Velásquez Silva, Ángel T. (2018) Dose painting en planificación de RT en pacientes con cáncer de cuello uterino a través de imágenes PET/MR. / Dose painting in RT planning patients with cervical cancer trough. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 3834Kb |
Resumen en español
Las imágenes PET/MR con FDG utilizadas actualmente para diagnóstico de cáncer de cuello uterino en el servicio de Medicina Nuclear de la Fundación Escuela de Medicina Nuclear (FUESMEN) son útiles para la confirmación de la enfermedad y su completa estadificación. Además de que brindan información relevante para la planificación de tratamiento de radioterapia (RT) al permitir diferenciar tejidos blandos en pelvis así como también la anatomía y metabolismo ganglionar. El presente trabajo se centró en la utilización de un protocolo de adquisición de imágenes multiparamétricas PET/MR para la panificación de tratamientos en cáncer de cuello uterino, a partir del comportamiento metabólico tumoral y su correlación con imágenes anatómicas y funcionales lo que permitió definir un nuevo volumen blanco en la planificación del tratamiento de RT, denominado BTV (Biological Target Volume). Con la definición de este nuevo volumen se realizó una planificación basada en dose painting aplicando un refuerzo de dosis integrado simultáneo (SIB: Simultaneous Integrated Boost). Para esta planificación se utilizaron las imágenes PET/MR fusionadas con la tomografía computarizada (CT) de planificación para una mejor caracterización de la lesión tumoral permitiendo alcanzar un escalamiento de dosis utilizando las técnicas de IMRT.
Resumen en inglés
PET / MR images with FDG are used for the diagnostic of cervical cancer of the Nuclear Medicine service of FUESMEN are useful for the confirmation of the disease and its complete staging. In addition to providing relevant information for the treatment planning by allowing differentiate soft tissues in the pelvis, as well as the anatomy and the lymph node metabolism. The present work focused on the use of a multiparametric PET/MR image acquisition protocol for the making of treatments in cervical cancer, based on the tumor metabolic behavior and its correlation with anatomical and functional images so that they can define a new target volume in the treatment planning of RT, designate BTV (Biological Target Volume). With the definition of this new volume, a planning based in dose painting was carried out applying a simultaneous integrated boost (SIB). For this planning was used the PET/MR images fused with the planning’s CT for a better characterization of the tumor lesion allowing reach a dose escalation using the IMRT techniques.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Uterine cervix carcinoma; Cáncer de cuello de útero; Dose painting |
Referencias: | [1] Mutic, S., Malyapa, R., Grigsby, P., Dehdashti, F., Miller, T., Zoberi, I., et al. PET-Guided IMRT for Cervical Carcinoma with Positive Para-aortic Lymph Nodes: A Dose-Escalation Treatment Planning Study. International Journal Radiation Oncology Biology Physics. 55, 28-35, 2003. [2] Jordan, J. A., Singer, A. The Cervix. 2ª Ed. Massachusetts: Blackwell Publishing, 2006. [3] Gori, J. R., Loruso, A. Ginecología de Gori. 2ª Ed. Buenos Aires: El Ateneo, 2008. [4] Saladin, K. S. Anatomía Fisiológica: La unidad entre forma y función. 6a Ed. Mexico: McGraw Hill Education, 2012. [5] González, J., González, E. Ginecología. 9ª Ed. España: Elsevier Masson, 2014. [6] Usandizaga, J., De la Fuente, P., González, A. Obstetricia y Ginecología. 2ª Ed. Madrid: Marbán, 2011. [7] Instituto Nacional del Cáncer. Tratamiento del cáncer de cuello uterino. [En línea]. [Citado el: 12 de Agosto de 2018], https://www.cancer.gov/espanol/tipos/cuello-uterino/pro/tratamiento-cuello-uterino-pdq. [8] Symonds, E. M., Symonds, I., Arulkumaran, S. Ginecología y Obstetricia Esencial. 5ª Ed. Barcelona: Elsevier Masson, 2013. [9] International Agency for Research on Cancer. Manual Práctico para la Detección Visual de Neoplasias Cervicales. [En línea]. [Citado el: 21 de Agosto de 2018], http://screening.iarc.fr/viaviliappendix1.php?lang=3. [10] Álvarez, E., Maldonado, A., Fuertes, S., González, L., Sainz de la Cuesta, R., Martínez, V. Valor diagnóstico de la imagen PET-RM en tumores ginecológicos. En: SERAM (32º, 2014, Madrid, España). Anales. Madrid, España: Electronic Presentation Online System, 2014. [11] Sierralta, P., Jofré, M., Massardo, T., Canessa, J., Gonzalez, P., Valdebenito, B. Utilidad del PET-FDG en patología gineco-oncologica. Revista Chilena de Obstetricia y Ginecologia, 