Estructura electrónica del grafeno con adsorbatos de flúor: efectos del orden de fluoración y dopaje electrónico. / Electronic structure of fluorinated graphene: effects of the order of fluorination and electronic doping.

Guzmán Arellano, Robert M. (2018) Estructura electrónica del grafeno con adsorbatos de flúor: efectos del orden de fluoración y dopaje electrónico. / Electronic structure of fluorinated graphene: effects of the order of fluorination and electronic doping. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
37Mb

Resumen en español

Se estudio la estructura electrónica del grafeno con adsorbatos de flúor en diferentes concentraciones, usando cálculos de primeros principios y analizando estos con modelos de campo medio o modelos sin interacciones. Este estudio se divide en dos partes. En la primera parte se estudió al canal de grafeno en medio de grafeno totalmente fluorado, con el fin de determinar las similitudes y las diferencias entre los canales de grafeno y las nano cintas de grafeno zigzag, dado que la estructura cristalina de estos es similar. Los resultados muestran que las propiedades del canal de grafeno dependen del grado de fluoración de sus bordes zigzag, siendo semiconductor y antiferromagnético cuando los bordes están fluorados al 100 %, y siendo semiconductor o metálico -según el ancho del canal- y ferromagnético cuando uno de sus bordes está fluorado al 50 %. Sus estados cercanos al nivel de Fermi concentran casi todo su peso en el canal de grafeno, penetrando de forma evanescente las regiones de grafeno totalmente fluorado. Esta estructura electrónica se ajustó con el modelo de Hubbard, mostrando que sus propiedades dependen de sus estados de borde, los cuales son similares a los estados de borde de las cintas de grafeno zigzag o Klein; aunque estos son menos localizados que los de las cintas de grafeno zigzag. En la segunda parte se estudió el enlace y la barrera de difusión del fluor sobre el grafeno, en concentraciones diluidas de fluor para diferentes dopajes electrónicos. El enlace del fluor es covalente en el caso neutro, y este se incrementa con la reducción del dopaje electrónico, lo que incrementa la barrera de difusión del fluor. Por otra parte, en altos dopajes electrónicos, el exceso de carga electrónica se concentra sobre el fluor reduciendo su enlace con el grafeno, llegando este a ser del tipo carga-imagen lo que disminuye su barrera de difusión. Por otra parte, los estados con peso en el fluor se acercan más al nivel de Fermi cuando mayor es el dopaje electrónico, y esto incrementa el acoplamiento espín órbita (SOC) del sistema mucho más que las deformaciones estructurales del grafeno, dado que el SOC del fluor induce un SOC efectivo entre los portadores del grafeno. Los resultados indican que la difusión del fluor puede incrementarse en temperaturas y dopajes electrónicos alcanzables experimentalmente, y que la relajación de espín puede controlarse con el dopaje electrónico, en altas o bajas concentraciones de fluor sobre el grafeno.

Resumen en inglés

We studied the electronic structure of graphene with fluorine adatoms. We used first principles calculations and their results were analyzed with mean-eld models (Hartree- Fock) or models that ignores interactions (tight-binding). The study has been divided into two parts. In the rst part we studied a graphene channel patterned on fully fluorinated graphene, in order to determine the similarities and differences between them and graphene nanoribbons, where both have similar crystalline structure. The results show that the graphene channel properties depend on the degree of fluorination at the channel edges, being semiconductor and antiferromagnetic when the edges are fluorinated at 100 %, and being semiconductor or metallic -according to the width of the channel- and ferromagnetic when one of its edges is uorinated at 50 %. The states near the Fermi Level have almost all their weight on the graphene channel and these penetrate evanescently on the fully fluorinated graphene regions. This electronic structure was adjusted with the Hubbard model, showing that its properties depend on its edge states, which are similar to the edge states of zigzag or Klein graphene nanoribbons; although these are less localized than those of graphene zigzag nanoribbons. In the second part, we studied the bond and the diffusion barrier of fluorine adatom on graphene, on diluted concentrations and for different electronic dopings. The graphene- fluorine bond is covalent when the system is neutral, and this bond increases (reduces) with the reduction (increase) of the electronic doping, which increases (reduces) the diffusion barrier of fluorine adatom. Specially, for high electronic doping, charge is concentrated dominantly on the fluorine adatom and the graphene- fluorine bond is of a charge-image type. On other hand, the states with weight at the fluorine adatom are closer to the Fermi level when the electronic doping increases, and this increases the spin-orbit coupling (SOC) of the system much more than the structural deformations of graphene because the SOC of fluorine adatoms induces an effective SOC to the graphene carriers. The results suggest that the diffusion of fluorine adatoms can be increased at available experimental electronic doping at room temperature. In adition, the results suggest that the spin relaxation can be controlled with electronic doping, at high or low concentrations of fluorine adatoms on graphene.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Diffusion; Difusión; Graphene; Grafeno; [Fluorinated graphene; Grafeno fluorado; Density functional theory; Teoría de la funcional densidad; Wannier functions; Ajuste de wannier; Adsorbates; Adsorbatos; Spin-orbit coupling; Acoplamiento espín-órbita]
