Desarrollo de protocolo PET/MR en tumores de cerebro marcados con [11C]-metionina / Development of protocol PET/MR acquisition protocol for brain tumors marked with [11C]-methionine

Profili, Franco (2018) Desarrollo de protocolo PET/MR en tumores de cerebro marcados con [11C]-metionina / Development of protocol PET/MR acquisition protocol for brain tumors marked with [11C]-methionine. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
31Mb

Resumen en español

Los tumores de cerebro (Gliomas), son de las neoplasias más agresivas y difíciles de controlar. Su tratamiento sigue siendo un gran desafió en neurología clínica debido a sus características invasivas. Una de las tareas mas difíciles es lograr delimitar su verdadera extensión. Actualmente, las imágenes anatómicas mediante resonancia magnética (MRI) representan el método mas comúnmente utilizado para determinar el volumen tumoral, sin embargo, la neurología ha demostrado que las células de glioma se encuentran comúnmente mas allá del área de realce con contraste de gadolinio. Dada la complejidad de los fenómenos anátomo-fisiológicos relacionados a estas lesiones cerebrales, la tomografía por emisión de positrones es considerada una técnica de imagen prometedora que complementa las técnicas de MR en el diagnostico y tratamiento de pacientes con gliomas, al brindar datos metabólicos. La mayoría de los estudios clínicos de PET son oncológicos y utilizan FDG, pero la captación de este radiofarmaco depende de diversos factores y ha demostrado su falta de especificidad en el estudio de gliomas. Por otra parte el uso de L-[metil-11C]-metionina como radio-trazador en imágenes PET neurooncologicas es objeto de investigación dada su especificidad en la detección lesiones cerebrales. Durante esta investigación se desarrollo un protocolo de adquisición para un estudio PET/MR multiparametrico de cerebro, con [11C]-met, para su implementación con el sistema SIGNA™ PET/MR 3T, fabricado por GE Medical Systems. El protocolo incluye una lista de procedimientos técnicos (que involucran desde la preparación del paciente hasta la administración del radio-trazador y posteriormente el MC), la adquisición PET-MET y finalmente una lista de secuencias de MR. Se efectuó un análisis de los estudios de PET-MET realizados en FUESMEN, permitiendo así analizar la delimitación tumoral a partir de técnicas de segmentación de imágenes PET-MET y relacionar esta información con los resultados de los principales biomarcadores brindados por las secuencias de perfusión, difusión y espectroscopia.

