Preparación, estudio y optimización de amiduros de litio y magnesio para almacenamiento de hidrógeno / Preparation, study and optimization of lithium and magnesium amidides for hydrogen storage

Amica, Guillermina (2018) Preparación, estudio y optimización de amiduros de litio y magnesio para almacenamiento de hidrógeno / Preparation, study and optimization of lithium and magnesium amidides for hydrogen storage. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
22Mb

Resumen en español

El desarrollo de esta Tesis de Doctorado en Ciencias de la Ingeniería se centró en el estudio de materiales compuestos para almacenamiento de hidrógeno basado en amiduros, tanto de litio como de magnesio, con propiedades optimizadas para su empleo eficiente en aplicaciones móviles. En una primera parte, se estudió el sistema Li-N-H y se introdujeron mejoras en el proceso de síntesis del material LiNH_2-LiH. Se analizó sistemáticamente el efecto del agregado de diferentes hidruros (MgH_2, CaH_2 y TiH_2) sobre la cinética y la estabilidad luego de numerosos ciclos de absorción/desorción de hidrógeno. Para cada sistema, se presentó una propuesta de camino de reacción y pudo afirmarse que la deshidrogenación del material LiNH_2-1,6LiH, con y sin aditivos, presenta un control difusivo. Si bien se demostró la potencialidad del sistema Li-N-H como almacenador de hidrógeno, se concluyó que la principal limitación es su alta temperatura de operación. La demostración de la modificación favorable de la termodinámica del sistema Li-N-H con la incorporación de Mg, sugirió la importancia del análisis de sistemas pseudo-cuaternarios, conteniendo Li y Mg. En una segunda parte, en la exploración del sistema Li-Mg-N-H, se estudió el material compuesto Mg(NH_2)_2-2LiH y se investigó el efecto de la presencia de un conductor iónico rápido de litio (Li_4(NH_2)_3BH_4) en su deshidrogenación. El rol catalítico de esta fase permitió justificar las grandes mejoras observadas en las velocidades de deshidrogenación y rehidrogenación del material. Si bien no fue posible garantizar la desestabilización termodinámica por la dificultad en alcanzar condiciones de medición en el equilibrio, el estudio de sucesivas isotermas de presión–composición junto con la caracterización estructural de los materiales en diferentes etapas del proceso de deshidrogenación, permitió la reconstrucción de las vías de reacción, demostrando la participación activa de la fase Li_4(NH_2)_3BH_4 en diferentes reacciones. Sobre las mediciones de deshidrogenación de este material compuesto, se analizaron los procesos limitantes de la velocidad de reacción. A partir de la combinación de dos modelos cinéticos, un mecanismo de nucleación y crecimiento que ajusta los valores experimentales a bajas conversiones y un modelo difusivo tridimensional, a altas, se presentaron las ecuaciones que describen la velocidad de desorción del sistema en función del grado de avance de la reacción y de la presión. Adicionalmente, se mostraron estudios relacionados con la desestabilización de la fase Li_4(NH_2)_3BH_4 mediante el dopaje con LiH y el uso de catalizadores a base de Co y Ni. Finalmente, se analizaron las perspectivas económicas relacionadas con la factibilidad del empleo del hidrógeno como vector energético en una aplicación móvil, considerando el costo del hidrógeno, el del tanque almacenador y el de la matriz sólida optimizada estudiada en el Capítulo 4 de esta Tesis. Además se realizó una comparación con las tecnologías que utilizan hidrógeno almacenado a alta presión. En síntesis, la presente Tesis proporciona estudios sobre matrices sólidas almacenadoras de hidrógeno de los sistemas Li-N-H y Li-Mg-N-H, aportando conocimiento no solo acerca de sus características microestructurales y estructurales, sino también del entendimiento de su termodinámica y cinética de la interacción con hidrógeno. Al tratarse de sistemas que pueden almacenar una cantidad suficiente de hidrógeno con propiedades termodinámicas y cinéticas prometedoras respecto a las otras clases de materiales complejos, resultan muy atractivos para ser utilizados en aplicaciones a bordo en vehículos con celdas de combustible. La necesidad global de diversificar la matriz energética le confiere al H_2 un rol fundamental como vector energético capaz de crear una economía alternativa a la actual basada en combustibles fósiles.

Resumen en inglés

The development of this PhD Thesis in Engineering Sciences has been focused on the study of composites for hydrogen storage, based on lithium and magnesium amides, with optimized properties for its efficient use in mobile applications. In the first part of the Thesis, the Li-N-H system was studied and improvements in the LiNH_2-LiH synthesis process were introduced. The effect of the different hydrides (MgH_2, CaH_2 and TiH_2) on the kinetics and stability after numerous cycles of absorption / desorption of hydrogen was systematically analyzed. For each system a proposal for a reaction path was presented and it could be affirmed that the dehydrogenation of the LiNH_2-1.6LiH material, with and without additives, presents a diffusive control. Although the potentiality of the Li-N-H system was demonstrated, it was concluded that the main limitation is its high operating temperature. The enhancement of its thermodynamic properties by the incorporation of Mg, suggested the importance of the analysis of pseudo-quaternary systems, containing Li and Mg. In a second part, in the exploration of the Li-Mg-NH system, the Mg(NH_2)_2- 2LiH composite was studied and the effect of the presence of a fast ionic lithium conductor (Li_4(NH_2)_3BH_4) was investigated. The catalytic role of this phase allowed to justify the great improvements observed in the dehydrogenation and rehydrogenation rates. Although it was not possible to guarantee thermodynamic destabilization due to the difficulty in achieving equilibrium measurement conditions, the study of successive pressure-composition isotherms together with the structural characterization of the materials at different stages of the dehydrogenation process, allowed the reconstruction of the reaction pathways, demonstrating the active participation of the Li_4(NH_2)3BH_4 phase in different reactions. Analyzing the dehydrogenation measurements of this material, the limiting processes of the reaction rate were determined. By combining two kinetic models, a mechanism of nucleation and growth and a 3D diffusive model, the equations that describe the desorption rates of the system according to conversion and hydrogen back pressure were obtained. Additionally, studies related to the destabilization of the Li_4(NH_2)_3BH_4 phase trough doping with LiH and Co / Ni- based catalysts were presented. Finally, an economic analysis was carried out to evaluate the feasibility of using the optimized solid matrix as material for hydrogen storage. The costs of hydrogen production trough different processes, the storage tank and the hydride material were considered. In addition, a comparison with other storage alternatives was included. In summary, this Thesis presents studies on solid hydrogen storage matrices of the Li-N-H and Li-Mg-N-H systems, providing knowledge not only about their microstructural characteristics, but also about the understanding of their thermodynamics and kinetics of interaction with hydrogen. As they are systems that can store a sufficient amount of hydrogen with promising thermodynamic and kinetic properties compared to other complex materials, they are attractive to be employed in on-board applications in vehicles with fuel cells. The global need to diversify the energy matrix confers H_2 a fundamental role as an energy vector capable of creating an alternative economy to the current one based on fossil fuels.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Hydrogen; Hidrógeno; Energy; Energía; Storage; Almacenamiento; Lithuim; Litio; Materials; Materiales, Amides, Amidas.