Referencias:[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," vol. 81, no. 1, p. 109, 2009. and refs. therein. [2] R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of Carbon Nanotubes. 1998. [3] G. Grosso and G. Parravicini, Solid State Physics. Elsevier Science, 2000. [4] N. D. Mermin, "Crystalline order in two dimensions," Phys. Rev., vol. 176, pp. 250-254, Dec 1968. [5] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, "Direct evidence for atomic defects in graphene layers," Nature, vol. 430, pp. 870-873, 2004. [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004. [7] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10451-10453, 2005. [8] M. Katsnelson, Graphene: Carbon in Two Dimensions. Cambridge University Press, 2012. [9] L. Torres, S. Roche, and J. Charlier, Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Introduction to Graphene-based Nanomaterials: From Electronic Structure to Quantum Transport, Cambridge University Press, 2014. [10] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, no. 5887, pp. 385-388, 2008. [11] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, \Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, no. 3, pp. 902-907, 2008. PMID: 18284217. [12] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, \Measurement of the optical conductivity of graphene," Phys. Rev. Lett., vol. 101, p. 196405, Nov 2008. [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, 2Two-dimensional gas of massless dirac fermions in graphene," Nature, vol. 438, pp. 197-200, 2005. [14] M. I. Katsnelson, "Graphene: carbon in two dimensions," Materials Today, vol. 10, no. 1-2, pp. 20-27, 2007. [15] Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard, "Denitive band gaps for singlewall carbon nanotubes," The Journal of Physical Chemistry Letters, vol. 1, no. 19, pp. 2946-2950, 2010. [16] C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, "Spatially resolving edge states of chiral graphene nanoribbons," Nat Phys, vol. 7, no. 8, pp. 616-620, 2010. Nature Publishing Group. [17] G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, "Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons," Nature, vol. 514, pp. 608-611, Oct 2014. Letter. [18] M. Golor, T. C. Lang, and S. Wessel, "Quantum monte carlo studies of edge magnetism in chiral graphene nanoribbons," Phys. Rev. B, vol. 87, p. 155441, Apr 2013. [19] Y. Y. Li, M. X. Chen, M. Weinert, and L. Li, "Direct experimental determination of onset of electron{electron interactions in gap opening of zigzag graphene nanoribbons," Nature Communications, vol. 5, no. 4311, pp. 1-8, 2014. Nature Publishing Group. [20] R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, and M. S. Arnold, " Direct oriented growth of armchair graphene nanoribbons on germanium," Nature Communications, vol. 6, pp. 8006 EP -, Aug 2015. Article. [21] A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju, P. M. Joensuu, J. Sainio, and P. Liljeroth, "Ultra-narrow metallic armchair graphene nanoribbons," Nature Communications, vol. 6, pp. 10177 EP -, Dec 2015. Article. [22] J. Jung and A. H. MacDonald, "Carrier density and magnetism in graphene zigzag nanoribbons," Phys. Rev. B, vol. 79, p. 235433, Jun 2009. [23] J. Jung and A. H. MacDonald, "Magnetoelectric coupling in zigzag graphene nanoribbons," Phys. Rev. B, vol. 81, p. 195408, May 2010. [24] M. Ziatdinov, S. Fujii, K. Kusakabe, M. Kiguchi, T. Mori, and T. Enoki, \Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination," Phys. Rev. B, vol. 87, p. 115427, Mar 2013. [25] J. L. Lado and J. Fernandez-Rossier, \Magnetic edge anisotropy in graphenelike honeycomb crystals," Phys. Rev. Lett., vol. 113, p. 027203, Jul 2014. [26] X. Zhang, O. V. Yazyev, J. Feng, L. Xie, C. Tao, Y.-C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie [27] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, "Graphene spintronics," Nat Nano, vol. 9, pp. 794-807, Oct 2014. Review. [28] S. Roche and S. O. Valenzuela, "Graphene spintronics: puzzling controversies and challenges for spin manipulation," Journal of Physics D: Applied Physics, vol. 47, no. 9, p. 094011, 2014. [29] M. Drogeler, F. Volmer, M. Wolter, B. Terres, K. Watanabe, T. Taniguchi, G. Guntherodt, C. Stampfer, and B. Beschoten, \Nanosecond spin lifetimes in single- and few-layer graphene -hbn heterostructures at room temperature," Nano Letters, vol. 14, no. 11, pp. 6050-6055, 2014. PMID: 25291305. [30] W.-K. Lee, M. Haydell, J. T. Robinson, A. R. Laracuente, E. Cimpoiasu, W. P. King, and P. E. Sheehan, "Nanoscale reduction of graphene uoride via thermochemical nanolithography," ACS Nano, vol. 7, no. 7, pp. 6219-6224, 2013. [31] F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, "Nanopatterning of fluorinated graphene by electron beam irradiation," Nano Letters, vol. 11, no. 9, pp. 3912-3916, 2011. PMID: 21851114. [32] Q. Li, X.-Z. Liu, S.-P. Kim, V. B. Shenoy, P. E. Sheehan, J. T. Robinson, and R. W. Carpick, "Fluorination of graphene enhances friction due to increased corrugation," Nano Letters, vol. 14, no. 9, pp. 5212-5217, 2014. PMID: 25072968. 33] M. J. Schmidt and D. Loss, "Tunable edge magnetism at graphene/graphane interfaces," Phys. Rev. B, vol. 82, p. 085422, Aug 2010. [34] M. J. Schmidt and D. Loss, "Edge states and enhanced spin-orbit interaction at graphene/graphane interfaces," Phys. Rev. B, vol. 81, p. 165439, Apr 2010. [35] J. O. Sofo, A. M. Suarez, G. Usaj, P. S. Cornaglia, A. D. Hernandez-Nieves, and C. A. Balseiro, "Electrical control of the chemical bonding of uorine on graphene," Phys. Rev. B, vol. 83, p. 081411, Feb 2011. [36] R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H.-M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K. Geim, "Fluorographene: A two-dimensional counterpart of te on," Small, vol. 6, no. 24, pp. 2877-2884, 2010. [37] P. Nemes-Incze, L. Tapaszto, G. Z. Magda, Z. Osvath, G. Dobrik, X. Jin, C. Hwang, and L. Biro, "Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates," Applied Surface Science, vol. 291, pp. 48-52, 2014. E-MRS 2013 Spring Meeting , Symposium I: The route to post-Si fCMOSg devices: from high mobility channels to graphene-like 2D nanosheets. [38] S. Irmer, T. Frank, S. Putz, M. Gmitra, D. Kochan, and J. Fabian, "Spin-orbit coupling in uorinated graphene," Phys. Rev. B, vol. 91, p. 115141, Mar 2015. [39] S. Omar, M. Gurram, I. J. Vera-Marun, X. Zhang, E. H. Huisman, A. Kaverzin, B. L. Feringa, and B. J. van Wees, "Spin relaxation in graphene with selfassembled cobalt porphyrin molecules," Phys. Rev. B, vol. 92, p. 115442, Sep 2015. [40] K. M. McCreary, A. G. Swartz, W. Han, J. Fabian, and R. K. Kawakami, \Magnetic moment formation in graphene detected by scattering of pure spin currents," Phys. Rev. Lett., vol. 109, p. 186604, Nov 2012. [41] W. Han, J.