708.06592. 39, 40 [56] Aab, A., The Pierre Auger Collaboration. Depth of maximum of air-shower proles at the Pierre Auger Observatory. II. Composition implications. Phys. Rev. D, 90 (122006), 2014. 39, 102 [57] Apel, W. D., The KASCADE-Grande Collaboration. Kneelike structure in the spectrum of the heavy component of cosmic rays observed with KASCADEGrande. Phys. Rev. Lett., 107 (171104), 2011. 39, 70 [58] Apel, W. D., The KASCADE-Grande Collaboration. Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADEGrande. Phys. Rev. D, 87 (081101), 2013. 39 [59] Aab, A., The Pierre Auger Collaboration. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. JCAP, 2017 (038), 2017. 41, 42 [60] Wittkowski, D. Reconstructed properties of the sources of UHECR and their dependence on the extragalactic magnetic field. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. ar- Xiv:1708.06592. 41, 42 [61] Niechciol, M. Diffiuse and targeted searches for ultra-high-energy photons using the hybrid detector of the Pierre Auger Observatory. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1708.06592. 43, 44 [62] Zas, E. Searches for neutrino fiuxes in the EeV regime with the Pierre Auger Observatory. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1708.06592. 43, 44 [63] Abbott, B. P., LIGO Scientific Collaboration and Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116 (061102), 2016. 43 [64] Abreu, P., The Pierre Auger Collaboration. Measurement of the proton-air crosssection at p s = 57 TeV with the Pierre Auger Observatory. Phys. Rev. Lett., 109 (062002), 2012. 44 [65] Aab, A., The Pierre Auger Collaboration. Muons in air showers at the Pierre Auger Observatory: mean number in highly inclined events. Phys. Rev. D, 91 (032003), 2015. ERRATA: Phys. Rev. D 91, 059901 (2015). 44 [66] Aab, A., The Pierre Auger Collaboration. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory. Phys. Rev. Lett., 117 (192001), 2016. 44 [67] Aab, A., The Pierre Auger Collaboration. Muons in air showers at the Pierre Auger Observatory: measurement of atmospheric production depth. Phys. Rev. D, 90 (012012), 2014. ERRATA: Phys. Rev. D 92, 019903 (2015). 44 [68] Aab, A., The Pierre Auger Collaboration. Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory. Phys. Rev. D, 93 (72006), 2016. 44 [69] Mallamaci, M. Measurements of the depth of maximum muon production and of its fiuctuations in extensive air showers above 1:5 - 1019 eV at the Pierre Auger Observatory. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1708.06592. 44 [70] Abreu, P., The Pierre Auger Collaboration. Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory. Astropart. Phys., 34, 627, 2011. 45, 50, 65, 85, 89, 102 [71] Sidelnik, I. Measurement of the first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory: towards the detection of dipolar anisotropies over a wide energy range. En: Proceedings of the 33rd International Cosmic Ray Conference (ICRC). Rio de Janeiro, Brasil, 2013. arXiv:1307.5059. 45, 65 [72] Aab, A., The Pierre Auger Collaboration. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80-. Astrophys. J., 802, 111, 2015. 45, 50, 65, 66, 85 [73] Aab, A., The Pierre Auger Collaboration. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory. J. Cosm. Astropart. Phys., 06, 026, 2017. 45, 83, 95, 96 [74] Aab, A., The Pierre Auger Collaboration. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory. Astrophys. J., 804 (15), 2015. 46, 102 [75] Baumgartner, W. H., et al. The 70 month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl., 207, 19, 2013. 46 [76] Giaccari, U. Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1708.06592. 46 [77] Ackermann, M., Fermi-LAT Collaboration. 2FHL: The second catalog of hard Fermi-LAT sources. Astrophys. J. Suppl., 222, 5, 2016. 47 [78] Abraham, J., The Pierre Auger Collaboration. Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory. Astropart. Phys., 32, 89, 2009. 49, 54, 55 [79] Aab, A., The Pierre Auger Collaboration. Searches for large-scale anisotropy in the arrival directions of cosmic rays detected above energy of 1019 eV at the Pierre Auger Observatory and the Telescope Array. Astrophys. J., 794, 172, 2014. 50 [80] Billoir, P., Roucelle, C., Hamilton, J. C. Evaluation of the primary energy of UHE photon-induced atmospheric showers from ground array measurements. arXiv:astro-ph/0701583, 2007. 54 [81] De Almeida, R. M. Constraints on the origin of cosmic rays from large scale anisotropy searches in data of the Pierre Auger Observatory. En: Proceedings of the 33rd International Cosmic Ray Conference (ICRC). Rio de Janeiro, Brasil, 2013. arXiv:1307.5059. 65, 84 [82] Taborda, O. A. Dipolar anisotropy of cosmic rays above 8 EeV. En: Proceedings of the 35th International Cosmic Ray Conference (ICRC). Bexco, Busan, Korea, 2017. arXiv:1708.06592. 66 [83] Sommers, P. Cosmic ray anisotropy analysis with a full-sky observatory. Astropart. Phys., 14, 271-286, 2001. 68 [84] Linsley, J. Fluctuation eects on directional data. Phys. Rev. Lett., 34 (24), 1975. 74 [85] Bonino, R., et al. The East-West method: An exposure-independent method to search for large-scale anisotropies of cosmic rays. Astrophys. J., 67 (738), 2011. 