Resumen en inglés

Brain tumors (Gliomas) are one of the most aggressive and difficult to control among all these that afflict the human body. Its treatment continues to be a great challenge in clinical neurology due to its invasive characteristics. One of the most difficult tasks is to define its true extent. Currently, magnetic resonance imaging (MRI) images represent the most commonly used method to determine tumor volume, however, neuro-oncology has shown that glioma cells are commonly found beyond the enhancement area with gadolinium contrast. Given the complexity of the anatomo-physiological phenomena related to these brain lesions, positron emission tomography is considered a promising imaging technique that complements MR techniques in the diagnosis and treatment of patients with gliomas, by providing metabolic data. Most clinical studies of PET are oncological and use FDG, but the uptake of this radiopharmaceutical depends on several factors and has demonstrated its lack of specificity in the study of gliomas. On the other hand, the use of L −[metil −11C]- methionine as a radio-tracer in neuro-oncological PET images is under investigation, given its specificity in the detection of brain injuries. During this research, an acquisition protocol was developed for multiparameter brain PET / MR study, with [11C]-met, for its implementation with the system SIGNA ™ PET / MR 3T, manufactured by GE Medical Systems. The protocol includes a list of technical procedures (involving from the preparation of the patient to the administration of the radio-tracer and subsequently the MC), the PET-MET acquisition and finally a list of MR sequences. The creation of the protocol involved the adjustment of a set of specific parameters of both acquisition and processing of series of images. An analysis of the PET-MET studies carried out in FUESMEN was accomplished, allowing to study the tumor delimitation from segmentation techniques in PET-MET images and to relate this information to the results of the main biomarkers provided by the perfusion sequences, diffusion and spectroscopy.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Methionine; Metionina; Gliomas; Spectroscopy, Espectroscopia; [Positrón emission tomography; Tomografía por emisión de positrones]
Referencias:1. Hubner, K. y col. Brain tumor imaging by positron emission computed tomography using 11C-labeled amino acids. Journal of computer assisted tomography 6, 544-550 (1982). 2. Okuma, C. y Fernández, R. EVALUACIÓN DE GLIOMAS POR TÉCNICAS AVANZADAS DE RESONANCIA MAGNÉTICA. Revista Medica Clínica Las Condes 28, 360-377 (2017). 3. Louis, D. N. y col. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica 131, 803-820 (2016). 4. Ohgaki, H. y Kleihues, P. Epidemiology and etiology of gliomas. Acta neuropathologica 109, 93-108 (2005). 5. Louis, D. N. y col. The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica 114, 97-109 (2007). 6. Galldiks, N., Ullrich, R., Schroeter, M., Fink, G. R. y Kracht, L. W. Volumetry of [11 C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. European journal of nuclear medicine and molecular imaging 37, 84-92 (2010). 7. Miwa, K. y col. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. Journal of Neurology, Neurosurgery & Psychiatry 75, 1457-1462 (2004). 8. Takano, K y col. Diagnostic and prognostic value of 11C-methionine PET for nonenhancing gliomas. American Journal of Neuroradiology 37, 44-50 (2016). 9. Herholz, K. y Heiss, W.-D. Positron emission tomography in clinical neurology. Molecular Imaging & Biology 6, 239-269 (2004). 10. Derlon, J.-M. y col. [11C] L-methionine uptake in gliomas. Neurosurgery 25, 720-728 (1989). 11. Zhao, C, Zhang, Y y Wang, J. A meta-analysis on the diagnostic performance of 18F-FDG and 11Cmethionine PET for differentiating brain tumors. American Journal of Neuroradiology 35, 1058-1065 (2014). 12. Inoue, T. y col. Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. Journal of Nuclear Medicine 37, 1472 (1996). 13. Kim, S. y col. 11 C-methionine PET as a prognostic marker in patients with glioma: comparison with 18 F-FDG PET. European journal of nuclear medicine and molecular imaging 32, 52-59 (2005). 14. Di Chiro, G. y col. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32, 1323-1323 (1982). 15. Weber, W. A. y col. O-(2-[18 F] fluoroethyl)-L-tyrosine and L-[methyl-11 C] methionine uptake in brain tumours: initial results of a comparative study. European journal of nuclear medicine 27, 542-549 (2000). 16. Kato, T y col. Metabolic assessment of gliomas using 11C-methionine,[18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. American Journal of Neuroradiology 29, 1176-1182 (2008). 17. Bustany, P y col. en Positron emission tomography of the brain 208-211 (Springer, 1983). 18. Ishiwata, K. y col. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? Journal of Nuclear Medicine 34, 1936-1943 (1993). 19. Jager, P. L. y col. Radiolabeled amino acids: basic aspects and clinical applications in oncology. Journal of nuclear medicine 42, 432-445 (2001). 20. Souba, W. W. y Pacitti, A. J. How amino acids get into cells: mechanisms, models, menus, and mediators. Journal of Parenteral and Enteral Nutrition 16, 569-578 (1992). 21. Mineura, K. y col. Indications for differential diagnosis of nontumor central nervous system diseases from tumors. Journal of Neuroimaging 7, 8-15 (1997). 22. Kaschten, B. y col. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 39, 778-85 (1998). 23. Goldman, S. y col. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. Journal of Nuclear Medicine 38, 1459 (1997). 