-R. Chen, D. Wang, K. M. McCreary, H. Wen, A. G. Swartz, J. Shi, and R. K. Kawakami [42] A. G. Swartz, J.-R. Chen, K. M. McCreary, P. M. Odenthal, W. Han, and R. K. Kawakami, \Eect of in situ deposition of mg adatoms on spin relaxation in graphene," Phys. Rev. B, vol. 87, p. 075455, Feb 2013. [43] M. Gmitra, D. Kochan, and J. Fabian, "Spin-orbit coupling in hydrogenated graphene," Phys. Rev. Lett., vol. 110, p. 246602, Jun 2013. 44] A. H. Castro Neto and F. Guinea, "Impurity-induced spin-orbit coupling in graphene," Phys. Rev. Lett., vol. 103, p. 026804, Jul 2009. [45] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, \Bandstructure topologies of graphene: Spin-orbit coupling effects from rst principles," Phys. Rev. B, vol. 80, p. 235431, Dec 2009. [46] S. Roche, J. Akerman, B. Beschoten, J.-C. Charlier, M. Chshiev, S. P. Dash, B. Dlubak, J. Fabian, A. Fert, M. Guimaraes, F. Guinea, I. Grigorieva, C. Schonenberger, P. Seneor, C. Stampfer, S. O. Valenzuela, X. Waintal, and B. van Wees, "Graphene spintronics: the european agship perspective," 2D Materials, vol. 2, no. 3, p. 030202, 2015. [47] A. Cresti, B. K. Nikolic, J. H. Garcìa, and S. Roche, "Charge, Spin and Valley Hall Effects in Disordered Graphene," ArXiv e-prints, Oct. 2016. [48] R. M. Guzman-Arellano, A. D. Hernandez-Nieves, C. A. Balseiro, and G. Usaj, "Diffusion of uorine adatoms on doped graphene," Applied Physics Letters, vol. 105, no. 12, pp.-, 2014. [49] P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, "Grains and grain boundaries in single-layer graphene atomic patchwork quilts," Nature, vol. 469, pp. 389-392, Jan 2011. [50] J. Jung and A. H. MacDonald, "Tight-binding model for graphene -bands from maximally localized wannier functions," Phys. Rev. B, vol. 87, p. 195450, May 2013. [51] T. Ando, "Theory of electronic states and transport in carbon nanotubes," Journal of the Physical Society of Japan, vol. 74, no. 3, pp. 777-817, 2005. [52] T. Ando, "Screening effect and impurity scattering in monolayer graphene," Journal of the Physical Society of Japan, vol. 75, no. 7, p. 074716, 2006. [53] P. Marconcini and M. Macucci, "The k.p method and its application to graphene, carbon nanotubes and graphene nanoribbons: the Dirac equation," ArXiv e-prints, May 2011. [54] V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S. Dresselhaus, "Physical properties of low-dimensional sp2-based carbon nanostructures," Rev. Mod. Phys., vol. 88, p. 025005, May 2016. [55] L. Brey and H. A. Fertig, "Electronic states of graphene nanoribbons studied with the dirac equation," Phys. Rev. B, vol. 73, p. 235411, Jun 2006. [56] M. Kohmoto and Y. Hasegawa, "Zero modes and edge states of the honeycomb lattice," Phys. Rev. B, vol. 76, p. 205402, Nov 2007. [57] K. Sasaki, S. Murakami, and R. Saito, "Stabilization mechanism of edge states in graphene," Applied Physics Letters, vol. 88, no. 11, pp.-, 2006. [58] M. Golor, S. Wessel, and M. J. Schmidt, "Quantum nature of edge magnetism in graphene," Phys. Rev. Lett., vol. 112, p. 046601, Jan 2014. [59] H. M. Pastawski and E. Medina, "Tight binding methods in quantum transport through molecules and small devices: From the coherent to the decoherent description," eprint arXiv:cond-mat/0103219, Mar. 2001. [60] D. A. Ryndyk, R. Gutieerrez, B. Song, and G. Cuniberti, Green Function Techniques in the Treatment of Quantum Transport at the Molecular Scale, pp. 213-335. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. [61] R. M. Guzman Arellano, "Transporte de carga y espin en grafeno.," Master's thesis, Universidad Nacional de Cuyo, Instituto Balseiro., Marzo 2010. [62] G. Lee and K. Cho, "Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation," Phys. Rev. B, vol. 79, p. 165440, Apr 2009. [63] H. Ibach and H. Luth, Solid-State Physics: An Introduction to Principles of Materials Science. Springer Berlin Heidelberg, 2013. [64] Y.-W. Son, M. L. Cohen, and S. G. Louie, "Half-metallic graphene nanoribbons," Nature, vol. 444, pp. 347-349, Nov 2006. [65] K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, "Phase control of graphene nanoribbon by carrier doping: Appearance of noncollinear magnetism," Nano Letters, vol. 9, no. 1, pp. 269-272, 2009. PMID: 19099501. [66] S. M.-M. Dubois, Z. Zanolli, X. Declerck, and J.-C. Charlier, "Electronic properties and quantum transport in graphene-based nanostructures," The European Physical Journal B, vol. 72, no. 1, pp. 1-24, 2009. [67] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, "Quasiparticle energies and band gaps in graphene nanoribbons," Phys. Rev. Lett., vol. 99, p. 186801, Nov 2007. [68] H. Feldner, Z. Y. Meng, A. Honecker, D. Cabra, S. Wessel, and F. F. Assaad, \Magnetism of nite graphene samples: Mean-eld theory compared with exact diagonalization and quantum monte carlo simulations," Phys. Rev. B, vol. 81, p. 115416, Mar 2010. [69] D. A. Areshkin and B. K. Nikolic, "I-v curve signatures of nonequilibriumdriven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices," Phys. Rev. B, vol. 79, p. 205430, May 2009. [70] G. Usaj, "Edge states interferometry and spin rotations in zigzag graphene nanoribbons," Phys. Rev. B, vol. 80, p. 081414, Aug 2009. [71] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, "Tight-binding description of graphene," Phys. Rev. B, vol. 66, p. 035412, Jul 2002. [72] N. M. R. Peres, M. A. N. Araujo, and D. Bozi, "Phase diagram and magnetic collective excitations of the hubbard model for graphene sheets and layers," Phys. Rev. B, vol. 70, p. 195122, Nov 2004. [73] E. H. Lieb, "Two theorems on the hubbard model," Phys. Rev. Lett., vol. 62, pp. 1201-1204, Mar 1989. [74] O. V. Yazyev and L. Helm, "Defect-induced magnetism in graphene," Phys. Rev. B, vol. 75, p. 125408, Mar. 2007. [75] O. V. Yazyev, \Magnetism in disordered graphene and irradiated graphite," Phys. Rev. Lett., vol. 101, p. 037203, Jul 2008. [76] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, "Electronic structure and magnetic properties of graphitic ribbons," Phys. Rev. B, vol. 75, p. 064418, Feb 2007. [77] J. Fernandez-Rossier, "Prediction of hidden multiferroic order in graphene zigzag ribbons," Phys. Rev. B, vol. 77, p. 075430, Feb 2008. [78] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, "Observation of electron-hole puddles in graphene using a scanning single-electron transistor," Nature Physics, vol. 4, pp. 144-148, Feb. 2008. [79] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, "Origin of spatial charge inhomogeneity in graphene," Nat Phys, vol. 5, pp. 722-726, Oct 2009. [80] D. S. Fisher and P. A. Lee, "Relation between conductivity and transmission matrix," Phys. Rev. B, vol. 23, pp. 6851-6854, Jun 1981. [81] Z. Li, H. Qian, J. Wu, B.