Procesamiento no lineal en fotorreceptores. / Non-linear processing in photoreceptors.

Castillo García, Miguel (2018) Procesamiento no lineal en fotorreceptores. / Non-linear processing in photoreceptors. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
19Mb

Resumen en español

La retina constituye el primer conjunto de neuronas que procesan e integran la información visual proveniente del mundo exterior. La percepción visual tiene su origen en un mecanismo clave: convertir la energía luminosa en energía eléctrica. En una primera etapa, la luz atraviesa los medios refringentes del ojo que permiten la formación de la imagen óptica en la retina, donde se encuentran los fotorreceptores que convierten los estímulos luminosos en señales eléctricas. A continuación, estas señales eléctricas se integran y procesan en la misma retina hasta formar un código relativamente compacto en las células ganglionares, cuya salida se envía por el nervio óptico a otras áreas del cerebro para su posterior procesamiento. En los fotorreceptores, las células fotosensibles de la retina, el procesamiento de las señales visuales consiste principalmente en la fototransducción e integración eléctrica, y este proceso debe enfrentarse a enormes variaciones en las señales visuales de entrada. Con el fin de acomodar este rango dinámico, distintos procesos bioquímicos y fisiológicos desarrollan mecanismos no lineales de adaptación, de modo que la respuesta que se tiene a un dado nivel de luminosidad es completamente diferente a la que ocurre a otro nivel. En la presente tesis implementamos un modelo matemático microscópico de la fototransducción e integración eléctrica en fotorreceptores y analizamos su comportamiento no lineal. Por otro lado, un entendimiento algorítmico e intuitivo del problema en cuestión sólo puede obtenerse a partir de modelos simplificados que resuman el procesamiento de señales que tiene lugar. Por este motivo, en una segunda etapa del trabajo, estudiamos el comportamiento de los procesos microscópicos en un amplio rango de luminosidades, donde las no linealidades claramente dominan la respuesta, en términos de un modelo fenomenológico que captura relativamente bien los elementos básicos del procesamiento visual que ocurre en los fotorreceptores.

Resumen en inglés

The retina is the first set of neurons that process and integrate visual information from the outside world. Visual perception has its origin in a key mechanism: to transform light into electrical energy. In a first stage, the light crosses through the refractive support of the eye allows the formation of the optical image in the retina, where the photoreceptors that turn the light stimuli into electrical signals are found. Then, these electrical signals are integrated and processed in the retina itself until a relatively compact code is formed on the ganglion cells whose output is sent by the optic nerve to other areas of the brain for further processing. In photoreceptors, the photosensitive cells of the retina, the processing of visual signals consists of phototransduction and electrical integration, and this process must face huge variations in the input visual signals. In order to accommodate this dynamic range, different biochemical and physiological processes develop non-linear mechanisms of adaptation, so the response to a certain level of luminosity is completely different from what happens at another level. In the present thesis a microscopic mathematical model of phototransduction and electrical integration is applied to photoreceptors, and their non-linear behavior is analyzed. On the other hand, the only way in which we are able to obtain an algorithmic and intuitive understanding of the problem in question is by means of simplified models that summarize the signal processing that takes place. For this reason, in a second stage of the research, the behavior of microscopic processes in a wide range of luminosities where non-linearities clearly dominate the response is studied in terms of a phenomenological model that captures well the basic elements of visual processing that occurs in the photoreceptors.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Retina; [Visual system; Sistema visual; Photoreceptors; Fotorreceptores; Non linear dynamics; Dinámica no lineal; Phototransduction; Fototransductor; Adaptation; Adaptación]
