Bustos, Raúl I. (2018) Efectos ambientales en el diseño a la fatiga de componentes nucleares clase 1. / Environmetal effects in the fatigue desing of class 1. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 73Mb |
Resumen en español
ASME establece una metodología general de análisis que, de acuerdo al tipo de carga, a las condiciones de servicio y a las características de los materiales involucrados, permite cuantificar el daño por fatiga en componentes nucleares en términos de una cantidad adimensional denominada coeficiente de daño acumulado. Sin embargo, estudios reportados por la Comisión Regulatoria Nuclear de los Estados Unidos (U.S. NRC) parecen indicar que esta metodología podría resultar no conservativa cuando el componente evaluado se desempeña en un ambiente agresivo como lo es el agua del circuito primario de reactores de agua presurizada. Como consecuencia, algunos laboratorios proponen considerar la inclusión de un factor ambiental para la cuantificación correcta del daño. El propósito del presente trabajo es efectuar una comparación crítica entre los criterios propuestos por ASME y U.S. NRC para evaluaciones de daño asociado a fatiga con participación del medio. Se evaluó la factibilidad del uso de la metodología del factor ambiental en el análisis de fatiga de materiales usados en reactores argentinos, en particular en aceros utilizados en la construcción del recipiente de presión del prototipo de reactor argentino CAREM 25. Como parte de esa evaluación, se utilizaron datos publicados en la literatura para materiales similares, como así también resultados propios correspondientes a ensayos de fatiga de bajo numero de ciclos, curva deformación-vida correspondiente, resultados de ensayos de ratchetting y relajación de tensiones obtenidos en aire a temperatura ambiente y a una temperatura cercana a la de operación del reactor, complementados con análisis fractográfico.
Resumen en inglés
ASME establishes a general methodology of analysis that, according to the type of load, the service conditions and the characteristics of the materials involved, allows to quantify the fatigue damage in nuclear components in terms of a dimensionless quantity called Cumulative Usage Factor. However, studies reported by the United States Nuclear Regulatory Commission (U.S. NRC) seem to indicate that this methodology could be non-conservative when the evaluated component performs in an aggressive environment such as water in the primary circuit of pressurized water reactors. As a consequence, some laboratories propose to consider the inclusion of an environmental factor for the correct quantication of the damage. The purpose of this work is to make a critical comparison between the criteria proposed by ASME and U.S. NRC for assessments of damage associated with fatigue with environmental participation. The feasibility of using the environmental factor methodology in the fatigue analysis of materials used in argentine reactors will be evaluated, particularly in steels used in the construction of the pressure vessel of the CAREM 25 Argentine reactor prototype. As part of that evaluation, data published in the literature for similar materials was used, as well as own results corresponding to fatigue tests of low number of cycles, corresponding strain-life curve, results of ratchetting tests and stress relaxation obtained in air at room temperature and at a temperature close to that of reactor operation complemented with fractographic analysis.
Tipo de objeto: | Tesis (Maestría en Ingeniería) |
---|---|
Palabras Clave: | Fatigue; Fatiga; Hydrogen; Hidrógeno [CAREM 25; Environmetal factor; Factor ambiental; Nitronic] |