-L. Gu, and W. Duan, "Role of symmetry in the transport properties of graphene nanoribbons under bias," Phys. Rev. Lett., vol. 100, p. 206802, May 2008. [82] U. Fano, "Effects of conguration interaction on intensities and phase shifts," Phys. Rev., vol. 124, pp. 1866-1878, Dec 1961. [83] B. Smirnov, Physics of Atoms and Ions. Graduate Texts in Contemporary Physics, Springer New York, 2006. [84] J. Connerade, Highly Excited Atoms. CAMBRIDGE MONOGRAPHS ON PHYSICS, Cambridge University Press, 1998. [85] U. Fano, "Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco," Il Nuovo Cimento (1924-1942), vol. 12, no. 3, pp. 154-161, 1935. [86] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., vol. 82, pp. 2257-2298, Aug 2010. [87] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, Taleb-IbrahimiAmina, A.- P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, "Exceptional ballistic transport in epitaxial graphene nanoribbons," Nature, vol. 506, pp. 349-354, Feb 2014. Letter. [88] J. Baringhaus, M. Settnes, J. Aprojanz, S. R. Power, A.-P. Jauho, and C. Tegenkamp, "Electron interference in ballistic graphene nanoconstrictions," Phys. Rev. Lett., vol. 116, p. 186602, May 2016. [89] R. Guzman Arellano and G. Usaj, "Transmission through gate-induced magnetic islands on graphene nanoribbons," Journal of Low Temperature Physics, vol. 179, no. 1-2, pp. 69-74, 2015. [90] J. Kohano, Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods. Cambridge University Press, 2006. [91] R. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 2004. [92] M. Born and R. Oppenheimer, "Zur quantentheorie der molekeln," Annalen der Physik, vol. 389, no. 20, pp. 457-484, 1927. [93] G. Mahan, Many-Particle Physics. Physics of Solids and Liquids, Springer, 2000. [94] D. Pines, Elementary Excitations in Solids: Lectures on Protons, Electrons, and Plasmons. Advanced book classics, Advanced Book Program, Perseus Books, 1999. [95] P. Ehrenfest, "Bemerkung uber die angenaherte gultigkeit der klassischen mechanik innerhalb der quantenmechanik," Zeitschrift fur Physik, vol. 45, no. 7, pp. 455-457, 1927. [96] R. P. Feynman, "Forces in molecules," Phys. Rev., vol. 56, pp. 340-343, Aug 1939. [97] D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods," Proceedings of the Cambridge Philosophical Society, vol. 24, p. 89, 1928. [98] D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion," Proceedings of the Cambridge Philosophical Society, vol. 24, p. 111, 1928. [99] V. Fock, "Naherungsmethode zur losung des quantenmechanischen mehrkorperproblems," Zeitschrift fur Physik, vol. 61, no. 1-2, pp. 126-148, 1930. [100] L. Ballentine, Quantum Mechanics: A Modern Development. World Scientic, 1998. [101] R. Grimes, C. Catlow, and A. Shluger, Quantum Mechanical Cluster Calculations in Solid State Studies. Reviews of solid state science, World Scientic, 1992. [102] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Phys. Rev., vol. 136, pp. B864-B871, Nov 1964. [103] N. D. Mermin, "Thermal properties of the inhomogeneous electron gas," Phys. Rev., vol. 137, pp. A1441-A1443, Mar 1965. [104] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Phys. Rev., vol. 140, pp. A1133-A1138, Nov 1965. [105] L. H. Thomas, "The calculation of atomic elds," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, pp. 542-548, 1 1927. [106] E. Fermi, "Un metodo statistico per la determinazione di alcune prioprieta dell atomo," Rend. Accad. Naz. Lincei, vol. 06, pp. 602-607, 1927. [107] P. A. M. Dirac, "Note on exchange phenomena in the thomas atom," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 26, pp. 376-385, 7 1930. [108] E. Wigner, "Effects of the electron interaction on the energy levels of electrons in metals," in Part I: Physical Chemistry. Part II: Solid State Physics (A. Wightman, ed.), vol. A "4 of The Collected Works of Eugene Paul Wigner, pp. 431-438, Springer Berlin Heidelberg, 1997. [109] R. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry, Oxford University Press, 1994. [110] E. Engel and R. Dreizler, Density Functional Theory: An Advanced Course. Theoretical and Mathematical Physics, Springer Berlin Heidelberg, 2011. [111] A. Gorling, "Density-functional theory for excited states," Phys. Rev. A, vol. 54, pp. 3912-3915, Nov 1996. [112] J. P. Perdew and K. Schmidt, "Jacob's ladder of density functional approximations for the exchange-correlation energy," AIP Conference Proceedings, vol. 577, no. 1, 2001. [113] U. von Barth and L. Hedin, \A local exchange-correlation potential for the spin polarized case. i," Journal of Physics C: Solid State Physics, vol. 5, no. 13, p. 1629, 1972. [114] O. Gunnarsson and B. I. Lundqvist, "Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism," Phys. Rev. B, vol. 13, pp. 4274-4298, May 1976. [115] D. M. Ceperley and B. J. Alder, "Ground state of the electron gas by a stochastic method," Phys. Rev. Lett., vol. 45, pp. 566-569, Aug 1980. [116] S. H. Vosko, L. Wilk, and M. Nusair, "Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis," Canadian Journal of Physics, vol. 58, no. 8, pp. 1200-1211, 1980. [117] J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems," Phys. Rev. B, vol. 23, pp. 5048- 5079, May 1981. [118] J. P. Perdew and Y. Wang, \Accurate and simple analytic representation of the electron-gas correlation energy," Phys. Rev. B, vol. 45, pp. 13244{13249, Jun 1992. [119] K. Capelle, "A bird's-eye view of density-functional theory," eprint arXiv:condmat/ 0211443, Nov. 2002. [120] J. P. Perdew and