Zoireff, Gustavo (2018) Optimización del desempeño de sistemas DMT en enlaces de comunicaciones por fibra ópticas de alta capacidad. / Optimization of DMT system performarne in high capacity optical fibre communications links. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 8Mb |
Resumen en español
Este trabajo describe el desarrollo de un proceso para la optimizacion de sistemas DMT (Discrete Multi-Tone) usados en enlaces de comunicaciones ópticas con modulación de intensidad y detección directa. Inicialmente, se estudiaron los conceptos fundamentales que involucran al formato de modulación/multiplexacion DMT y se analizaron sus ventajas al momento de ser aplicado a las comunicaciones ópticas de bajo costo y de corto alcance. Para mitigar la elevada relación potencia pico a potencia promedio (PAPR) de la señal DMT se opto por aplicar técnicas que involucran transformaciones no lineales: companding and clipping. Se diseñaron las funciones de compresión y expansión (companding) con el objetivo adicional de minimizar la distorsión introducida por un cuantizador y se lo comparo frente al recorte de señal (clipping). Considerando cuantizadores de 4, 6 y 8 bits, en primer lugar se evaluó la capacidad de reducción de PAPR de ambos sistemas a través de cálculos numéricos. Posteriormente, se requirió desarrollar un algoritmo de estimación y sincronismo para poder efectuar ensayos de laboratorio del sistema DMT eléctrico y óptico. Se obtuvieron resultados favorables de companding respecto a clipping en terminos de la reduccion del PAPR y el EVM (error vector magnitude) de las portadoras demoduladas. A continuacion, se midieron las curvas de BER vs SNR para el sistema DMT optico con ruido aditivo blanco Gaussiano, en donde se determino que para un dado BER, clipping requiere menor SNR que companding, salvo para el caso de 4 bits de cuantizacion con elevada relacion señal a ruido (SNR≥25 dB). Se introdujo un parametro importante de los sistemas DMT que operan con la tecnica de bit loading: la relacion señal a ruido por subportadora. Finalmente, se lograron transmitir datos a tasas de 907.9 Mbps, 1361.85 Mbps y 1588.25 Mbps usando DMT en una fibra optica monomodo estandar con las subportadoras moduladas con 16-QAM, 64-QAM y 128-QAM, respectivamente. La optimizacion del sistema DMT por medio de companding permitio obtener una desviacion estandar del error menor en el receptor, menor BER y, para una resolucion del DAC de 4 bits, una mejora en el desempeño en terminos de las curvas de BER vs SNR, respecto de clipping.
Resumen en inglés
This work describes the development of an optimization process for DMT (Discrete Multi-Tone) systems used in optical communication links with intensity modulation and direct detection. To begin with, fundamental concepts which involves the DMT modulation/multiplexing format were studied and their advantages were analysed at the moment to be applied in low-cost and short-range optical communications. To mitigate the high peak-to-average power ratio (PAPR) of the DMT signal, techniques which involves non linear transforms were chosen: companding and clipping. Compressing and expanding functions (companding) were designed with the additional objective of minimizing the distortion introduced by a quantizer and it was compared against the signal clipping. Firstly, the capacity of PAPR reduction was evaluated by numerical calculations in both systems, considering quantizers of 4, 6 and 8 bits. Further, it was required to develop an algorithm of estimation and synchronization in order to perform laboratory experiences. Favourable results of companding against clipping were obtained in terms of PAPR reduction and EVM of modulated subcarriers. Next, they were obtained curves of BER vs SNR for optical DMT with additive white Gaussian noise, where it was determined that for a given BER, clipping requires lower SNR than companding, except for of 4 bits of quantization with high SNR (SNR≥25 dB). It was done an introduction of an significant parameter for DMT systems which operates with bit loading technique: the signal-to-carrier noise ratio. Finally, effective transmission rates of 907.9 Mbps, 1361.85 Mbps and 1588.25 Mbps were reached using DMT in standard single-mode optical fibre with the subcarriers modulated with 16-QAM,64-QAM and 128-QAM, respectively. The optimization of DMT system through companding allowed to obtain a smaller standard deviation of the error at the receiver, a lower BER and, for a 4 bit DAC resolution, a performance improvement in terms of the BER vs SNR curves, in respect of clipping.