Referencias:[1] Field G. D., Chichilnisky E. J. (2007). Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci., 30 :1-30. [2] Dhande O. S., Stafford B. K., Lim J. H. A., Huberman A. D. (2015). Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annual review of vision science, 1 :291-328. [3] Atick J. J. (1992). Could information theory provide an ecological theory of sensory processing? Network: Computation in neural systems, 3 (2):213-251. [4] Gollisch T., Meister M. (2010). Eye smarter than scientists believed: neural computations in circuits of the retina Neuron, 65 (2):150-164. [5] Masland R. H. (2012). The neuronal organization of the retina. Neuron, 76 (2):266-280. [6] Pugh Jr E. N., Lamb T. D. (1993). Amplification and kinetics of the activation steps in phototransduction. Biochimica Et Biophysica Acta (BBA)-Bioenergetics, 1141 (2-3):111-149. [7] Nikonov S., Lamb T. D., Pugh E. N. (2000). The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse. The Journal of general physiology, 116 (6):795-824. [8] Hamer R. D., Nicholas S. C., Tranchina D., Lamb T. D., Jarvinen J. L. P. (2005). Toward a unified model of vertebrate rod phototransduction. Visual neuroscience, 22 (4):417-436. [9] Korenbrot J. I. (2012). Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Progress in retinal and eye research, 31 (5):442-466. [10] Barnes S. (1994). After transduction: response shaping and control of transmission by ion channels of the photoreceptor inner segment. Neuroscience, 58 (3):447-459. [11] Bloomfield S. A., Völgyi B. (2009). The diverse functional roles and regulation of neuronal gap junctions in the retina. Nature Reviews Neuroscience, 10 (7):495. [12] Thoreson W. B. (2007). Kinetics of synaptic transmission at ribbon synapses of rods and cones. Molecular neurobiology, 36 (3):205-223. [13] Perlman I., Normann R. A. (1998). Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors. Progress in retinal and eye research, 17 (4):523-563. [14] Endeman D., Kamermans M. (2010). Cones perform a non-linear transformation on natural stimuli. The Journal of physiology, 588 (3):435-446. [15] van Hateren J. H. (2005). A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells. Journal of Vision, 5 (4):331-347. [16] Clark D. A., Benichou R., Meister M., da Silveira R. A. (2013). Dynamical adaptation in photoreceptors. PLoS computational biology, 9 (11):e1003289. [17] Bear M. F., Conners B. W., Paradiso M. A. (2007). Neuroscience: exploring the brain. Hagerstwon, MD: Lippincott Williams & Wilkins, 718. [18] Lledó Riquelme M., Campos Mollo E., Cuenca N. (2010). La transducción visual. Annals d’Oftalmologia, 18 (3):130-136. [19] Eihnger B., Dowling J. (1987). Retinal Neurocircuitryand and Transmission. Handbook of chemical neuroanatomy, 5 (Part 1):389-446. [20] Fatt Y., Weissman T. (1987). Physiology of the Eye. An introduction to the Vegetative Functions. Ann Rev Neurosci, 10 :23-32. [21] Soria L. E., Arias-Montaño J. A. (1997). Señalización por Segundos Mensajeros. Actualización en Fisiología. Actualización en Fisiología. Morelia, SMCF/UMSNH:85-104. [22] Terssier M. (1991). Phototransduction and Information. Processing in the Retina. Principles of neural science, 10 :401-418. [23] Whikehart D. R. (2003). Biochemistry of the Eye. Elsevier Inc. [24] Alcaraz V. M. (2000). Estructura y función del sistema nervioso: recepción sensoral y estados del organismo. UNAM. [25] Brown P, Wald G. (1963). Visual pigments in human and monkey retinas. Nature, 200 :37-43. [26] Dacey D M, Lee B B, Stafford D K, Pokorny J, Smith V C. (1996). Horizontal cells of the primate retina: cone specificity without spectral opponency. Science, 271 :656–659. [27] Hagins W A, Penn R D, Yoshikami S. (1970). Dark current and photocurrent in retinal rods. Biophys. J., 10 :380-412. [28] Maricq A V, Korenbrot J I. (1990). Potassium currents in the inner segment ofsingle retinal cone photoreceptors. J. Neurophysiol., 64 :1929-1940. [29] Maricq A V, Korenbrot J I. (1990). Inward rectificaction in the inner segment of single retinal cone photoreceptors. J. Neurophysiol., 64 :1917-1928. [30] Fesenko E E, Kolesnikov S S, Lyubarski A L. (1985). Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segments. Nature, 313 :310-313. [31] Yau K W, Baylor D A. (1985). Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature, 317 :252-255.