W. Yue, \Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation," Phys. Rev. B, vol. 33, pp. 8800-8802, Jun 1986. [121] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Phys. Rev. B, vol. 46, pp. 6671-6687, Sep 1992. [122] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Phys. Rev. A, vol. 38, pp. 3098-3100, Sep 1988. [123] C. Lee, W. Yang, and R. G. Parr, "Development of the colle-salvetti correlationenergy formula into a functional of the electron density," Phys. Rev. B, vol. 37, pp. 785-789, Jan 1988. [124] A. D. Becke, "A new inhomogeneity parameter in density-functional theory," The Journal of Chemical Physics, vol. 109, no. 6, 1998. [125] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett., vol. 77, pp. 3865-3868, Oct 1996. [126] E. H. Lieb and S. Oxford, "Improved lower bound on the indirect coulomb energy," International Journal of Quantum Chemistry, vol. 19, no. 3, pp. 427-439, 1981. [127] B. Hammer, L. B. Hansen, and J. K. Norskov, "Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals," Phys. Rev. B, vol. 59, pp. 7413-7421, Mar 1999. [128] C. Filippi, C. J. Umrigar, and M. Taut, "Comparison of exact and approximate density functionals for an exactly soluble model," The Journal of Chemical Physics, vol. 100, no. 2, 1994. [129] S. Kurth, J. P. Perdew, and P. Blaha, "Molecular and solid-state tests of density functional approximations: Lsd, ggas, and meta-ggas," International Journal of Quantum Chemistry, vol. 75, no. 4-5, pp. 889-909, 1999. [130] C. Adamo, M. Ernzerhof, and G. E. Scuseria, "The meta-gga functional: Thermochemistry with a kinetic energy density dependent exchange-correlation functional," The Journal of Chemical Physics, vol. 112, no. 6, 2000. [131] J. P. Perdew, S. Kurth, A. c. v. Zupan, and P. Blaha, "Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation," Phys. Rev. Lett., vol. 82, pp. 2544-2547, Mar 1999. [132] J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M. L. Klein, and J. P. Perdew, \Accurate rstprinciples structures and energies of diversely bonded systems from an ecient density functional," Nat Chem, vol. 8, pp. 831-836, Sep 2016. Article. [133] J. P. Perdew, A. Ruzsinszky, J. Sun, and K. Burke, "Gedanken densities and exact constraints in density functional theory," The Journal of Chemical Physics, vol. 140, no. 18, p. 18A533, 2014. [134] A. Svane and O. Gunnarsson, "Transition-metal oxides in the selfinteraction corrected density-functional formalism," Phys. Rev. Lett., vol. 65, pp. 1148-1151, Aug 1990. [135] Z. Szotek, W. M. Temmerman, and H. Winter, "Self-interaction corrected, local spin density description of the ! transition in ce," Phys. Rev. Lett., vol. 72, pp. 1244-1247, Feb 1994. [136] J. B. Krieger, Y. Li, and G. J. Iafrate, "Construction and application of an accurate local spin-polarized kohn-sham potential with integer discontinuity: Exchangeonly theory," Phys. Rev. A, vol. 45, pp. 101-126, Jan 1992. [137] J. P. Perdew and M. R. Norman, "Electron removal energies in kohn-sham density-functional theory," Phys. Rev. B, vol. 26, pp. 5445-5450, Nov 1982. [138] V. Sahni, J. Gruenebaum, and J. P. Perdew, "Study of the density-gradient expansion for the exchange energy," Phys. Rev. B, vol. 26, pp. 4371-4377, Oct 1982. [139] E. Engel and S. H. Vosko, \Accurate optimized-potential-model solutions for spherical spin-polarized atoms: Evidence for limitations of the exchange-only local spin-density and generalized-gradient approximations," Phys. Rev. A, vol. 47, pp. 2800-2811, Apr 1993. [140] J. P. Perdew, V. N. Staroverov, J. Tao, and G. E. Scuseria, "Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction," Phys. Rev. A, vol. 78, p. 052513, Nov 2008. [141] V. Anisimov, Strong Coulomb Correlations in Electronic Structure Calculations. Advances in Condensed Matter Science, Taylor & Francis, 2000. [142] L. A. Constantin, J. M. Pitarke, J. F. Dobson, A. Garcia-Lekue, and J. P. Perdew, "High-level correlated approach to the jellium surface energy, without uniformgas input," Phys. Rev. Lett., vol. 100, p. 036401, Jan 2008. [143] A. D. Becke, "Density functional thermochemistry. iii. the role of exact exchange," The Journal of Chemical Physics, vol. 98, no. 7, pp. 5648-5652, 1993. [144] M. Ernzerhof and G. E. Scuseria, "Assessment of the perdew-burke-ernzerhof exchange-correlation functional," The Journal of Chemical Physics, vol. 110, no. 11, 1999. [145] H. J. Monkhorst and J. D. Pack, "Special points for brillouin-zone integrations," Phys. Rev. B, vol. 13, pp. 5188-5192, Jun 1976. [146] C. L. Fu and K. M. Ho, "First-principles calculation of the equilibrium groundstate properties of transition metals: Applications to nb and mo," Phys. Rev. B, vol. 28, pp. 5480-5486, Nov 1983. [147] N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, "Thermal contraction and disordering of the al(110) surface," Phys. Rev. Lett., vol. 82, pp. 3296-3299, Apr 1999. [148] M. Methfessel and A. T. Paxton, "High-precision sampling for brillouin-zone integration in metals," Phys. Rev. B, vol. 40, pp. 3616-3621, Aug 1989. [149] R. M. Wentzcovitch, J. L. Martins, and P. B. Allen, "Energy versus free-energy conservation in rst-principles molecular dynamics," Phys. Rev. B, vol. 45, pp. 11372-11374, May 1992. [150] N. Marzari, Ab-initio Molecular Dynamics for Metallic Systems. PhD thesis, Pembroke College, University of Cambridge, Theory of Condensed Matter, Cavendish Laboratory., April 1996. [151] J. Bjorken and S. Drell, Relativistic quantum mechanics. International series in pure and applied physics, McGraw-Hill, 1964. [152] J. Slater, Quantum Theory of Atomic Structure. No. v. 1 in International series in pure and applied physics, McGraw-Hill, 1960. [153] J. Slater, Quantum theory of atomic structure. No. v. 2 in International series in pure and applied physics, McGraw-Hill, 1960. [154] S. Cohen, "Relativistic self-consistent solutions for atoms of large atomic number," Phys. Rev., vol. 118, pp. 489-494, Apr 1960. [155] D. Liberman, J. T. Waber, and D. T. Cromer, "Self-consistent-eld dirac-slater wave functions for atoms and ions. i. comparison with previous calculations," Phys. Rev., vol. 137, pp. A27-A34, Jan 1965. [156] S. Kotochigova, Z. H. Levine, E. L. Shirley, M. D. Stiles, and C. W. Clark, "Local-density-functional