Tipo de objeto: | Tesis (Maestría en Ingeniería) |
---|---|
Palabras Clave: | Optical systems; Sistemas ópticos; [Optical transmitters; Transmisores ópticos; Short-range optical communications; Comunicaciones ópticas de corto alcance; Discrete multi-tone modulation;Modulación por multitonos discretos] |
Referencias: | [1] G. P. Agrawal, <<Optical Transmitters>>, in Fiber-Optic Communication Systems, 4th ed., Ed. New Jersey: John Wiley and Sons, 2010. 4 [2] G. Zoireff, <<Desarrollo de un Transmisor Optico para Redes de Acceso)), in Proyecto Integrador de Carrera de Ingenierıa en Telecomunicaciones, Laboratorio de Comunicaciones ´Opticas y Microondas, Centro Ato´mico Bariloche, Diciembre de 2015. 4 [3] A. Shami, M. Maier, C. Assi, <<The Anatomy of an Access Network>>, in Broadband Access Networks: Technologies and Deployments, Ed. Springer, 2009. [4] J. Lee, <<Discrete Multitone Modulation for Short-Range Optical Communications>>, in Proefschrift December 2009. 10 [5] J. Armstrong, <<OFDM for Optical Communications>>, in Journal of Lightwave Technology, Vol. 27, NO. 3, February 2009. 18, 29, 36, 73 [6] J. Armstrong, A. J. Lowery, <<Power efficient optical OFDM>>, in Electronics Letters, Vol. 27, pp. 370-371, 2009. [7] D. Slepian, <<On Bandwidth>>, in Proceedings of the IEEE, Vol. 64, NO. 3, March 2009. 14 [8] G. P. Agrawal, <<Optical Receivers>>, in Fiber-Optic Communication Systems, 4th ed., Ed. New Jersey: John Wiley and Sons, 2010. 3, 23 [9] S. H. Han, J. H. Lee, <<An Overview of Peak-to-Average Power Raduction Techniques in Multicarrier Transmission>>, in IEEE Wireless Communications, April 2005. [10] C. Tellembura, <<Computation of the Continuous–Time PAR of an OFDM Signal with BPSK Subcarriers>>, in IEEE Communications Letters, Vol. 5, NO. 5, May 2001. 26 [11] A. E. Jones, T. A. Wilkinson, S. K. Barton, <<Block Coding Scheme for Reduction of Peak to Mean Envelope Power Ratio of Multicarrier Transmission Scheme>>, in IEEE Electronic Letters, Vol. 30, NO. 22, Dec 1994. 27 [12] R. W. Bauml, R. F. H. Fisher, J. B. Huber, <<Reducing the Peak-to-Average Power Ratio of Multicarrier Modulation by Selected Mapping>>, in IEEE Electronic Letters, Vol. 32, NO. 22, Oct 1996. [13] J. Armstrong, B. J. C. Schmidt, <<Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN>>, in IEEE Communication Letters, Vol. 12, 2008. 27 [14] S. Haykin, <<Signaling Over Band-Limited Channels>>, in Digital Communication Systems, Ed. John Wiley and Sons, 2014. [15] B. Sklar, <<Uniform and Nonuniform Quantization>>, in Digital Communication Systems, Ed. Prentice Hall, 2nd Edition. 30 [16] J. G. Proakis, M. Salehi, <<Quantization>>, in Communication System Engineering, Ed. Prentice Hall, 2nd Edition, August, 2001. 31 [17] J. G. Proakis, M. Salehi, <<Waveform Coding>>, in Communication System Engineering, Ed. Prentice Hall, 2nd Edition, August, 2001. 31 [18] W. R. Bennet, <<Spectra of Quantized Signals>>, in Bell System Technical Journal, July 1948. 31 [19] T. Jiang, W. Xiang, P. C. Richardson, D. Qu, G. Zhu, <<On the Nonlinear Companding Transform for Reduction in PAPR of MCM signals>>, in IEEE Wireless Communications, Vol. 6, NO. 6, June 2007. 