Referencias:[1] Barros V., Camilloni I. La Argentina y el cambio climático. Buenos Aires. Eudeba, 2016. [2] IEA World Energy Outlook 2010. [Último acceso: 15/01/2018]. Disponible en: https://www.iea.org/publications/freepublications/publication/weo2010.pdf [3] IEA, World Energy Outlook 2017. [Último acceso: 15/01/2018]. Disponible en: https://www.iea.org/publications/freepublications/publication/WEO_2017_ExecutiveSu mmary_Spanish_version.pdf [4] IEA, World Energy Outlook 2015. [Último acceso: 15/01/2018]. Disponible en: https://www.iea.org/publications/freepublications/publication/WEO2015.pdf [5] IEA, World Energy Outlook 2016. [Último acceso: 15/01/2018]. Disponible en: https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlook2016 ExecutiveSummaryEnglish.pdf [6] IPCC. Cambio climático. Informe de síntesis. Ginebra, Suiza, 2007. [Último acceso: 15/01/2018]. Disponible en: https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_sp.pdf [7] Walker G., Solid-state hydrogen storage, Cambridge: Woodhead Publishing Limited, 2008. [8] Zuttel A., Remhof A. , Borgschulte A., Friedrichs O. Hydrogen: the future energy carrier. Phil. Trans. R. Soc. A, 368, 3329-3342, 2010. [9] Schlapbach L., Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353-358, 2001. [10] US Departament of Energy (DOE). Office of Energy Efficiency and Renewable Energy. [Último acceso: 15/01/2018]. Disponible en: https://www.energy.gov/ [11] Zuttel A., Borgschulte A., Schlapbach L. Hydrogen as a future energy carrier. Weinheim. Wiley-VHC, 2008. [12] Rang D. A. J. y Dell R. M., Hydrogen Energy – Challenges and Prospects. Cambridge, The Royal Society of Chemistry, 2008. [13] Chorkendorff, I. Chorkendorff y J. W. Niemanstverdriet, Concepts of modern catalysis and kinetics. Weinheim. Wiley-HVC, 2003. [14] DOE, Office of energy efficiency and renewable energy. [Último acceso: 15/01/2018]. Disponible en: https://energy.gov/eere/fuelcells/doe-technical-targetsonboard- hydrogen-storage-light-duty-vehicles. [15] Zuttel A. Materials for hydrogen storage. Materials Today, 6, 24-33, 2003. [16] Reilly J. J. Wiswall R. H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorganic chemistry, 7, 2254-2256, 1968. [17] Chen P., Xiong Z., Luo J., Lin J. y Lee Tan K. Interation of hydrogen with metal nitrides and imides. Nature, 420, 302-304, 2002. [18] Chen P., Xiong Z., Luo J., Lin J. y Lee Tan K. Interaction between Lithium Amide and Lithium Hydride. J. Phys. Chem. B, 107,10967-10970, 2003. [19] Pinkerton F. E., Meisner G. P., Meyer M. S., Balogh M. P., Kundrat M. D. J. Hydrogen Desorption Exceeding Ten Weight Percent from the New Quaternary Hydride Li3BN2H8. Phys. Chem B, 109, 6-8, 2005. [20] Puszkiel J. Preparación, estudio y optimización de hidruros complejos para almacenamiento de hidrógeno. Tesis Carrera de Doctorado en Ciencias de la Ingeniería. Instituto Balseiro, 2012. [21] Kissinger H. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem, 29, 1702-1706, 1957. [22] Rietveld H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. , 2, 65-71, 1969. [23] Rodríguez-Carabajal J. Fullprof program. Phys. B, 192, 55-69, 1993. [24] Lutteroti L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Inst. Methods Physc. Res. B, 268, 334-340, 2010. [25] Fernandez Albanesi L. Hidruros complejos del sistema Li-N-H para almacenamiento y producción de hidrógeno: preparación, caracterización y factibilidad. Tesis Carrera de Doctorado en Ciencias de la Ingeniería. Instituto Balseiro, 2017. [26] Cova F., Arneodo Larrochette P., Gennari F. C. Numerical modeling of hydrogen absorption measurements in Ni-catalysed Mg. Int. J. Hydrogen Energy, 39, 5010- 5018, 2014. [27] Cova F., Arneodo Larrochette P., Gennari F. C. Hydrogen absorption in Nicatalyzed Mg: a model for measurements in the low temperature range. Int. J. Hydrogen Energy, 39, 11501-11508, 2014. [28] Titherley A. W. Sodium, potassium, and lithium amides. J. Chem. Soc., 65, 504, 1894. [29] Leng H., Ichikawa T., Isobe S., Hinoa S., Hanada N., Fujii H. Lithium nitride for reversible hydrogen storage. J. Alloys Comp., 404-406, 443-447, 2005. [30] Juza R., Opp K. Metallamide und Metallnitride. Anorg. Allg. Chem., 266, 325-330, 1951. [31] Jacobs H., Juza, R. Neubestimmung der Kristallstruktur des Lithiumamids. Anorg. Allg. Chem, 391, 271-279, 1972. [32] Sorby M. H., Nakamura Y., Brinks H. W., Ichikawa T., Hino S., Fujii H., Hauback B. C., J. The crystal structure of LiND2 and Mg(ND2)2. Alloys Comp. , 428, 297-301, 2007. [33] Ohoyama K., Nakamori Y., Orimo S., Yamada K. Revised Crystal Structure Model of Li2NH by Neutron Powder Diffraction. J. Phys. Soc. Jap. , 74, 483-487, 2005. [34] Noritake T., Nozaki H., Aoki M., Towata S., Kitahara G., Nakamori Y., Orimo S. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction. J. Alloys Comp., 393, 264-268, 2005. [35] Ballogh M. P., Jones C. Y., Herbst J. F., Hector L. G., Kundrat M. Crystal structures and phase transformation of deuterated lithium imide Li2ND. J. Alloys Comp., 420, 326-336, 2006. [36] Magyari-Köpe B., Ozoliņŝ V., Wolverton C. Theoretical prediction of low-energy crystal structures and hydrogen storage energetics in Li2NH. Phys. Rev B, 73, 220101-220101, 2006. [37] Herbst J. F., Hector L. G. Energetics of the Li amide/Li imide hydrogen storage reaction. Phys. Rev. B, 72, 125120-125128, 2005. [38] Mueller T., Ceder G. Effective interactions between the N−H bond orientations in lithium imide and a proposed ground-state structure. Phys. Rev. B, 74, 134104- 134107, 2006. [39] David W. I. F., Jones M. O., Gregory D. H., Jewell C. M., Johnson S. R., Walton A. A Mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J. Am. Chem. Soc., 129, 1594-1601, 2007. [40] Ichikawa T., Hanada N., Isobe S., Leng H., Fujii H. Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J. Phys. Chem. B, 108, 7887-7892, 2004. [41] Shaw L. L., Ren R., Markmaitree T., Osborn W. Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system. J. Alloys Compd., 448, 263-271, 2006. [42] Ichikawa T., Isobe S., Hanada N., Fujii H. Lithium nitride for reversible hydrogen storage. J. Alloys Compd., 365, 271-276, 2004. [43] Hu Y. H., Ruckenstein E. Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N. J. Phys. Chem. A, 107, 9737-9739, 2003. [44] Shaw L. L., Osborn W., Markmaitree T., Wan X. The reaction pathway and ratelimiting step of dehydrogenation of the LiNH2+LiH mixture. J. Power Sources, 177, 500-505, 2008. [45] Kojima Y., Kawai Y. IR characterizations of lithium imide and amide. J. Alloys Compd., 395, 236-239, 2005. [46] Isobe S., Ichikawa T., Tokoyoda K., Hanada N. Evaluation of enthaply change due to hydrogen desorption for lithium amide/imide system by differential scanning calorimetry. Thermochimica Acta, 468, 35-38, 2008. [47] Luo W. LiNH2-MgH2: A viable hydrogen storage system. J. Alloys Compd., 381, 284-287, 2004. [48] Ichikawa T., Hanada N., Isobe S., Leng H., Fujii H. Hydrogen storage properties in Ti catalyzed Li–N–H system. J. Alloys Compd., 404–406, 435–438, 2005. [49] Yao J. H., Shang C., Aguey-Zinsou K. F. Guo Z. X. Desorption characteristics of mechanically and chemically modified LiNH2 and (LiNH2 + LiH). J. Alloys Comp., 432, 277-282, 2007. [50] Isobe S., Ichikawa T., Hanada N., Leng H., Fichtner M., Fuhr O., Fujii H. Effect of Ti catalyst with different chemical form on Li–N–H hydrogen storage properties. J. Alloys Compd., 404–406, 439–442, 2005. [51] Luo W., Sickafoose S. Thermodynamic and structural characterization of the Mg- Li-N-H system. J. Alloys Compd., 407, 274-281, 2006. [52] Janot R., Eymery J., Tarascon J. Investigation of the processes for reversible hydrogen storage in the Li–Mg–N–H system. J. Power Sources, 164, 496-502, 2007. [53] Rijssenbeek J., Gao Y., Huang Q., Jones C., Toby B. Crystal structure determination and reaction pathway of amide–hydride mixtures. J. Alloys Compd., 454, 233-244, 2008. [54] Kojima Y., Matsumoto M., Kawai Y., Haga T., Ohba N. Hydrogen absorption and desorption by the Li-Al-N-H system, J. Phys. Chem. B , 110, 9632-9636, 2006. [55] Xiong Z., Wu G., Hu J., Liu Y., Chen P., Luo W.y Wang J. Reversible hydrogen storage by a Li-Al-N-H complex. Adv. Funct. Mater., 17, 1137-1142, 2007. [56] Albanesi L. F., Arneodo Lorochette P. , Gennari L. F. Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation. Int. J. Hydrogen Energy, 38, 12325-12334, 2013. [57] Hino S., Ichikawa T., Leng H., Fujii H. Hydrogen desorption properties of the Ca– N–H system. J. Alloys Compd. , 396, 62-66, 2005. [58] Tokoyoda K., Hino S., Ichikawa T., Okamotoa K., Fujii H. Hydrogen desorption/absorption properties of Li-Ca-N–H system. J. Alloys Compd., 439, 337- 341, 2007. [59] Wu H. Structure of Ternary Imide Li2Ca(NH)2 and Hydrogen Storage Mechanisms in Amide-Hydride System. J. Am. Chem. Soc., 130, 6515-6522, 2008. [60] Chu H., Xiong Z., Wu G., He T., Wu C., Chen P. Hydrogen storage properties of Li-Ca-N-H system with different molar ratios of LiNH2/CaH2. Int. J. Hydrogen Energy, 35, 8317-8321, 2010. [61] Xiong Z., Wu G., Hu J., Chen P. Ternary imides for hydrogen storage. Adv. Mater., 16, 1522-1525, 2004. [62] Alapati S. V., Jonson J. K., Sholl D. S. Using first principles calculations to identify new destabilized metal hidride reactions for reversible hydrogen storage. Phys. Chem. Chem. Phys., 9, 1438-1452, 2007. [63] Fernández Albanesi L., Garroni S., Arneodo Larochette P., Gennari F. C. Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation. Int. J. Hydrogen Energy, 38, 12325-12334, 2013. [64] Xiong Z., Wu G., Hu J., Chen P. Ca-Na-N-H system for reversible hydrogen storage. J. Alloys Compd., 441, 152-156, 2007. [65] Liang C., Gao M. X., Pan H. G., Lui Y. F. Structural transitions of ternary imide Li2Mg(NH2) for hydrogen storage. Appl. Phys. Let., 105, 083909, 2014. [66] Makepeace J. W., David W. I. F. Structural Insights into the Lithium Amide-Imide Solid Solution. J. Phys. Chem. C, 121, 12010-12017, 2017. [67] Xiong Z., Hu J., Wu G., Chen P., Luo W., Gross K., Wang J. Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system. J. Alloys Compd., 398, 235-239, 2005. [68] Nakamori Y., Kitahara G., Orimo S. Synthesis and dehydriding studies of Mg-N-H systems. J. Power Sources, 138, 309-312, 2004. [69] Luo W., Ronnebro E. Towards a viable hydrogen storage system for transport applications. J. Alloys Compd., 404-406, 392-395, 2005. [70] Luo W., Wang J., Stewart K., Clift M., Gross K. Li-Mg-N-H: Recent investigations and developments. J. Alloys Compd., 446, 336-341, 2007. [71] Hu J., Liu G., Wu G., Xiong Z., Chen P. Structural and Compositional Changes during Hydrogenation/Dehydrogenation of the Li−Mg−N−H Syste. J. Phys. Chem. C, 111, 18439-18443, 2007. [72] Liu Y., Zhong K., Luo K., Gao M., Pan H. G., Wang Q. Size-Dependent Kinetic Enhancement in Hydrogen Absorption and Desorption of the Li−Mg−N−H System. J. Am. Chem. Soc. , 131, 1862-1870, 2009. [73] Markmaitree T., Shaw L. L. Synthesis and hydriding properties of Li2Mg(NH)2. J. Power Sources, 195, 1984-1991, 2010. [74] Yang J., Sudik A., Siegel D. J., Halliday D., Drews A., Carter R. O., Wolverton C., Lewis G. J., Sachtler J. W., Low J. W. A Self‐Catalyzing Hydrogen‐Storage Material. Angew. Chem. Int. Ed. , 47, 882-887, 2008. [75] Hu J. J., Liu Y. F., Wu G. T., Xiong Z. T., Chua Y. S., Chen P. Improvement of Hydrogen Storage Properties of the Li–Mg–N–H System by Addition of LiBH4. Chem. Mater., 20, 4398-4402, 2008. [76] Zhang Y., Xiong Z., Cao H., Wu G., Chen P. The enhanced hydrogen storage performance of (Mg-B-N-H)-doped Mg(NH2)2-2LiH system. Int. J. Hydrogen Energy, 39, 1710-1718, 2014. [77] Pan H. G., Shi S. B., Liu Y. F., Li B., Yang Y. J., Gao M. X. Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2. Dalton Trans., 42, 3802-3811, 2013. [78] Li B., Liu Y. F., Gu J., Gao M. X., Pan H. G. Mechanistic investigations on significantly improved hydrogen storage performance of the Ca(BH4)2-added 2LiNH2/MgH2 system. Int. J. Hydrogen Energy, 38, 5030-5038, 2013. [79] Cao H. J., Wu G. T., Zhang Y., Xiong Z. T., Qiu J. S., Chen P. Effective thermodynamic alteration to Mg(NH2)2-LiH system: achieving near ambienttemperature hydrogen storage. J. Mater. Chem. A, 2, 15816-15822, 2014. [80] Anderson P. A., Chater P. A., Hewett D. R., Slater P. R. Hydrogen storage and ionic mobility in amide-halide systems. Faraday Discuss., 151, 271-284, 2011. [81] Li B., Liu Y., Li C., Gao X., Pan H. In situ formation of lithium fast-ion conductors and improved hydrogen desorption properties of the LiNH2–MgH2 system with the addition of lithium halides. J. Mat. Chem. A, 2, 3155-3162, 2014. [82] Gamba N. S., Arneodo Larochette P., Gennari F. C. Effect of LiCl presence on the hydrogen storage performance of the Mg(NH2)2–2LiH composite. RSC Adv., 5, 68542-68550, 2015. [83] Gamba N. S., Arneodo Larochette P., F. C. Gennari. Li4(NH2)3Cl amide-chloride: A new synthesis route, and hydrogen storage kinetic and thermodynamic properties RSC Adv., 6, 15622-15629, 2016. [84] Fernández Albanesi L., Garroni S., Arneodo Larochette P., Nolis P., Mulas G., Enzo S., Baró M. D., Gennari F. C. Role of aluminum chloride on the reversible hydrogen storage properties of the Li–N–H system. Int. J. Hydrogen Energy, 40, 13506-13517, 2015. [85] Fernández Albanesi L., Garroni S., Enzo S., Gennari F. C. New amide-chloride phases in the Li-Al-N-H-Cl system: Formation and hydrogen storage behaviour. Dalton Trans., 45, 5808-5814, 2016. [86] Liang C., Gao M. X., Pan H. G., Liu Y. F. Structural transitions of ternary imide Li2Mg(NH)2 for hydrogen storage. Appl. Phys. Let., 105, 083909, 2014. [87] Hu J., Eveline W., Hoelzel M., Fichtner M. Functions of LiBH4 in the hydrogen sorption reactions of the 2LiH–Mg(NH2)2 system. Dalton Trans., 39, 9100-9107, 2010. [88] Makepeace J. W., Jones M. O., Callear S. K., Edwards P. P. P., David W. D. I. F. In situ X-ray powder diffraction studies of hydrogen storage and release in the Li-N-H system. Phys. Chem. Chem. Phys , 16, 4061-4070, 2014. [89] Chen P., Xiong Z. T., Yang L. F., Wu G. T., Luo W. F. J. Mechanistic Investigations on the Heterogeneous Solid-State Reaction of Magnesium Amides and Lithium Hydrides. Phys. Chem. B, 110, 14221-14225, 2006. [90] Liang C., Gao M., Pan H., Liu Y., M. Yan. Effect of gas back pressure on hydrogen storage properties and crystal structures of Li2Mg(NH)2. Int. J. Hydrogen Energy, 39, 17754-17764, 2014. [91] Chou K. C., Xu K. D. A new model for hydriding and dehydriding reactions in intermetallics. Intermetallics, 15, 767-777, 2007. [92] Khawman A., Flanagan D. R. Role of isoconversional methods in varying activation energies of solid-state kinetics. Nonisothermal kinetic studies. Thermochima Acta, 436, 101-112, 2005. [93] Pinkerton F. E., Meisner G. P., Meyer M. S., Balogh M. P., Kundrat M. D. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. J. Phys. Chem. C, 109, 6-8, 2005. [94] Pinkerton F. E., Meyer M. S. Hydrogen Desorption Behavior of Nickel-Chloride- Catalyzed Stoichiometric Li4BN3H10. J. Phys. Chem. C, 113, 11172-11176, 2009. [95] Singer J. P., Meyer M. S., Speer R. M., Fischer J. E., Pinkerton F. E. Determination of the Phase Behavior of (LiNH2)c(LiBH4)1−c Quaternary Hydrides through in Situ X-ray Diffraction. J. Phys. Chem. C, 113, 18927-18934, 2009. [96] Meisner G., Scullin M. L., Balogh M. P., Pinkerton F. E., Meyer M. S. Hydrogen Release from Mixtures of Lithium Borohydride and Lithium Amide: A Phase Diagram Study. J. Phys. Chem. B, 110, 4186-4192, 2006. [97] Zheng X., Xiong Z., Lim Y., Wu G., Chen P., Chen H. Improving Effects of LiH and Co-Catalyst on the Dehydrogenation of Li4BN3H10. J. Phys. Chem C, 115, 8840- 8844, 2011. [98] Zhang Y., Liu Y., Zhang X., Li Y., Gao M., Pan H. Mechanistic understanding of CoO-catalyzed hydrogen desorption from a LiBH4·NH3–3LiH system. Dalton Trans., 44, 14514-14522, 2015. [99] Zhang Y., Liu Y., Liu T., Gao M., Pan H. Remarkable decrease in dehydrogenation temperature of Li–B–N–H hydrogen storage system with CoO additive. Int. J. Hydrogen Energy, 38, 13318-13327, 2013. [100] Y. Zhang, Y. Liu, Y. Pang, M. Gao y H. Pan. Role of Co3O4 in improving the hydrogen storage properties of a LiBH4-2LiNH2 composite. J. Mater. Chem. A, 2, 11155-11161, 2014. [101] Li H., Yan Y., Akiba E., Orimo S. Improved Dehydrogenation and Rehydrogenation Properties of LiBH4 by Nanosized Ni Addition. Mater. Trans., 55, 1134-1137, 2014. [102] Hattrick-Simpers J. R., Maslar J. E., Niemann M. U., Chiu C., Srinivasan S. S., Stefanakos E. K., Bendersky L. A. Raman spectroscopic observation of dehydrogenation in ball-milled LiNH2–LiBH4–MgH2 nanoparticles. Int. J. Hygrogen Energy, 35, 6323-6331, 2010. [103] Zhang J., Li P., Wan Q., Zhai F., Volinsky A. A., Qu X. Superior destabilization effects of LiBH4 with the addition of nano-sized nickel ferrite NiFe2O4. RSC Adv., 5, 81212-91219, 2015. [104] Liu B., Li Z. P., Suda S. Nickel and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. J. Alloys Compd., 415, 288-293, 2006. [105] He T., Xiong Z., Wu G., Chu H., Wu C., Zhang T., Chen P. Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen Storage. Chem. Mater., 21, 2315-2318, 2009. [106] Chater P. A. Mixed Anion Complex Hydrides for Hydrogen Storage. Tesis doctoral, University of Birmingham – School, 2009. [107] Wolczyk A., Pinatel A. E., Chierotti M. R., Nervi C., Gobetto R., Baricco M. Solid-state NMR and thermodynamic investigations on LiBH4-LiNH2 system. Int. J. Hydrogen Energy, 41, 14475-14483, 2016. [108] Worle M., Zu Altenschildesche H. M., Nesper R. Synthesis, properties and crystal structures of α-Ca3(BN2)2 and Ca9+x(BN2, CBN)6—two compounds with BN2 3− and CBN4 − anions. J. Alloys Compd., 264, 107-114, 1998. [109] Tang W. S., Wu G., Wee A. T. S., Yong C. K., Xiong Z., Hora A. T. S., Chen P. Cobalt-catalyzed hydrogen desorption from the LiNH2–LiBH4 system. Dalton Trans., 18, 2395-2399, 2008. [110] Sotfware HSC Termo. Diponible en: www.hsc-chemistry.com. [111] Liu K., Song C., Subramani V. Hydrogen and syngas production and purification technologies, New Yersey. John Wiley & Sons, 2010. [112] Ramos A. C. Producción sustentable de hidrógeno empleando metales nobles soportados sobre materiales nanoestructurados basados en CeO2. Tesis Carrera de Docotrado en Ciencias de la Ingeniería, Intituto Blaseiro, 2014. [113] Laborde M. A., Abello M. C., Aguirre P., Amadeo N., Bussi J., Corti H., González Suárez E., Gutierrez Ortiz M. A., Kafarov V., Rodrígues A. Producción y purificación de hidrógeno a partir de bioetanol y su aplicación en pilas de combustible. CYTED, 2006. [114] Bartels J. R., Pate M. B., Olson N. K. An economic survey of hydrogen production from conventional and altenative energy sources. Int. J. Hydrogen Energy, 35, 8371-8384, 2010. [115] Guerrero Lemus R., Martínez Duart J. M. Updated hydrogen production costs and parities for conventional and renewable technologies. Int. J. Hydrogen Energy, 35, 3929-3936, 2010. [116] Gorensek M. B., Forsberg C. W. Relative economic inventives for hydrogen from nuclear, renewable and fossil energy sources. Int. J. Hydrogen Energy, 34, 4237- 4242, 2009. [117] Mueller-Langer F., Tzimas E., Kaltschmitt M., Peteves S. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen Energy, 32, 3797-3810, 2007. [118] DOE hydrogen program: FY 2008 annual progress report. Mayo de 2018. Disponible en: www.hydrogen.energy.gov/pdfs/progress08/ii_0_hydrogen_production_overview.pdf. [119] Bockris J., Veziroglu T. N. Estimates of the price of hydrogen as a medium for wind and solar sources. Int. J. Hydrogen Energy, 32, 1605-1610, 2007. [120] Levene J., Kroposki B., Sverdrup G. Wind energy and production of hydrogen and electricity- Opportunities for Renewable Hydrogen. NREL/CP-560-39534, 2006. [Último acceso: 5/05/2018]. Disponible en: https://www.nrel.gov/docs/fy06osti/39534.pdf [121] Gray D. y Tomilson G. Hydrogen from coal. Mitretek Technical Paper: MTR 2002-31, 2002. [122] Kreutz T., Williams R., Consonni S., Chiesa P. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B: Economic analysis. Int. J. Hydrogen Energy, 30, 769-784, 2005. [123] Rutkowski M. DOE Program Production Case Study: Current (2005) hydrogen from coal without CO2 capture and sequestration. Disponible en: http://www.hydroen.energy.gov/h2a_prod_studies.html. [Último acceso: 30/05/2018]. [124] Rutkowski M. DOE Program Production Case Studies: Current (2005) hydrogen from coal with CO2 capture and sequestration. [Último acceso: 30/05/2018]. Disponible en: http://www.hydrogen.energy.gov/h2a_prod_studies.html. [125] Penner S. Steps toward the hydrogen economy. Energy, 31, 33-43, 2006. [126] Rutkowski M. DOE Program Production Case studies: Current (2005) hydrogen from natural gas without CO2 capture and sequestration. [Último acceso: 30/05/2018]. Disponible en: http://www.hydrogen.energy.gov/h2a_prod_studies.html. [127] Rutkowski M. «DOE program Production Study Cases: Current (2005) hydrogen from SMR natural gas with CO2 capture and sequestration. [Último acceso: 30/05/2018]. Disponible en: http://www.hydrogen.energy.gov/h2a_prod_studies.html. [128] Mann M. DOE Program Production Study Cases: Current (2005) hydrogen from biomas via gasification and catalytic steam reforming. [Último acceso: 30/05/2018]. Disponible en: http://www.hydrogen.energy.gov/h2a_prod_studies.html. [129] Padro C. y Putsche V.. Survey of the economics of hydrogen technologies. Techinal report: NREL/TP-570-27079, 1999. [130] Ewan B. , Allen R. A figure of merit assessment of the routes to hydrogen. Int. J. Hydrogen Energy, 30, 809-819, 2008. [131] Mueller-Langer F., Tzimas E., Kaltschmitta M., Peteves S. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen Energy, 32, 3797-3810, 2007. [132] Ball M., Wietschel M., Rentz O. Integration of a hydrogen economy into the German energy system: an optimising modelling approach. Int. J. Hydrogen Energy, 32, 1355-1368, 2007. [133] Gasafi E., Reinecke M. Y., Kruse A., Schebek L. Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass and bioenergy, 32, 1085-1096, 2008. [134] Hamelinck C. N., Faaij A. P. C. Future prospects for production of methanol and hydrogen from biomass. J. Power Sources, 111, 1-22, 2002. [135] Petri M., Bilge Y., Klickman A. US work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550°C. Int. J. Nucl. Hydrogen Prod. Appl., 1, 79-91, 2006. [136] Mason J. E. World energy analysis: H2 now or later? Energy Policy, 2, 1315- 1329, 2007. [137] Schultz K., World Nuclear Assosiation Annual Symposium, 1-11, 2003. [138] Richards M., Shenoy A., Schultz Z., Brown K. H2-MHR conceptual designs based on the sulphur–iodine process and high-temperature electrolysis. Int. J. Nucl. Hydrogen Prod. Appl., 1, 36-50, 2006. [139] Elder R., Allen R. Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. Progress in Nuclear Energy, 51, 500-525, 2009. [140] Glatzmaier G., Blake D., Showalter S. Assessment of methods for hydrogen production using concentrated solar energy. Technical report: NREL/TP-570-23629, 1998. [141] Mason J. E., Zweibel K. Baseline model of a centralized PV electrolytic hydrogen system. Int. J. Hydrogen Energy, 14, 2743-2763, 2007. [142] Kolb G. J., Diver R. B. y Siegel N. Central-station solar hydrogen power plant. J. Solar Energy, 129, 179-183, 2007. [143] Levene J. Current hydrogen generation from wind with electricity co-production. [Último acceso: 30/05/2018]. Disponible en: http://www.hydrogen.energy.gov/h2a_prod_studies.htlm. [144] Levene J. I. Current (2005) hydrogen generation with wind. [Último acceso: 30/05/2018]. Disponible en: http://www.hydrogen.energy.gov/h2a_prod_studies.htlm. [145] Greiner C. J., Korpas M., Holen A. A Norwegian case