calculations of the energy of atoms," Phys. Rev. A, vol. 55, pp. 191-199, Jan 1997. [157] E. Engel, T. Auth, and R. M. Dreizler, "Relativistic spin-density-functional theory: Robust solution of single-particle equations for open-subshell atoms," Phys. Rev. B, vol. 64, p. 235126, Nov 2001. [158] W. C. Topp and J. J. Hopeld, "Chemically motivated pseudopotential for sodium," Phys. Rev. B, vol. 7, pp. 1295-1303, Feb 1973. [159] D. R. Hamann, M. Schluter, and C. Chiang, "Norm-conserving pseudopotentials," Phys. Rev. Lett., vol. 43, pp. 1494-1497, Nov 1979. [160] G. B. Bachelet, D. R. Hamann, and M. Schluter, "Pseudopotentials that work: From h to pu," Phys. Rev. B, vol. 26, pp. 4199-4228, Oct 1982. [161] G. B. Bachelet and M. Schluter, "Relativistic norm-conserving pseudopotentials," Phys. Rev. B, vol. 25, pp. 2103-2108, Feb 1982. [162] G. P. Kerker, "Non-singular atomic pseudopotentials for solid state applications," Journal of Physics C: Solid State Physics, vol. 13, no. 9, p. L189, 1980. [163] N. Troullier and J. L. Martins, "Efficient pseudopotentials for plane-wave calculations," Phys. Rev. B, vol. 43, pp. 1993-2006, Jan 1991. [164] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, "Optimized pseudopotentials," Phys. Rev. B, vol. 41, pp. 1227-1230, Jan 1990. [165] J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B, vol. 47, pp. 4174- 4180, Feb 1993. [166] P. E. Blochl, "Generalized separable potentials for electronic-structure calculations," Phys. Rev. B, vol. 41, pp. 5414-5416, Mar 1990. [167] D. R. Hamann, "Generalized norm-conserving pseudopotentials," Phys. Rev. B, vol. 40, pp. 2980-2987, Aug 1989. [168] D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B, vol. 41, pp. 7892-7895, Apr 1990. [169] P. E. Blöchl, "Projector augmented-wave method," Phys. Rev. B, vol. 50, pp. 17953-17979, Dec 1994. [170] G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method," Phys. Rev. B, vol. 59, pp. 1758-1775, Jan 1999. [171] N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R. Tackett, and Y. Zeng, "Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids," Phys. Rev. B, vol. 55, pp. 2005-2017, Jan 1997. [172] J. C. Slater, "Wave functions in a periodic potential," Phys. Rev., vol. 51, pp. 846- 851, May 1937. [173] J. C. Slater, "A simplication of the hartree-fock method," Phys. Rev., vol. 81, pp. 385-390, Feb 1951. [174] O. K. Andersen, "Linear methods in band theory," Phys. Rev. B, vol. 12, pp. 3060-3083, Oct 1975. [175] C. Herring and A. G. Hill, "The theoretical constitution of metallic beryllium," Phys. Rev., vol. 58, pp. 132-162, Jul 1940. [176] C. Herring, "A new method for calculating wave functions in crystals," Phys. Rev., vol. 57, pp. 1169-1177, Jun 1940. [177] P. E. Blochl, O. Jepsen, and O. K. Andersen, "Improved tetrahedron method for brillouin-zone integrations," Phys. Rev. B, vol. 49, pp. 16223-16233, Jun 1994. [178] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, "Quantum espresso: a modular and open-source software project for quantum simulations of materials," Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009. [179] J. C. Polanyi and W. H. Wong, "Location of energy barriers. i. effect on the dynamics of reactions A+BC," The Journal of Chemical Physics, vol. 51, no. 4, pp. 1439-1450, 1969. [180] H. Jonsson, G. Mills, and K. W. Jacobsen, "Nudged elastic band method for nding minimum energy paths of transitions," Classical and Quantum Dynamics in Condensed Phase Simulations, p. 385, 1998. [181] G. Henkelman and H. Jonsson, "Improved tangent estimate in the nudged elastic band method for nding minimum energy paths and saddle points," The Journal of Chemical Physics, vol. 113, no. 22, pp. 9978-9985, 2000. [182] G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A climbing image nudged elastic band method for nding saddle points and minimum energy paths," The Journal of Chemical Physics, vol. 113, no. 22, pp. 9901-9904, 2000. [183] Theory and simulations of materials. Ecole polytechnique federale de Lausanne, "Standard solid state pseudopotentials (sssp)." http://materialscloud.org/ sssp/. [184] F. Spiga, "User's guide for quantum espresso. 3 parallelism." http: //www.quantum-espresso.org/wp-content/uploads/Doc/user_guide/ node15.html. [185] G. Arfken, Mathematical methods for physicists. Academic Press, 1985. [186] N. Marzari, A. A. Mosto, J. R. Yates, I. Souza, and D. Vanderbilt, "Maximally localized wannier functions: Theory and applications," Rev. Mod. Phys., vol. 84, pp. 1419-1475, Oct 2012. [187] A. A. Mosto, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, "wannier90: A tool for obtaining maximally-localised wannier functions," Computer Physics Communications, vol. 178, no. 9, pp. 685-699, 2008. [188] N. Marzari and D. Vanderbilt, "Maximally localized generalized wannier functions for composite energy bands," Phys. Rev. B, vol. 56, pp. 12847-12865, Nov 1997. [189] I. Souza, N. Marzari, and D. Vanderbilt, "Maximally localized wannier functions for entangled energy bands," Phys. Rev. B, vol. 65, p. 035109, Dec 2001. [190] P. Koskinen, S. Malola, and H. Hakkinen, "Evidence for graphene edges beyond zigzag and armchair," Phys. Rev. B, vol. 80, p. 073401, Aug 2009. [191] T. Enoki, S. Fujii, and K. Takai, "Zigzag and armchair edges in graphene," Carbon, vol. 50, no. 9, pp. 3141-3145, 2012. Festschrift dedicated to Peter A. Thrower, Editor-in-Chief, 1972 - 2012. [192] P. Sessi, J. R. Guest, M. Bode, and N. P. Guisinger, "Patterning graphene at the nanometer scale via hydrogen desorption," Nano Letters, vol. 9, no. 12, pp. 4343- 4347, 2009. [193] A. Savchenko, "Transforming graphene," Science, vol. 323, no. 5914, pp. 589{590, 2009. [194] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, "Graphane: A two-dimensional hydrocarbon," Phys. Rev. B, vol. 75, p. 153401, Apr 2007. [195] J. Zhou, Q. Liang, and J. Dong, "Enhanced spin-orbit coupling in hydrogenated and fluorinated graphene," Carbon, vol. 48, no. 5, pp. 1405-1409, 2010. [196] J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, "Properties of uorinated graphene lms," Nano Letters, vol. 10, no. 8, pp. 3001-3005, 2010. PMID: 20698613. [197] L. A. Openov and A. I. Podlivaev, "Spontaneous