Aspectos de información cuántica en teoría cuántica de campos. / Aspects of quantum information in quantum field theory.

Medina Ramos, Raimel A. (2018) Aspectos de información cuántica en teoría cuántica de campos. / Aspects of quantum information in quantum field theory. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
582Kb

Resumen en español

Las entropías relativas cuánticas de Renyi proporcionan una familia monoparamétrica de distancias entre matrices densidad, que generalizan la entropía relativa y la delidad. En esta Tesis, estudiamos estas medidas para flujos del grupo de renormalizacion en Teoría Cuántica de Campos. Derivamos expresiones explícitas en Teorías de Campos libres basándonos en el enfoque en tiempo real. Al utilizar las propiedades de monotonicidad, obtenemos nuevas desigualdades que deben satisfacerse por trayectorias consistentes del grupo de renormalización en Teoría de Campos. Al enfocarnos en el límite del cono de luz, mostramos que estas medidas, que caracterizan la trayectoria completa del RG, están limitadas por cantidades intrínsecas a los puntos flujos, como la entropía de borde o la carga central. Estas desigualdades desempeñan el papel de una segunda ley de la termodinámica, en el contexto de los flujos del grupo de renormalización. Finalmente, aplicamos estos resultados a un modelo Kondo simplificado, donde evaluamos explícitamente las entropías relativas de Renyi, trabajando tanto en una superficie de Cauchy a tiempo constante, como en una superficie de Cauchy que se acerca al cono de luz. Un resultado de esto es que la catástrofe de ortogonalidad de Anderson puede evitarse trabajando en una superficie de Cauchy que se acerca al cono de luz.