study on the production of hydrogen from wind power. Int. J. Hydrogen Energy, 32, 1500-1507, 2007. [146] DOE Hydrogen & Fuel Cells Program. [Último acceso: 1/07/2018]. Disponible en: https://www.hydrogen.energy.gov/annual_progress15.html. [147] Sigal A., Leiva E. P. M., Rodríguez C. R. Assessment of the potential for hydrogen production from renewable resources in Argentina. Int. J. Hydrogen Energy, 39, 8204-8214, 2014. [148] Suzhou Hengda [Último acceso: 10/03/2018]. Disponible en: http://www.hengdape.com/aboutus.html. [149] Biobase [Último acceso: 10/03/2018]. Disponible en: http://www.biobase.cc. [150] Chincan instruments. [Último acceso: 10/03/2018]. Disponible en: www.chincantrade.com [151] XI’AN HEB Biotechnology Co [Último acceso: 10/03/2018]. Disponible en: http://www.heblab.com [152] Teledyne Energy Systems. [Último acceso: 10/03/2018]. Disponible en: www.teledynees.com. [153] Nel Hydrogen Solutions. [Último acceso: 10/03/2018]. Disponible en: http://nelhydrogen.com. [154] Schmidt O., Gambhir A., Staffell I., Hawkes A., Nelsona J. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy, 42, 30470-30492, 2017. [155] Bhandari R., Trudewind C. A., Zapp P. Life Cycle Assessment of Hydrogen Production via Electrolysis – a review. Journal of Cleaner Production, 85, 151-163, 2014. [156] Saba S. M., Muller M., Robinius M., Stolen D. The investment costs of electrolysis. A comparison of cost studies from the past 30 years. Int. J. Hydrogen Energy, 43, 1209-1223, 2018. [157] University of California San Diego. Deep decarbonization initiative. School of Global Policy & Strategy [Último acceso: 10/03/2018]. Disponible en: http://deepdecarbon.ucsd.edu [158] Rubin E. S., Inês M. L., Azevedo P. A review of learning rates for electricity supply technologies. Energy Policy, 86, 198-218, 2015. [159] Buttler A., Spliethoffa H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, in press, 2018. [160] 2016 Wind technologies Market Report. [Último acceso: 16/04/2018]. Disponible en: https://www.energy.gov/sites/prod/files/2017/08/f35/2016_Wind_Technologies_Market _ReRepo_0.pdf. [161] NREL. 2015 Cost of Wind Energy Review [Último acceso: 16/04/2018]. Disponible en: «https://www.nrel.gov/docs/fy17osti/66861.pdf. [162] DOE. Office of energy & renewable energy [Último acceso: 16/04/2018]. Disponible en: https://www.energy.gov/eere/articles/new-lab-report-how-cut-costwind- energy-half. [163] IRENA. Wind energy data. [Último acceso: 18/04/2018]. Disponible en: http://www.irena.org/wind. [164] Agora Energiewende. Future Costs of Onshore Wind. [Último acceso: 18/04/2018]. Disponible en: https://www.agora-energiewende.de. [165] Chaise A., de Rango P., Marty P., Fruchart D. Experimental and numerical study of a magnesium hydride tank Int. J. Hydrogen Energy, 35, 6311-6322, 2010. [166] de Rango P., Marty P., Fruchart D. Hydrogen storage systems based on magnesium hydride : from laboratory tests to fuell cell integration. Appl. Phys. A, 122- 126, 1-20, 2016. [167] Kikkinides E. S., Georgiadis M. C., Athanassios K. S. On the optimization of hydrogen storage in metal hydride beds. Int. J. Hydrogen Energy, 31, 737-751, 2006. [168] Mellouli S., Askri F., Dhaou H., Jemni A., Nasrallah S. B. A novel design of a heat exchanger for a metal-hydrogen reactor. Int. J. Hydrogen Energy, 32, 3501-3507, 2007. [169] Devarakonda M., Brooks K., Ronnebro E., Rassat S. Systems modeling, simulation and material operating requirements for chemical hydride based hydrogen storage. Int. J. Hydrogen Energy, 37, 2779-2793, 2012. [170] Sekhar B. S., Lototskyy M., Kolesnikov A., Moropeng M. L., Tarasov B. P., Pollet B. G. Performance analysis of cylindrical metal hydride beds with various heat exchange options. J. Alloys Compd., 645, S89-S95, 2015. [171] Ley M. B., Meggouh M., Moury R., Peinecke K., Felderhoff M. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides. Materials, 8, 5891-5921, 2015. [172] Ranong C., Hohne M., Franzen J., Hapke J., Fieg G., Dornheim M., Eigen N., Bellosta von Colbe J. M., Metz O. Concept, design and manufacture of a prototype hydrogen storage tank based on sodium alanate. Chem. Eng. Technol., 32, 1154- 1163, 2009. [173] Ungethum J., Burguer I., Schmidt N., Linder M., Kallo J. Experimental investigation of a liquid cooled high temperature proton exchange membrane (HTPEM) fuel cell coupled to a sodium alante tank. Int. J. Hydrogen Energy, 39, 5931- 5941, 2014. [174] Urbanczyk R., Peil S., Bathen D., Hebke C., Burfeind J., Hauschild K. HT-PEM fuel cell system with integrated complet metal hydride tank for stacionary applications. Fuel cells, 11, 911-920, 2011. [175] Rizzi P., Pinatel E. R., Luetto C., Florian P., Graizzaro A., Gagliano S. Integration of a PEM fuel cell with a metal hydride tank for stationary applications. J. Alloy Comp., 645, 338-342, 2015. [176] Lototskyy M. V., Tolj I., Pickering L., Sita C., Barbir F. The use of metal hydrides in fuel cell applications. Progress in Natural Science: Materials International, 27, 3-20, 2017. [177] Jepsen J., Bellosta von Colbe J. M., Klassen T., Dornheim M. Economic potential of complex hydrides compared to conventional hydrogen storage systems. Int. J. Hydrogen Energy, 37, 4204-4214, 2011. [178] PNNL. Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence. Techinal report: PNNL-25234, 2016. [Último acceso: 18/06/2018]. Disponible en: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-25234.pdf [178] Comunicación privada con el Ing. Darío Mainini. Área de Procesos de Mecánica14. Junio de 2018. [180] James B. D., Houchins C., Huya-Kouadio J. M., DeSantis D. A. Final Report: Hydrogen Storage System Cost Analysis,» US DOE- Office of Science- Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE- 3F), 2016. [181] Ministerio de Energía y Minería - Dirección de Economía Minera – Presidencia de la Nación. Informe especial: Mercado de Litio - Situación actual y perspectivas. Marzo de 2017. [182] Dennis L., Browne A. W. Hydronitric acid and the inorganic trinitrides. J. Am. Chem. Soc., 26, 577-612, 1904. [183] Bergstrom F. W., Fernelius W. C. The Chemistry of the Alkali Amides. Chem. Rev., 12, 43-167, 1933. [184] Tokoyoda K., Ichikawa T., Miyaoka H. Evaluation of the enthalpy change due to hydrogen desorption for M-N-H (M = Li, Mg, Ca) systems by differential scanning calorimetry. Int. J. Hydrogen Energy, 40, 1516–1522, 2015. [185] Leng H. Y., Ichikawa T., Hino S., Hanada N., Isobe S., Fujii H. Synthesis and decomposition reactions of metal amides in metal-N-H hydrogen storage system. J. Power Sources, 156, 166-170, 2006. [186] Gennari F. C., Castro F. J., Urretavizcaya G., Meyer G. Catalytic effect of Ge on hydrogen desorption from MgH2. J. Alloys Comp., 334, 277-284, 2002. [187] Gennari F. C., Castro F. J., Urretavizcaya G. Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. J. Alloys Comp., 321, 46-53, 2001. [188] Costo de magnesio. [Último acceso: 15/05/2018]. Disponible en: https://www.alibaba.com/product-detail/Magnesium-ingot-purity-99-9- magnesium_60614981046.html. [189] Costo de magnesio. [Último acceso: 15/05/2018]. Disponible en: http://www.infomine.com/investment/metal-prices/magnesium. [190] Shangai Metal Markets. [Último acceso: 28/05/2018]. Disponible en: https://www.metal.com. [191] Shangai Metal Markets. [Último acceso: 28/05/2018]. Disponible en: http://original.metal.com/metals/productinfo/201102250219. [192] Noah Technologies. [Último acceso: 15/05/2018]. Disponible en: https://noahtech.com. [193] Sigma - Aldrich. [Último acceso: 15/05/2018]. Disponible en: https://www.sigmaaldrich.com/argentina.html. [194] Shangai Oujin Lithium Industrial Co. [Último acceso: 15/05/2018]. Disponible en: http://www.sh-oujin.com/en/about.asp. [195] Shandong Gelon Co. [Último acceso: 15/05/2018]. Disponible en: http://www.gelonlib.net. [196] Comunicación privada con el Ing. José Luis Zacur, Profesor de la Facultad de Ingeniería de la Universidad Nacional de Jujuy, quien actualmente dirige un proyecto de investigación orientado a la obtención, por procesos alternativos, de productos de litio a partir de salmueras contenidas en salares evaporíticos. Mayo de 2018. [197] DOE Annual Merit Review 2011: Cost Analyses of Hydrogen. [Último acceso: 16/05/2018]. Disponible en: https://www.hydrogen.energy.gov/pdfs/review11/st002_law_2011_o.pdf. [198] Honda Clariry Fuel Cell. [Último acceso: 15/05/2018]. Disponible en: https://es.automobiles.honda.com/clarity-fuel-cell#. [199] Hyundai Nexo. [Último acceso: 15/05/2018]. Disponible en: https://www.hyundai.news/eu/press-kits/all-new-hyundai-nexo-technicalspecifications/. [200] Toyota Mirai. [Último acceso: 15/05/2018]. Disponible en: https://www.toyota.es/world-of-toyota/medioambiente/mejor-aire/toyota-miraivehiculos- hidrogeno.json. [201] Brown T., Stephens-Romero S., Samuelsen G. S. Quantitative analysis of a successful public hydrogen station. Int. J. Hydrogen Energy, 37, 12731-12740, 2012. [202] Agostini A., Belmonte N., Masala A., Hu J., Rizzi P., Fichtner M., Moretto P., Luetto C., Sgori M., Baricco M. Role of hydrogen tanks in the life cycle assessment of fuel cell-based. Applied Energy, 215, 1-12, 2018.
Materias:Ingeniería > Almacenamiento de hidrógeno
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Fisicoquímica de materiales
Código ID:729
Depositado Por:Tamara Cárcamo
Depositado En:18 Dic 2018 14:01
Última Modificación:18 Dic 2018 14:01

Personal del repositorio solamente: página de control del documento