[32] Chabre M, Deterre P, Cuenca N. (1989). Molecular mechanism of visual. Eur J Biochem, 179 (2):255-266. [33] Dowling J. (1987). The retina: an approachable part of the brain. Harvard University Press. [34] Hubel D, Wiesel T. (1992). Brain mechanisms of vision. Scientific American, 241 (3):150-162. [35] Livingston E, Hubel D. (1998). Segmentation of form, color, movement and depth: anatomy, physiology and perception. Science, 240 :740-749. [36] Trevarthen C. (1980). Functional organization of the human brain. The brain and psychology:33- 91. [37] Zaghloul K. A., Manookin M. B., Borghuis B. G., Boahen K., Demb J. B. (2007). Functional circuitry for peripheral suppression in mammalian Y-type retinal ganglion cells. Journal of neurophysiology, 97 (6):4327-4340. [38] Zhu Y., Xu J., Hauswirth W. W., DeVries S. H. (2014). Genetically targeted binary labeling of retinal neurons. Journal of Neuroscience, 34 (23):7845-7861. [39] Zeki S. (1993). A vision of the brain. Blackwell Scientific Publ. [40] Chen C. K. (2005). The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev. Physiol. Biochem. Pharmacol., 154 :101-121. [41] Downs M. A., Arimoto R., Marshall G. R., Kisselev O. G. (2006). G-protein alpha and betagamma subunits interact with conformationally distinct signaling states of rhodopsin. Vision research, 46 :4442-4448. [42] Zhang X., Cote R. H. (2005). cGMP signaling in vertebrate retinal photoreceptor cells. Front Biosci, 10 :1191-1204. [43] Lugnier C. (2006). Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacology & therapeutics, 109 (3):366-398. [44] Lolley R. N., Racz E. (1982). Calcium modulation of cyclic GMP synthesis in rat visual cells. Vision research, 22 (12):1481-1486. [45] Koch K. W., Duda T., Sharma R. K. (2002). Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Molecular and cellular biochemistry, 230 (1-2):97-106. [46] Dizhoor A. M., Hurley J. B. (1999). Regulation of photoreceptor membrane guanylyl cyclases by guanylyl cyclase activator proteins. Methods, 19 (4):521-531. [47] Dizhoor A. M., Olshevskaya E. V., Peshenko I. V. (2010). Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase. Molecular and cellular biochemistry, 334 (1-2):117-124. [48] Cook N. J., Molday L. L., Reid D., Kaupp U. B., Molday R. S. (1989). The cGMP-gated channel of bovine rod photoreceptors is localized exclusively in the plasma membrane. Journal of Biological Chemistry, 264 (12):6996-6999. [49] Karpen J. W., Loney D. A., Baylor D. A. (1992). Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness. The Journal of physiology, 448 (1):257-274. [50] Picones A., Korenbrot J. I. (1994). Analysis of fluctuations in the cGMP-dependent currents of cone photoreceptor outer segments. Biophysical journal, 66 (2):360-365. [51] Cervetto L., Lagnado L., Perry R. J., Robison D. W., McNaughton P. A. (1989). Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature, 337 :740-743. [52] Lagnado L., Mcnaughton P. A. (1991). Net charge transport during sodium-dependent calcium extrusion in isolated salamander rod outer segments. The Journal of general physiology, 98 (3):479-495. [53] Schnetkamp P. P., Szerencsei R. T., Basu D. K. (1991). Unidirectional Na+, Ca2+, and K+ fluxes through the bovine rod outer segment Na-Ca-K exchanger. Journal of Biological Chemistry, 266 (1):198-206. [54] Yau K. W., Nakatani K. (1985). Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature, 313 (6003):579. [55] Lagnado L. , Cervetto L., McNaughton P. A. (1992). Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. The Journal of Physiology, 455 (1):111-142. [56] Gray-Keller M. P., Detwiler P. B. (1994). The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron, 13 (4):849-861. [57] Younger J. P., McCarthy S. T., Owen W. G. (1996). Light-dependent control of calcium in intact rods of the bullfrog Rana catesbeiana. Neuron, 75 :354-366. [58] Sampath A. P., Matthews H. R., Cornwall M. C., Bandarchi J., Fain G. L. (1999). Lightdependent changes in outer segment free-Ca2+ concentration in salamander cone photoreceptors. The Journal of general physiology, 113 (2):267-277. [59] Ames J. B., Levay K., Wingard J. N., Lusin J. D., Slepak V. Z. (2006). Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin. Journal of Biological Chemistry, 281 (48):37237-37245. [60] Lamb T. D., Pugh E. N. (1992). A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. The Journal of Physiology, 449 (1):719-758. [61] Koutalos Y., Yau K. W. (1996). Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends in neurosciences, 19 (2):73-81. [62] Yagi T., Macleish P. R. (1994). Ionic conductances of monkey solitary cone inner segments. Journal of Neurophysiology, 71 (2):656-665. [63] Detwiler P. B., Hodgkin A. L., McNaughton P. A. (1980). Temporal and spatial characteristics of the voltage response of rods in the retina of the snapping turtle. The Journal of physiology, 300 (1):213-250. [64] Lee B. B., Dacey D. M., Smith V. C., Pokorny J. (1999). Horizontal cells reveal cone type-specific adaptation in primate retina. Proceedings of the National Academy of Sciences, 96 (25):14611-14616. [65] Smith V. C., Pokorny J., Lee B. B., Dacey D. M. (2001). Primate horizontal cell dynamics: An analysis of sensitivity regulation in outer retina. Journal of Neurophysiology, 85 (2):545-558. [66] Kamermans M., Fahrenfort I., Schultz K., Janssen-Bienhold U., Sjoerdsma T.,Weiler R. (2001). Hemichannel-mediated inhibition in the outer retina. Science, 292 (5519):1178-1180. [67] Morgans C. W., El Far O., Berntson A., Wässle H., Taylor W. R. (1998). Calcium extrusion from mammalian photoreceptor terminals. Journal of Neuroscience, 18 (7):2467-2474. [68] Gaal L., Roska B., Picaud S. A., Wu S. M., Marc R., Werblin F. S. (1998). Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. Journal of Neurophysiology, 79 (1):190-19. [69] Lee B. B., Dacey D. M., Smith V. C., Pokorny J. (2003). Dynamics of sensitivity regulation in primate outer retina: The horizontal cell network. Journal of Vision, 3 (7):513-526. [70] Kraaij D. A., Spekreijse H., Kamermans M. (2000). The open-and closed-loop gaincharacteristics of the cone/horizontal cell synapse in goldfish retina. Journal of Neurophysiology, 84 (3):1256-12656. [71] Kamermans M., Kraaij D., Spekreijse H. (2001). The dynamic characteristics of the feedback signal from horizontal cells to cones in the goldfish retina. The Journal of Physiology, 534 (2):489- 500. [72] Shapley R. M., Victor J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. The Journal of physiology, 285 (1):275-298. [73] Dunn F. A., Lankheet M. J., Rieke F. (2007). Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature, 449 (7162):603. [74] Shapley R., Enroth-Cugell C. (1984). Visual adaptation and retinal gain controls. Progress in retinal research, 3 :263-346. [75] Lee B. B., Pokorny J., Smith V. C., Martin P. R., Valbergt A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. JOSA A, 7 (12):2223-2236. [76] Fain G. L., Matthews H. R., Cornwall M. C., Koutalos Y. (2001). Adaptation in vertebrate photoreceptors. Physiological reviews, 81 (1):117-151. [77] Yeh T., Lee B. B., Kremers J. (1996). The time course of adaptation in macaque retinal ganglion cells. Vision research, 36 (7):913-931. [78] Juusola, M., Hardie, R. C. (2001). Light adaptation in Drosophila photoreceptors: II. Rising temperature increases the bandwidth of reliable signaling. The Journal of general physiology, 117 (1):27-42. [79] Baccus S. A., Meister M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36 (5):909-919. [80] Pasino E., Marchiafava P. L. (1976). Transfer properties of rod and cone cells in the retina of the tiger salamander. Vision research, 16 (1):381-386. [81] Tranchina D., Sneyd J., Cadenas I. D. (1991). Light adaptation in turtle cones. Testing and analysis of a model for phototransduction. Biophysical Journal, 60 (1):217. [82] Seung H. S. (2003). Amplification, attenuation, and integration. The handbook of brain theory and neural networks, 2 :94-97. [83] Burkhardt D. A. (1994). Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle. Journal of Neuroscience, 14 (3):1091-1105. [84] Soo F. S., Detwiler P. B., Rieke F. (2008). Light adaptation in salamander L-cone photoreceptors. Journal of Neuroscience, 28 (6):1331-1342. [85] Baylor D. A., Hodgkin A. L., Lamb T. D. (1974). The electrical response of turtle cones to flashes and steps of light. The Journal of Physiology, 242 (3):685-727. [86] Daly S. J., Normann R. A. (1985). Temporal information processing in cones: effects of light adaptation on temporal summation and modulation. Vision Research, 25 (9):1197-1206. [87] Srinivasan M. V., Laughlin S. B., Dubs A. (1982). Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B, 216 (1205):427-459. [88] van Hateren J. H. (1992). Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation. Journal of Comparative Physiology A, 171 (2):157-170. [89] Poot L., Snippe H. P., van Hateren J. H. (1997). Dynamics of adaptation at high luminances: Adaptation is faster after luminance decrements than after luminance increments. Journal of the Optical Society of America A, 14 (9):2499-2508. [90] Drinnenberg A., Franke F., Morikawa R. K., Jüttner J., Hillier D., Hantz P., Hierlemann A., da Silveira R. A., Roska B. (2018). How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse. Neuron, 99 :117–134.
Materias:Medicina > Física médica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Física médica
Código ID:754
Depositado Por:Tamara Cárcamo
Depositado En:05 Feb 2021 09:48
Última Modificación:05 Feb 2021 09:48

Personal del repositorio solamente: página de control del documento