Referencias: | [1] American Society for Testing and Materials (ASTM) E1823-13, 2013. [2] W.J. O'Donnell - Code Design and Evaluation for Cycling Loading- Sections III and VIII. Chapter 39 of the Companion Guide for the ASME Boiler and Pressure Vessel Code. [3] U.S.NRC- Effect of LWR Coolant Environments of the Fatigue Life of Reactor Materials. NUREG/CR-6909. Rev 1. March 2014. [4] Jaap Schijve. Fatigue of Structures and Materials. Kluwer Academic Publishers. 2001. [5] Schutz,W.- A history of fatigue. Eng. Fracture Mechanics, Vol. 54 (1996), pp. 263- 300. [6] Mann, J. Y.- Bibliography on the fatigue of materials, components and structures. Vol. 1 to 4, Pergamon Press, Oxford (1970, 1978, 1983 and 1990). [7] De Vedia, Luis A.- Apuntes de fatiga. Mecánica II. Instituto de Tecnología Jorge A. Sabato. Buenos Aires (2002). [8] Aldaz, Eduardo. Curso sobre requisitos básicos sobre diseño, construcción, inspección en servicio y estudio de envejecimiento en componentes mecánicos de centrales nucleares. UTN. Facultad Regional de Haedo. 2010. [9] Bannantine, J., Comer, J., Handrock, J.- Fundamentals of metal fatigue analysis. Prentice Hall. Englewood Cliffs, N.Y. 07632 [10] Frost, N.E. and Phillips,C.E, Studies in the formation and propagation of cracks in fatigue specimens. Proc. Int. Conference on Fatigue of Metals, London, September 1956. The Institution of Mechanical Engineers (1956), pp. 520-526. [11] Forest, A.V. de, The rate of growth of fatigue cracks. J. of Applied Mechanics, Vol. 3, (March 1936), pp.381-396. [12] Dowling, Norman E. Mechanical Behavior of materials. Engineering methods for deformation, fracture, and fatigue. Prentice Hall. Englewood Cliffs, N.Y. 07632, 1993. [13] Endo, K. and Miyao, Y. Effects of cycle frequency on the corrosion fatigue strenght. Bulletin of the Japan Society of Mechanical Engineers, Vol.1 (1958), pp. 374-380 [14] Barsom and Rolfe- `Fracture and fatigue control in structures'- Application of fracture mechanics- 2nd Ed. - Prentice Hall, Inc. 1987- Chapters: 12 and 13 [15] Bustos, R.I.- Análisis de fatiga en el RPR del reactor nuclear CAREM 25- Proyecto integrador de la carrera de ingeniería mecánica- Instituto Balseiro- Comisión Nacional de Energía Atómica. Junio de 2015. [16] Proyecto Carem. Coordinación de Ingeniería mecánica. Memoria de cálculo: CLCAREM25M- 32. [17] Jones, David P. and Basavaraju, Chakrapani. Subsection NB- Class 1 components. Companion guide to the ASME BOILER AND PRESSURE VESSEL CODE-Vol.1- Part 3: Rules for the construction of nuclear power plant components- Chapter 6 (Original by Hallinger and Jones). [18] Cooper, W.E., The Initial Scope and Intent of the Section III Fatigue design procedure-Welding Research Council, Inc., Technical Information fromWorkshop on Cyclic Life and Environmental Effects in Nuclear Applications, Clearwater, Florida, Jan. 22-21, 1992. [19] Higuchi, M., K. Iida and Y. Asada, 'Effects of Strain Rate Change on Fatigue Life of Carbon Steel in High-Temperature Water', Fatigue crack growth: Environmental eects, modeling studies, and design considerations, PVP Vol.306, S. Yukawa, ed, ASME, NY, pp. 111-116; also Porc. of Symp. on Effects of the Environment on the initiation of crack growth, ASTM STP 128, ASTM, Philadelphia, 1997. [20] Higuchi, M., K. Iida, and K. Sakaguchi. 'Effects of Strain Rate Fluctuation and Strain Holding on Fatigue Reduction for LWR Structural Steels in Simulated PWR Water', Pressure Vessel and Piping Codes and Standards, PVP Vol 41, M.D. Rana, ed., ASME, NY, pp. 143-152, 2001. [21] ASME Boiler and Pressure Vessel code, Section III, Div.1, NB 3222.4, Analysis for cyclic operation. Part e.4, Effect of elastic modulus. [22] ASME Boiler and Pressure Vessel code, Section III, Div. 1, NB 3216, Derivation of Stress Differences, 2010. [23] ASME II, Part D, Properties of Materials. [24] ASTME1049 - 85(2017).