Resumen en inglés

Quantum Renyi relative entropies provide a one-parameter family of distances between density matrices, which generalizes the relative entropy and the delity. In this Thesis we study these measures for renormalization group ows in quantum eld theory. We derive explicit expressions in free eld theory based on the real time approach. Using monotonicity properties, we obtain new inequalities that need to be satised by consistent renormalization group trajectories in eld theory. By focusing on the lightcone limit, we show that these measures, which characterize the full RG trajectory, are bounded by quantities intrinsic to the xed points, such as the boundary entropy or the central charge. These inequalities play the role of a second law of thermodynamics, in the context of renormalization group flows. Finally, we apply these results to a tractable Kondo model, where we evaluate the Renyi relative entropies explicitly, working both on a constant time Cauchy surface, and on a Cauchy surface that approaches the light cone. An outcome of this is that Anderson's orthogonality catastrophe can be avoided by working on a Cauchy surface that approaches the light-cone.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Entropy; Entropía; Quantum field theory;Teoría del campo cuántico; Renormalization; Renormalización; [Renyi; Kondo]
Referencias:[1] Wilson, K. G., Kogut, J. B. The Renormalization group and the epsilon expansion. Phys. Rept., 12, 75-200, 1974. iv, 3 [2] Zamolodchikov, A. B. Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory. JETP Lett., 43, 730-732, 1986. [Pisma Zh. Eksp. Teor. Fiz.43,565(1986)]. 2, 47 [3] Casini, H., Huerta, M. A Finite entanglement entropy and the c-theorem. Phys. Lett., B600, 142-150, 2004. 2, 3 [4] Casini, H., Huerta, M. On the RG running of the entanglement entropy of a circle. Phys. Rev., D85, 125016, 2012. 2, 3 [5] Komargodski, Z., Schwimmer, A. On Renormalization Group Flows in Four Dimensions. JHEP, 12, 099, 2011. 2 [6] Casini, H., Teste, E., Torroba, G. Markov Property of the Conformal Field Theory Vacuum and the a Theorem. Phys. Rev. Lett., 118 (26), 261602, 2017. 2, 3 [7] Casini, H., Landea, I. S., Torroba, G. The g-theorem and quantum information theory. JHEP, 10, 140, 2016. 3, 5, 19, 20, 24, 30, 38, 39, 41, 44, 45, 49 [8] Casini, H., Teste, E., Torroba, G. Relative entropy and the RG flow. JHEP, 03, 089, 2017. 4, 5, 47, 48 [9] Cardy, J. L. Boundary conformal eld theory, 2004. 4 [10] Petz, D. Quasi-entropies for nite quantum systems. Reports on mathematical physics, 23 (1), 57-65, 1986. 4, 11 [11] Lashkari, N. Relative Entropies in Conformal Field Theory. Phys. Rev. Lett., 113, 051602, 2014. 4 [12] Bernamonti, A., Galli, F., Myers, R. C., Oppenheim, J. Holographic second laws of black hole thermodynamics, 2018. 4 [13] May, A., Hijano, E. The holographic entropy zoo, 2018. 4 [14] Anderson, P. W. Infrared catastrophe in fermi gases with local scattering potentials. Physical Review Letters, 18 (24), 1049, 1967. 4, 46 [15] Casini, H., Medina, R., Landea, I. S., Torroba, G. Renyi relative entropies and renormalization group flows. Journal of High Energy Physics, 2018 (9), 166, Sep 2018. URL https://doi.org/10.1007/JHEP09(2018)166. 5 [16] Audenaert, K. M. R. Comparisons between quantum state distinguishability measures. ArXiv e-prints, jul. 2012. 6 [17] Giorda, P., Zanardi, P. Quantum chaos and operator delity metric. Phys. Rev. E, 81, 017203, Jan 2010. URL https://link.aps.org/doi/10.1103/PhysRevE. 81.017203. 6 [18] Lu, X.-M., Sun, Z., Wang, X., Zanardi, P. Operator delity susceptibility, decoherence, and quantum criticality. Phys. Rev. A, 78, 032309, Sep 2008. URL https://link.aps.org/doi/10.1103/PhysRevA.78.032309. 6 [19] Wang, X., Sun, Z., Wang, Z. D. Operator delity susceptibility: An indicator of quantum criticality. Phys. Rev. A, 79, 012105, Jan 2009. URL https://link. aps.org/doi/10.1103/PhysRevA.79.012105. 6 [20] Muller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M. On quantum renyi entropies: A new generalization and some properties. Journal of Mathema- tical Physics, 54 (12), 122203, 2013. 10, 11, 12 [21] Wilde, M. M., Winter, A., Yang, D. Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched renyi relative entropy. Communications in Mathematical Physics, 331 (2), 593-622, 2014. 10 [22] Renyi, A. On measures of entropy and information. Inf. tec., HUNGARIAN ACADEMY OF SCIENCES Budapest Hungary, 1961. 10 [23] Uhlmann, A. The \transition probability" in the state space of a-algebra. Reports on Mathematical Physics, 9 (2), 273-279, 1976. 11 [24] Nielsen, M. A., Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition. 10a editon. New York, NY, USA: Cambridge University Press, 2011. 11 [25] Frank, R. L., Lieb, E. H. Monotonicity of a relative renyi entropy. Journal of Mathematical Physics, 54 (12), 122201, 2013. URL https://doi.org/10.1063/ 1.4838835. 11, 12 [26] Beigi, S. Sandwiched renyi divergence satises data processing inequality. Journal of Mathematical Physics, 54 (12), 122202, 2013. 12 [27] Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N. J., Ralph, T. C., Shapiro, J. H., et al. Gaussian quantum information. Rev. Mod. Phys., 84, 621{669, May 2012. URL https://link.aps.org/doi/10.1103/RevModPhys.84.621. 13 [28] Serani, A. Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, 2017. 13 [29] Casini, H., Huerta, M. Entanglement entropy in free quantum eld theory. J. Phys., A42, 504007, 2009. 13, 14, 16, 31, 34, 53 [30] Peschel, I. Calculation of reduced density matrices from correlation functions. Journal of Physics A Mathematical General, 36, L205-L208, abr. 2003. 14 [31] Balian, R., Brezin, E. Nonunitary Bogoliubov transformations and extension of Wick's theorem. Nuovo Cimento B Serie, 64, 37-55, nov. 1969. 15, 16 [32] Banchi, L., Giorda, P., Zanardi, P. Quantum information-geometry of dissipative quantum phase transitions. Physical Review E, 89 (2), 022102, 2014. 15, 51 [33] Seshadreesan, K. P., Lami, L., Wilde, M. M. Renyi relative entropies of quantum Gaussian states, 2017. 15 [34] Banchi, L., Braunstein, S. L., Pirandola, S. Quantum delity for arbitrary gaussian states. Physical review letters, 115 (26), 260501, 2015. 16, 54 [35] Affleck, I. Conformal eld theory approach to the Kondo effect. Acta Phys. Polon., B26, 1869-1932, 1995. 21 [36] Anderson, P. W. Ground state of a magnetic impurity in a metal. Phys. Rev., 164, 352-359, Dec 1967. URL https://link.aps.org/doi/10.1103/PhysRev. 164.352. 38 [37] Anderson, P. W. Infrared catastrophe in fermi gases with local scattering potentials. Phys. Rev. Lett., 18, 1049-1051, Jun 1967. URL https://link.aps.org/ doi/10.1103/PhysRevLett.18.1049. 38 [38] Affleck, I., Ludwig, A. W. W. Universal noninteger 'ground state degeneracy' in critical quantum systems. Phys. Rev. Lett., 67, 161-164, 1991. 44 [39] Friedan, D., Konechny, A. On the boundary entropy of one-dimensional quantum systems at low temperature. Phys. Rev. Lett., 93, 030402, 2004. 44, 46 [40] Calabrese, P., Cardy, J. Entanglement entropy and conformal eld theory. J. Phys., A42, 504005, 2009. 44 [41] Casini, H., Mazzitelli, F. D., Teste, E. Area terms in entanglement entropy. Phys. Rev., D91 (10), 104035, 2015. 48 [42] Casini, H., Teste, E., Torroba, G. Holographic RG flows, entanglement entropy and the sum rule. JHEP, 03, 033, 2016. 48
Materias:Física > Física de altas energías
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Partículas y campos
Código ID:751
Depositado Por:Tamara Cárcamo
Depositado En:07 Oct 2019 12:58
Última Modificación:07 Oct 2019 12:58

Personal del repositorio solamente: página de control del documento