24. Uda, T., Tsuyuguchi, N., Terakawa, Y., Takami, T. y Ohata, K. Evaluation of the accumulation of 11C-methionine with standardized uptake value in the normal brain. Journal of Nuclear Medicine 51, 219 (2010). 25. Ceyssens, S y col. [11C] methionine PET, histopathology, and survival in primary brain tumors and recurrence. American Journal of Neuroradiology 27, 1432-1437 (2006). 26. Chao, S. T., Suh, J. H., Raja, S., Lee, S.-Y. y Barnett, G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. International journal of cancer 96, 191-197 (2001). 27. Yamane, T., Sakamoto, S. y Senda, M. Clinical impact of 11 C-methionine PET on expected management of patients with brain neoplasm. European journal of nuclear medicine and molecular imaging 37, 685-690 (2010). 28. Terakawa, Y. y col. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. Journal of Nuclear Medicine (2008). 29. Mattoli, M. V., Treglia, G., Trevisi, G., Muoio, B. y Cason, E. Usefulness of 11C-methionine positron emission tomography in differential diagnosis between recurrent tumours and radiation necrosis in patients with glioma: an overview. Open Neurosurg J 5, 8-11 (2012). 30. Yomo, S. y Oguchi, K. Prospective study of 11 C–methionine PET for distinguishing between recurrent brain metastases and radiation necrosis: limitations of diagnostic accuracy and long-term results of salvage treatment. BMC cancer 17, 713 (2017). 31. Nihashi, T, Dahabreh, I. y Terasawa, T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. American Journal of Neuroradiology 34, 944-950 (2013). 32. Kondziolka, D., Flickinger, J. C., Bissonette, D. J., Bozik, M. y Lunsford, L. D. Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41, 776-785 (1997). 33. Ogawa, T y col. Cerebral glioma: evaluation with methionine PET. Radiology 186, 45-53 (1993). 34. Sonoda, Y., Kumabe, T., Takahashi, T., Shirane, R. y Yoshimoto, T. Clinical usefulness of 11C-MET PET and 201Tl SPECT for differentiation of recurrent glioma from radiation necrosis. Neurologia medico-chirurgica 38, 342-348 (1998). 35. Nakajima, T. y col. Differential diagnosis between radiation necrosis and glioma progression using sequential proton magnetic resonance spectroscopy and methionine positron emission tomography. Neurologia medico-chirurgica 49, 394-401 (2009). 36. Kimura, M. y da Cruz, L. C. H. Multiparametric MR imaging in the assessment of brain tumors. Magnetic Resonance Imaging Clinics 24, 87-122 (2016). 37. Mills, S. y col. Candidate biomarkers of extravascular extracellular space: a direct comparison of apparent diffusion coefficient and dynamic contrast-enhanced MR imaging—derived measurement of the volume of the extravascular extracellular space in glioblastoma multiforme. American Journal of Neuroradiology 31, 549-553 (2010). 38. Arvinda, H. y col. RETRACTED ARTICLE: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. Journal of neuro-oncology 94, 87 (2009). 39. Kang, Y. y col. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging—correlation with tumor grade. Radiology 261, 882-890 (2011). 40. Di Costanzo, A. y col. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48, 622-631 (2006). 41. Castillo, M., Smith, J. K. y Kwock, L. Correlation of myo-inositol levels and grading of cerebral astrocytomas. American Journal of Neuroradiology 21, 1645-1649 (2000). 42. Melhem, E. R. y col. Diffusion tensor MR imaging of the brain and white matter tractography. American Journal of Roentgenology 178, 3-16 (2002). 43. Dubey, A., Kataria, R. y Sinha, V. D. Role of diffusion tensor imaging in brain tumor surgery. Asian journal of neurosurgery 13, 302 (2018). 44. Lacerda, S. y Law, M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clinics 19, 527-557 (2009). 45. Padhani, A. R. y Dzik-Jurasz, A. Perfusion MR imaging of extracranial tumor angiogenesis. Topics in Magnetic Resonance Imaging 15, 41-57 (2004). 46. Cha, S y col. Comparison of microvascular permeability measurements, Ktrans, determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. American Journal of Neuroradiology 27, 409-417 (2006). 47. Grade, M y col. A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology 57, 1181-1202 (2015). 48. Michaelis, T., Merboldt, K., Bruhn, H, H¨anicke, W y Frahm, J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187, 219-227 (1993). 49. Chiang, I. C. y col. Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 46, 619-627 (2004). 50. Pe˜nuelas, I. Radiof´armacos PET (2001). 51. Lilja, A. y col. Dynamic study of supratentorial gliomas with L-methyl-11C-methionine and positron emission tomography. American journal of neuroradiology 6, 505-514 (1985). 52. Bergstrom, K y col. DYNAMIC STUDY OF SUPRATENTORIAL GLIOMAS WITH C-11-L-METHIONINE AND POSITRON EMISSION TOMOGRAPHY (PET) en AMERICAN JOURNAL OF NEURORADIOLOGY 4 (1983), 1139-1139. 53. Nakajima, R., Kimura, K., Abe, K. y Sakai, S. 11 C-methionine PET/CT findings in benign brain disease. Japanese journal of radiology 35, 279-288 (2017). 54. Tsuyuguchi, N. y col. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? Journal of neurosurgery 98, 1056-1064 (2003). 55. Isohashi, K. y col. Optimization of [11 C] methionine PET study: appropriate scan timing and effect of plasma amino acid concentrations on the SUV. EJNMMI research 3, 27 (2013). 56. Pérez Matos, N. E. y Setien Quesada, E. La interdisciplinariedad y la transdisciplinariedad en las ciencias: una mirada a la teoría bibliológico-informativa. Acimed 18, 0-0 (2008).
Materias:Medicina > Medicina nuclear
Medicina > Física médica
Divisiones:FUESMEN
Código ID:762
Depositado Por:Tamara Cárcamo
Depositado En:14 Abr 2021 08:17
Última Modificación:14 Abr 2021 08:17

Personal del repositorio solamente: página de control del documento