- Standard Practices for Cycle Counting in Fatigue Analysis. [25] Rodríguez, Facundo Luis. Cálculo estructural en la zona de la acometida de los generadores de vapor del RPR CAREM 25. Proyecto Integrador de la carrera de ingeniería mecánica- Instituto Balseiro- Año 2010. [26] Chopra, O. K. and W. J. Schack, Effects of LWR Coolant Environments on Fatigue design curves of carbon and Low alloy steels. NUREG CR 6583, ANL-97,18, March 1998. [27] Gavenda, Luebbers, Chopra. Crack Initiation and crack growth behavior of carbon and low alloy steels. Fatigue and fracture 1, Vol 350, S.Rahman, Yoon, et al, eds. American Society of Mechanical Engineers, New York, 1997. [28] Chopra, O. K. and W.J. Schack, Environmental effects on fatigue crack initiation in piping and PV Steels. NUREG CR 6717, ANL 00/27, May 2001. [29] Higuchi, M. and Iida K, Reduction in LCF life of ASS in high temperature water, pressure vessel and piping codes and standards, PVP Vol 353, D.P. Jones, R. Newton, W. J. O'Donnell, R. Vecchio, Antaki, Coe, Hollinger, eds., ASME, New York, pp 79-86, 1997. [30] Fytch, S., H. Xu, K. Moore and R. Gurdal, PWR Internals materials aging degradation Mech. screening and Threshold values MRP 175, Materials Reliability Program, EPRI Report 1012081, Electric Power Research Institute, Palo Alto, CA, December 2005. [31] Van Der Sluys, W. A., and S. Yukawa, \Status of PVRC Evaluation of LWR Coolant Environmental Effects on the S-N Fatigue Properties of Pressure Boundary Materials," Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations, PVP Vol. 306, S. Yukawa, ed., American Society of Mechanical Engineers, New York, pp. 47-58, 1995. [32] Van Der Sluys, W. A., \PVRC's Position on Environmental Effects on Fatigue Life in LWR Applications," Welding Research Council Bulletin 487, Welding Research Council, Inc., New York, Dec. 2003. [33] Iida, K., T. Bannai, M. Higuchi, K. Tsutsumi, and K. Sakaguchi, \Comparison of Japanese MITI Guideline and Other Methods for Evaluation of Environmental Fatigue Life Reduction," Pressure Vessel and Piping Codes and Standards, PVP Vol. 419, M. D. Rana, ed., American Society of Mechanical Engineers, New York, pp. 73-81, 2001. [34] Chopra, O. K., and W. J. Shack, \Overview of Fatigue Crack Initiation in Carbon and Low-Alloy Steels in Light Water Reactor Environments," J. Pressure Vessel Technol. 121, 49-60, 1999. [35] Mehta, H. S., and S. R. Gosselin, \Environmental Factor Approach to Account for Water Effects in Pressure Vessel and Piping Fatigue Evaluations," Nucl. Eng. Des. 181, 175-197, 1998. [36] O'Donnell, W. J., W. J. O'Donnell, and T. P. O'Donnell, \Proposed New Fatigue Design Curves for Carbon and Low-Alloy Steels in High Temperature Water," Proc. of the 2005 ASME Pressure Vessels and Piping Conf., July 17-21, 2005, Denver, CO, paper. PVP2005-71410. [37] Chopra, O. K., and W. J. Shack, \Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low-Alloy Steels," NUREG/CR{6583, ANL-97/18, March 1998. [38] Chopra, O. K., and W. J. Shack, \Environmental Effects on Fatigue Crack Initiation in Piping and Pressure Vessel Steels," NUREG/CR-6717, ANL-00/27, May 2001. [39] JNES-SS Report, \Environmental Fatigue Evaluation Method for Nuclear Power Plants," JNES-SS-1005, Nuclear Energy System Safety Division, Japan Nuclear Energy Safety Organization, March 2011. [40] Van Der Sluys, W. A., B. A. Young, and D. Doyle, \Corrosion Fatigue Properties on Alloy 690 and Some Nickel-Based Weld Metals," Assessment Methodologies for Preventing Failure: Service experience and Environmental Considerations, PVP Vol. 410-2, R. Mohan, ed., American Society of Mechanical Engineers, New York, pp. 85{91, 2000. [41] Electralloy Nitronic 50 stainless steel, UNS S 20910. Product Data Bulletin 50. Electralloy, a G. O. Carlson Inc. Company. [42] ATI Flat Rolled Products, Certicate of Test. High performance Alloys Inc, Cert Number 0140645-00. Material: ATI 50 stainless steel PMP hot rolled plate annealed pickled commercial cut edge. ASME-SA-240 ED 2013, UNS S20910, ASTM-A-240- 15. 