33 [20] E. Vanin, <<Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion>>, in Optic Express, Vol. 19, NO. 5, February 2011. 35 [21] J. J. van de Beek, <<Synchronization and Channel Estimation in OFDM Systems>>, in PhD Thesis, September 1998. 42, 44, 55, 60 [22] S. Pathak, H. Sharma, <<Channel Estimation in OFDM Systems>>, in International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, Isuue 3, March 2013. 42 [23] Mymo Wireless Technology Pvt Ltd, <<Time-Frequency Synchronization, Channel Estimation and Equalization of DL Channels in 3GPP Long Term Evolution>>, in www.mymowireless.com, Vol. 3, Isuue 3, March 2013. 42, 45 [24] Z. Liu, <<Frame Synchronization for Discrete Multi-Tone Wireline Acoustic Sensor Network>>, in B. Sc. Guided Research, June 2015. 55 [25] Y. Shen, E. Martinez, <<Channel Estimation in OFDM Systems>>, in Freescale Semiconductor Application Note, Rev. 0, January 2015. 44 [26] Y. Liu, Z. Tan, H. Hu, L. J. Cimini Jr., G. Ye Li, <<Channel Estimation for OFDM>>, in IEEE Communication Surveys and Tutorials, Vol. 16, No. 4, 4th Quarter 2014. 44 [27] A. Rachini, F. Nouvel, A. Beydown, B. Beydown, <<Robust Timing Synchronization Preamble for MIMO-OFDM Systems Using Mapped CAZAC Sequences>>, in International Journal on Advances in Networks and Services, Vol. 8, No. 1, 2015. 56 [28] P. H. Moose, <<A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction>>, in IEEE Transactions on Communications, Vol. 42, Issue: 10, October 1994. 58 [29] T. M. Schmidl, D. C. Cox, <<Robust Frequency and Timing Synchronization in OFDM>>, in IEEE Transactions on Communications, Vol. 45, No. 12, October 1997. 60 [30] S. Haykin, <<Signaling Over Fading Channels>>, in Digital Communication Systems, Ed. John Wiley and Sons, 2014. 60 [31] A. V. Oppenheim, R. W. Schafer, J. R. Buck, <<Discrete Time Signals and Systems>>, in Discrete-Time Signal Processing, 2nd ed., Ed. Prentice Hall: New Jersey, 1999. 64 [32] S. Savitzky, G. Golay, <<Smoothing and Differentiation of Data by Simplified Least Squares Procedures>>, in Analytical Chemistry, 1964. 63 [33] P. S. Chow, J. M. Cioffi, J. A. C. Bingham, <<A Practical Discrete Multitone Transceiver Loading Algorithm for Data Transmission over Spectrally Shaped Channels>>, in IEEE Transactions on Communications, Vol. 43, No. 234, Feb/Mar/Apr 1999. 85 [34] W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Zhenning Tao, J. C. Rasmussen, T. Drenski, <<100 Gb/s Optical IM-DD Transmission with 10GClass Devices Enabled by 65 GSamples/s CMOS DAC Core>>, in OFC/NFOEC Technical Digest, OSA, 2013. 89 [35] T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, J. C. Rasmussen, <<Discrete Multi-Tone for 100 Gb/s Optical Access Networks>>, in OFC, OSA, 2014. 89 |
Materias: | Ingeniería en telecomunicaciones |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones |
Código ID: | 725 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 24 Jun 2019 13:14 |
Última Modificación: | 24 Jun 2019 13:14 |
Personal del repositorio solamente: página de control del documento