78 [86] Billoir, P., Deligny, O. Estimates of multipolar coecients for searching for cosmic ray anisotropies with non-uniform or partial sky coverage. J. Cosm. Astropart. Phys., 02, 009, 2008. 82, 83 [87] Deligny, O., et al. Angular power spectrum estimation of cosmic ray anisotropies with full or partial sky coverage. J. Cosm. Astropart. Phys., 10, 008, 2004. 83, 95 [88] Abreu, P., The Pierre Auger Collaboration. The eect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory. J. Cosm. Astropart. Phys., 11, 022, 2011. 84 [89] Farley, F., Storey, J. The sidereal correlation of Extensive Air Showers. Proc. Phys. Soc. A, 67, 996, 1954. 88 [90] Aartsen, M. G., IceCube Collaboration. Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the IceCube detector. Atrophys. J., 826, 220, 2016. 100, 102 [91] Chiavassa, A., KASCADE-Grande Collaboration. KASCADE-Grande experiment measurements of the cosmic ray spectrum and large scale anisotropy. Nucl. Part. Phys. Proc., 279-281, 56-62, 2016. 102 [92] Abbasi, R., IceCube Collaboration. Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube. Astrophys. J., 746 (33), 2012. 100 [93] Abramowski, A., HESS Collaboration. Acceleration of petaelectronvolt protons in the galactic centre. Nature, 531, 476-479, 2016. 102 [94] Kumar, R., Eichler, D. The isotropy problem of sub-ankle ultra high energy cosmic rays. Atrophys. J., 781, 47, 2014. 102 [95] Calvez, A., Kusenko, A., Nagataki, S. Role of galactic sources and magnetic elds in forming the observed energy-dependent composition of ultrahigh-energy cosmic rays. Phys. Rev. Lett., 105 (091101), 2010. 102 [96] Eichler, D., et al. Ultrahigh energy cosmic rays: A galactic origin? Astrophys. J., 821 (L24), 2016. 102 [97] Compton, A. H., Getting, I. A. An apparent effect of galactic rotation on the intensity of cosmic rays. Phys. Rev., 47, 817-821, 1935. 103 [98] Kachelries, M., Serpico, P. D. The Compton-Getting effect on ultra-high energy cosmic rays of cosmological origin. Phys. Lett. B, 640, 225-229, 2006. 103 [99] Harari, D., Mollerach, S., Roulet, E. Anisotropies of ultra-high energy cosmic rays difiusing from extragalactic sources. Phys. Rev. D, 89 (123001), 2014. 103, 112, 116, 117, 120, 124, 125 [100] Tinyakov, P. G., Urban, F. R. Full sky harmonic analysis hints at large ultra-high energy cosmic ray deffections. J. Exp. Theor. Phys., 120, 533-540, 2015. 103 [101] Giler, M., Wdowczyk, J., Wolfendale, A. W. Ultra-high-energy cosmic rays from clusters of galaxies. J. Phys. G, 6, 1561-1573, 1980. 103, 112 [102] Berezinsky, V., Grigorieva, S. I., Dogiel, V. A. Ultra-high-energy cosmic rays from clusters of galaxies. Astron. Astrophys., 232, 582, 1990. 103, 112 [103] Erdogdu, P., et al. The dipole anisotropy of the 2 Micron All-Sky Redshift Survey. Mon. Not. R. Astron. Soc., 368, 1515-1526, 2006. 103, 113, 115, 119, 120 [104] Jansson, R., Farrar, G. R. A new model of the galactic magnetic field. Astrophys. J., 757 (14), 2012. 103, 104, 106 [105] Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev., 24, 2016. 105 [106] Terral, P., Ferrière, K. Constraints from Faraday rotation on the magnetic field structure in the Galactic halo. Astron. Astrophys., 600 (A29), 2017. 106 [107] Han, J., Ferrière, K., Manchester, R. The spatial energy spectrum of magnetic elds in our galaxy. Astrophys. J., 610, 820, 2004. 106 [108] Mintler, A., Spangler, S. Observation of turbulent fructuations in the interstellar plasma density and magnetic field on spatial scales of 0.01 to 100 parsecs. Astrophys. J., 458, 194, 1996. 106 [109] Pshirkov, M. S., et al. Deriving the global structure of the galactic magnetic field from faraday rotation measures of extragalactic sources. Astrophys. J., 738, 192, 2011. 106 [110] Weber, M., de Boer, W. Determination of the local dark matter density in our Galaxy. Atron. Astrophys., 509, 25, 2010. 109 [111] Gorski, K. M., et al. HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J., 622, 759-771, 2005. 110 [112] Huchra, J. P., et al. The 2MASS redshift survey-description and data release. Astrophys. J. Suppl., 199 (2), 2012. 115 [113] Harari, D., Mollerach, S., Roulet, E. Angular distribution of cosmic rays from an individual source in a turbulent magnetic eld. Phys. Rev. D, 93 (063002), 2016. 116, 117 [114] Jansson, R., Farrar, G. The galactic magnetic eld. Astrophys. J. Lett., 761 (1), 2012. 120 [115] Bradt, H. Astronomy Methods: A physical approach to astronomical observations. Cambridge, 2003. 135, 137, 138 [116] Seidel, D. J., Free, M.,Wang, J. Diurnal cycle of upper-air temperature estimated from radiosondes. J. Geophys. Res., 110 (D09102), 2005. 141 [117] Abreu, P., The Pierre Auger Collaboration. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS). Astropart. Phys., 35, 591, 2012. 141 |
Materias: | Física > Astropartículas |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Partículas y campos |
Código ID: | 723 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 04 Jun 2019 14:29 |
Última Modificación: | 04 Jun 2019 15:12 |
Personal del repositorio solamente: página de control del documento