regeneration of an atomically sharp graphene/graphane interface under thermal disordering," JETP Letters, vol. 90, no. 6, p. 459, 2009. [198] P. B. Sorokin and L. A. Chernozatonskii, "Graphene-based semiconductor nanostructures," Phys. Usp., vol. 56, no. 2, pp. 105-122, 2013. [199] Z. M. Ao, A. D. Hernandez-Nieves, F. M. Peeters, and S. Li, "Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons," Applied Physics Letters, vol. 97, no. 23, p. 233109, 2010. [200] S. Tang and S. Zhang, "Structural and electronic properties of hybrid uorographene- graphene nanoribbons: Insight from rst-principles calculations," The Journal of Physical Chemistry C, vol. 115, no. 33, pp. 16644-16651, 2011. [201] Y. H. Lu and Y. P. Feng, "Band-gap engineering with hybrid graphane-graphene nanoribbons," The Journal of Physical Chemistry C, vol. 113, no. 49, pp. 20841- 20844, 2009. [202] A. D. Hernandez-Nieves, B. Partoens, and F. M. Peeters, "Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation," Phys. Rev. B, vol. 82, p. 165412, Oct 2010. [203] K. He, A. W. Robertson, S. Lee, E. Yoon, G.-D. Lee, and J. H.Warner, "Extended klein edges in graphene," ACS Nano, vol. 8, no. 12, pp. 12272-12279, 2014. PMID: 25533172. [204] V. M. Pereira and A. H. C. Neto, "Tight-binding approach to uniaxial strain in graphene," Phys. Rev. B, vol. 80, p. 45401, December 2009. [205] R. M. Ribeiro, V. M. Pereira, N. M. R. Peres, P. R. Briddon, and A. H. C. Neto, "Strained graphene: tight-binding and density functional calculations," New Journal of Physics, vol. 11, no. 11, p. 115002, 2009. [206] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim Nature. [207] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," nature materials, vol. 6, pp. 652-655, 2007. [208] J. J. Palacios, J. Fernandez-Rossier, and L. Brey, "Vacancy-induced magnetism in graphene and graphene ribbons," Phys. Rev. B, vol. 77, p. 195428, May 2008. [209] B. R. K. Nanda, M. Sherafati, Z. S. Popovic, and S. Satpathy, "Electronic structure of the substitutional vacancy in graphene: density-functional and green's function studies," New Journal of Physics, vol. 14, no. 8, p. 083004, 2012. [210] P. Esquinazi, D. Spemann, R. Hohne, A. Setzer, K.-H. Han, and T. Butz, "Induced magnetic ordering by proton irradiation in graphite," Phys. Rev. Lett., vol. 91, p. 227201, Nov 2003. [211] J. Sofo, G. Usaj, P. S. Cornaglia, A. Suarez, A. D. Hernandez-Nieves, and C. A. Balseiro, "Magnetic structure of hydrogen-induced defects on graphene," Phys. Rev. B, vol. 85, p. 115405, Mar. 2012. [212] H. Gonzalez-Herrero, J. M. Gomez-Rodríguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado, M. M. Ugeda, J.-Y. Veuillen, F. Yndurain, and I. Brihuega, "Atomic-scale control of graphene magnetism by using hydrogen atoms," Science, vol. 352, no. 6284, pp. 437-441, 2016. [213] T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, "Impurities on graphene: Midgap states and migration barriers," Phys. Rev. B, vol. 80, p. 085428, Aug 2009. [214] O. Leenaerts, B. Partoens, and F. M. Peeters, \Adsorption of h2O, Nh3, co, No2, and no on graphene: A rst-principles study," Phys. Rev. B, vol. 77, p. 125416, Mar 2008. [215] L. Fritz and M. Vojta, "The physics of kondo impurities in graphene," Reports on Progress in Physics, vol. 76, no. 3, p. 032501, 2013. [216] L. S. Mattos, C. R. Moon, P. B. van Stockum, J. C. Randel, H. C. Manoharan, M. W. Sprinkle, C. Berger, W. A. de Heer, K. Sengupta, and A. V. Balatsky, "Kondo effect for massless dirac fermions in graphene," American Physical Society, 2009 APS March Meeting, vol. T25.009, 2009. [217] V. W. Brar, R. Decker, H.-M. Solowan, Y.Wang, L. Maserati, K. T. Chan, H. Lee, C . O. Girit, A. Zettl, S. G. Louie, M. L. Cohen, and M. F. Crommie, "Gatecontrolled ionization and screening of cobalt adatoms on a graphene surface," Nature Physics, vol. 7, pp. 43-47, Jan. 2011. [218] H. C. Manoharan, "opological Kondo Ground State in Graphene," APS March Meeting Abstracts, Mar. 2011. [219] M. Vojta and L. Fritz, "Upper critical dimension in a quantum impurity model: critical theory of the asymmetric pseudogap kondo problem," Phys. Rev. B, vol. 70, p. 094502, Sept. 2004. [220] T. O.Wehling, A. V. Balatsky, M. I. Katsnelson, A. I. Lichtenstein, and A. Rosch, \Orbitally controlled kondo effect of co adatoms on graphene," Phys. Rev. B, vol. 81, p. 115427, Mar 2010. [221] P. S. Cornaglia, G. Usaj, and C. A. Balseiro, "Localized spins on graphene," Phys. Rev. Lett., vol. 102, p. 046801, Jan 2009. [222] S. Ihnatsenka and G. Kirczenow, "Dirac point resonances due to atoms and molecules adsorbed on graphene and transport gaps and conductance quantization in graphene nanoribbons with covalently bonded adsorbates," Phys. Rev. B, vol. 83, p. 245442, Jun 2011. [223] A. M. Suarez, L. R. Radovic, E. Bar-Ziv, and J. O. Sofo, "Gate-voltage control of oxygen diffusion on graphene," Phys. Rev. Lett., vol. 106, p. 146802, Apr 2011. [224] A. N. Rudenko, F. J. Keil, M. I. Katsnelson, and A. I. Lichtenstein, "Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective," Phys. Rev. B, vol. 86, p. 075422, Aug 2012. [225] J. Neugebauer and M. Scheer, "Adsorbate-substrate and adsorbate-adsorbate interactions of na and k adlayers on al(111)," Phys. Rev. B, vol. 46, pp. 16067- 16080, Dec 1992. [226] L. Bengtsson, "Dipole correction for surface supercell calculations," Phys. Rev. B, vol. 59, pp. 12301-12304, May 1999. [227] A. Natan, M. C. Hersam, and T. Seideman, "Insights into graphene functionalization by single atom doping," Nanotechnology, vol. 24, no. 50, p. 505715, 2013. [228] G. H. Vineyard, "Frequency factors and isotope effects in solid state rate processes," Journal of Physics and Chemistry of Solids, vol. 3, no. 1, pp. 121-127, 1957. [229] I. Zutic, J. Fabian, and S. Das Sarma, "Spintronics: Fundamentals and applications," Rev. Mod. Phys., vol. 76, pp. 323-410, Apr 2004. [230] K. S. Novoselov, V. I. Fal[prime]ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, Oct 2012. [231] S. Fratini, D. Gosalbez-Martinez, P. Merodio Camara, and J. Fernandez-Rossier, "Anisotropic intrinsic spin relaxation in graphene due to exural distortions," Phys. Rev. B, vol. 88, p. 115426, Sep 