16 Dic 2015. [43] MTS Material Test System Operation. 2013 MTS Systems Corporation. 100-196- 370 D. [44] ASTM International E8/E8M- 09. Standard Test Methods for Tension Testing of Metallic Materials.- Año 2009. [45] Dieter, George E. Jr.- Mechanical metallurgy. McGraw Hill Book Company. [46] Ashby M., Jones D.- Engineering materials 1 - An introduction to their properties and applications. Second Edition. Butterworth-Heinemann- 1996. [47] Kim JR Rasmussen.- Full-range Stress-strain Curves for Stainless Steel Alloys. Research Report No R811. The University of Sydney. Department of Civil Engineering. Sydney NSW 2006. Australia. [48] Egerton, Ray F. Physical Principles of Electron Microscopy. An Introduction to TEM, SEM and AEM. Springer. Dep. of Physics, University of Alberta. Canada. [49] Kappes Mariano y Rodrguez Martn. Plan de capacitacion: Estudio de la resistencia a la corrosion fatiga de la aleacion Nitronic 50 en agua a alta temperatura. Estado actual del equipamiento: Sistema integral de corrosion fatiga Cortest. Instituto de Tecnologa Sabato. Universidad Nacional de San Martn. CNEA. [50] June-soo Park, Ki-seok Yoon, Taek-sang Choi, Taesoon Kim, Sung-hwan Kim. Approach to Fatigue Life Management for Primary Components in APR1400 Nuclear Power Plants Considering LWR Environments. NSSS Division, KEPCO Engineering and Construction Company, Inc.- Central Research Institute, Korea Hydro and Nuclear Power Company, Ltd. IAEA-CN- 2013. [51] Mainqué Green, Carlos Gonález Ferrari. Desarrollo de un procedimiento de cálculo de fatiga multiaxial según ASME sección III incluyendo la metodología Fen. Asociaci ón Argentina de Mecánica Computacional- Mecánica Computacional Vol XXXIV, p. 1753-1772. Sebastián Giusti, Martín Pucheta y Mario Storti Eds. Córdoba. Noviembre de 2016. [52] Prompt, Nicolas; Genette, Pierre; Metais, Thomas; Pillou Marc; Berger Julien. An overview of EDF Approach and experience in the eld of fatigue of PWR static components. International Experts' Technical Meeting on Fatigue Assessment in LWR for LTO. IAEA, Erlangen, Germany, July 2016. [53] Tiberio García, Iñaki Gorrochategui, Ainara Mira (IDOM) y Marta Álvaro (Tecnatom). Recommendations for using current sentinel location screening and assessment methodologies for license renewal environmental fatigue calculations. Technical Meeting on Fatigue Assessment in LWR for LTO: Good practices and Lessons Learned. AREVA. IAEA. July 2016. [54] Proyecto Carem. Coordinación de Ingeniería mecánica. Memoria de cálculo: Cálculo de la vida a la fatiga de los plenum. CL-CAREM25CM-2-B0100. [55] Guzmán Ornelas, Fernando. Análisis de aceros por microscopía óptica. Instituto Politécnico Nacional. Escuela Superior de Ingeniería mecánica y eléctrica. Universidad Profesional Azcapotzalco. México. Junio de 2013. [56] Página web de Allied High Tech products. Consumables. Grinding and Polishing. Silicon Carbide Fine Grit Discs. https://consumables.alliedhightech.com/Silicon- Carbide-Fine-Grit-Discs-p/sicfg.htm [57] ASTM International E112-96. Standard Test Methods for Determining Average Grain Size. February 2003. [58] Wei-Guo Guo, Sia Nemat-Nasser, Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures. Mechanics of Materials. 2006, 38: 1090-1103 [59] Tablas internacionales de cristalografía. Unión Internacional de Cristalografía. Volumen A: Simetría de los grupos espaciales. ISBN 0-7923-6590-9 |
Materias: | Ingeniería mecánica |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Ciencias de materiales > Física de metales |
Código ID: | 727 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 15 Jul 2019 11:05 |
Última Modificación: | 15 Jul 2019 11:05 |
Personal del repositorio solamente: página de control del documento