2013. [232] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees Nature. [233] R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Springer Tracts in Modern Physics, Springer Berlin Heidelberg, 2003. [234] Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, "Spin-orbit gap of graphene: First-principles calculations," Phys. Rev. B, vol. 75, p. 041401, Jan 2007. [235] E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, "High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface," Proceedings of the National Academy of Sciences, vol. 104, no. 22, pp. 9209-9212, 2007. [236] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, vol. 446, pp. 60- 63, Mar 2007. [237] D. Huertas-Hernando, F. Guinea, and A. Brataas, "Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps," Phys. Rev. B, vol. 74, p. 155426, Oct 2006. [238] S. H. Jhang, M. Marganska, Y. Skourski, D. Preusche, B. Witkamp, M. Grifoni, H. van der Zant, J. Wosnitza, and C. Strunk, "Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic elds," Phys. Rev. B, vol. 82, p. 041404, Jul 2010. [239] F. Guinea, B. Horovitz, and P. Le Doussal, "Gauge eld induced by ripples in graphene," Phys. Rev. B, vol. 77, p. 205421, May 2008. [240] F. Guinea, M. I. Katsnelson, and M. A. H. Vozmediano, "Midgap states and charge inhomogeneities in corrugated graphene," Phys. Rev. B, vol. 77, p. 075422, Feb 2008. [241] H. Ochoa, A. H. Castro Neto, and F. Guinea, "Elliot-yafet mechanism in graphene," Phys. Rev. Lett., vol. 108, p. 206808, May 2012. [242] R. J. Elliott, \Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors," Phys. Rev., vol. 96, pp. 266-279, Oct 1954. [243] Y. Yafet, "g factors and spin-lattice relaxation of conduction electrons*," vol. 14 of Solid State Physics, pp. 1-98, Academic Press, 1963. [244] M. I. D'Yakonov and V. I. Perel', "Spin Orientation of Electrons Associated with the Interband Absorption of Light in Semiconductors," Soviet Journal of Experimental and Theoretical Physics, vol. 33, p. 1053, 1971. [245] C. Ertler, S. Konschuh, M. Gmitra, and J. Fabian, "Electron spin relaxation in graphene: The role of the substrate," Phys. Rev. B, vol. 80, p. 041405, Jul 2009. [246] P. Zhang and M. W.Wu, "Electron spin relaxation in graphene with random rashba eld: comparison of the d'yakonov{perel' and elliott{yafet-like mechanisms," New Journal of Physics, vol. 14, no. 3, p. 033015, 2012. [247] C. Jozsa, T. Maassen, M. Popinciuc, P. J. Zomer, A. Veligura, H. T. Jonkman, and B. J. van Wees, "Linear scaling between momentum and spin scattering in graphene," Phys. Rev. B, vol. 80, p. 241403, Dec 2009. [248] P. J. Zomer, M. H. D. Guimar~aes, N. Tombros, and B. J. van Wees, "Longdistance spin transport in high-mobility graphene on hexagonal boron nitride," Phys. Rev. B, vol. 86, p. 161416, Oct 2012. [249] T. Maassen, F. K. Dejene, M. H. D. Guimaraes, C. Jozsa, and B. J. van Wees, "Comparison between charge and spin transport in few-layer graphene," Phys. Rev. B, vol. 83, p. 115410, Mar 2011. [250] D. Marchenko, A. Varykhalov, M. Scholz, G. Bihlmayer, E. Rashba, A. Rybkin, A. Shikin, and O. Rader Nature. [251] K. Zollner, T. Frank, S. Irmer, M. Gmitra, D. Kochan, and J. Fabian, "Spin-orbit coupling in methyl functionalized graphene," Phys. Rev. B, vol. 93, p. 045423, Jan 2016. [252] X. Hong, K. Zou, B. Wang, S.-H. Cheng, and J. Zhu, \Evidence for spin- ipscattering and local moments in dilute uorinated graphene," Phys. Rev. Lett., vol. 108, p. 226602, Jun 2012. [253] R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva, \Spin-half paramagnetism in graphene induced by point defects," Nat Phys, vol. 8, pp. 199{202, Mar 2012. [254] J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A. H. Castro Neto, and B. Ozyilmaz, "Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene," Nat Phys, vol. 9, pp. 284-287, May 2013. Letter. [255] Zeljko Sljivan canin, R. Balog, and L. Hornekr, "Magnetism in graphene induced by hydrogen adsorbates," Chemical Physics Letters, vol. 541, pp. 70 - 74, 2012. [256] T. Eelbo, M. Wasniowska, P. Thakur, M. Gyam, B. Sachs, T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichtenstein, and R. Wiesendanger, "Adatoms and clusters of 3d transition metals on graphene: Electronic and magnetic congurations," Phys. Rev. Lett., vol. 110, p. 136804, Mar 2013. [257] P. Lambin, H. Amara, F. Ducastelle, and L. Henrard, "Long-range interactions between substitutional nitrogen dopants in graphene: Electronic properties calculations," Phys. Rev. B, vol. 86, p. 045448, Jul 2012. [258] H. E. Radford, V. W. Hughes, and V. Beltran-Lopez, \Microwave zeeman spectrum of atomic uorine," Phys. Rev., vol. 123, pp. 153-160, Jul 1961. [259] J. Serrano, M. Cardona, and T. Ruf, "Spin-orbit splitting in diamond: excitons and acceptor related states," Solid State Communications, vol. 113, no. 7, pp. 411 -414, 2000. [260] L. Petersen and P. Hedegard, \A simple tight-binding model of spin-orbit splitting of sp-derived surface states," Surface Science, vol. 459, no. 1-2, pp. 49-56, 2000. [261] C. R. Ast and I. Gierz, "sp-band tight-binding model for the bychkov-rashba effect in a two-dimensional electron system including nearest-neighbor contributions from an electric eld," Phys. Rev. B, vol. 86, p. 085105, Aug 2012. [262] N. Shen and J. O. Sofo, "Dispersion of edge states and quantum connement of electrons in graphene channels drawn on graphene fluoride," Phys. Rev. B, vol. 83, p. 245424, Jun 2011. [263] P. Koskinen, S. Malola, and H. Hakkinen, "Self-passivating edge reconstructions of graphene," Phys. Rev. Lett., vol. 101, p. 115502, Sep 2008. [264] R. M. Guzman-Arellano, A. D. Hernandez-Nieves, C. A. Balseiro, and G. Usaj, "Gate-induced enhancement of spin-orbit coupling in dilute uorinated graphene," Phys. Rev. B, vol. 91, p. 195408, May 2015. [265] B. Delley, "An all electron numerical method for solving the local density functional for polyatomic molecules," The Journal of Chemical Physics, vol. 92, no. 1, pp. 508-517, 1990.
Materias:Física > Materia condensada
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:739
Depositado Por:Tamara Cárcamo
Depositado En:17 Dic 2018 14:36
Última Modificación:17 Dic 2018 14:36

Personal del repositorio solamente: página de control del documento