72, 67-64, 2007. [12] National Center for Biotechnology Information. Molecular Imaging and Contrast Agent Database. [En linea]. Bethesda Estados Unidos, 2013. Actualizado el 27 de Junio de 2013. [Consulta: 24 de Agosto de 2018]. [18F] Fluoro-2-desoxi-2-D-glucosa. <https://www.ncbi.nlm.nih.gov/books/NBK23335/>. [13] Zins, M. GE Healthcare LAVA Flex [En linea]. España, 2017. [Consulta: 10 de Octubre de 2018]. Disponible en: http://www3.gehealthcare.es/es-es/productos/categorias/resonancia_magnetica/tabs/applications/body_imaging/lava_flex#tabs/tabD34D9A205F9A4178830E75046310DC55. [14] Huang, I., Emery, K., Laor, T., Valentine, M., Tiefermann, J. Fast-recovery fast-spin echo T2-weighted MR imaging: a free breathing alternative to fast spin-echo in the pediatric abdomen. Pediatric Radiology, 38. 675-679, 2008. [15] Sala, E., Rockall, A., Freeman, S., Mitchell, D., Reinhold, C. The Added Role of MR Imaging in Treatment Stratification of Patients with Gynecologic Malignancies: What the Radiologist Needs to Know. Radiology, 266, 717-740, 2013. [16] Cejas, C., Binda, M., Bordegaray, S., Domlijanovic, I., Russo, L. ¿Qué nos aporta la RM en la patología uterina? Revista Argentina de Radiologia [en línea] 2007, vol. 71, no. 2, [Consulta: 5 de Septiembre de 2018]. 183-195. Disponible en: <http://www.redalyc.org/html/3825/382538451007/>. ISSN 0048-7619. [17] Bhosale, P., Ma, J., Choi, H. Utility of the FIESTA Pulse Sequence in Body Oncologic Imaging: Review. AJR Integrative Imaging, 192, 83-93, 2009. [18] Ahualli, J. Aspectos generales de las secuencias de difusión de imagen en resonancia magnética. Revista Argentina de Radiología. 74. 227-237, 2010. [19] Liu, Y., Bai, R., Sun, H., Liu, H., Wang, D. Diffusion-Weighted Magnetic Resonance Imaging of Uterine Cervical Cancer. Journal of Computer Assisted Tomography, 33, 858-862, 2009. [20] Barnes, S., Whisenant, J., Lovelees, M., Yankeelov, T. Practical Dynamic Constrast Enhanced MRI in Small Animal Models of Cancer: Data Acquisition, Data Analysis and Interpretation, Pharmaceutics, 4, 442-478, 2012. [21] Khalifa, F., Soliman, A., El-Baz, A., El-Ghar, A., El-Diasty, T., Gimel’farb, G., et al. Models and Methods for Analyzing DCE-MRI: A review. The International Journal of Medical Physics Research and Practice, 41, 1-32, 2014. [22] Calatayud, P., Ventura, R., Deval, C. Actualizaciones SERAM: Imagen en Oncología. 1ª ed. Madrid: Editorial Médica Panamericana S. A., 2008. [23] Nie, J., Zhang, J., Gao, J., Guo, L., Zhou, H., Hu, Y., et.al. Diagnostic Role of 18F-FDG PET/MRI in Patients with Gynecological Malignancies of the Pelvis: ASystematic Review and Meta-Analysis. PLoS ONE. 12, 1-13, 2017. [24] Barret, A., Dobbs, J., Morris, S., Roques, T. Practical Radiotherapy Planning. 4a ed. Reino Unido: CRC Press, 2009. [25] The International Commission on Radiation Units and Measurements. Prescribing, Recording and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). Journal of the ICRU Vol. 10, Report 83. Oxford University Press, 2010. [26] Toita, T., Ohno, T., Kaneyasu, Y., Kato, T., Uno, T., Hatano, K., et al. A Consensus- Bases Guideline Defining Clinical Target Volume for Primary Disease in External Beam Radiotherapy for Intact Uterine Cervical Cancer. Japanese Journal of Clinical Oncology. 41, 1119-1126, 2011. [27] Lim, K., Small, W., Portelance, L., Creutzberg, C., Jurgenliemk, I., Mundt, A., et al. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer. International Journal Oncology Biology Physics. 79, 348-355, 2011. [28] Small, W., Mell, L., Anderson, P., Creutzberg, C., De Los Santos, J., Gaffney, D., et al. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of Endometrial and Cervical Cancer. International Journal Oncology Biology Physics. 71, 428-434, 2008. [29] Kim, C., Olson, A., Kim, H., Beriwal, S. Contouring Inguinal and Femoral Nodes; How Much is needed Around the Vessels? Practical Radiation Oncology. 2, 274-278, 2012. [30] Rotman, M., Sedlis, A., Piedmonte, M., Bundy, B., Lentz, S., Muderspach, I., et al. A Phase III Randomized Trial of Postoperative Pelvic Irradiation in Stage IB Cervical Carcinoma with Poor Prognostic Features: Follow-Up of a Gynecologic Oncology Group Study. International Journal Oncology Biology Physics. 65, 169-176, 2006. [31] Oto, A., Peynircioglu, B., Eryilmaz, M., Besim, A., Selcuk, H., Hamdi, H. Determination of the Width of the Presacral Space on Magnetic Resonance Imaging. Clinical Anatomy. 17, 14-16, 2004. [32] Takiar, V., Fontanilla, H., Eifel, P., Jhingran, A., Kelly, P., Iyer, R., et al. Anatomic Distribution of Fluorodeoxyglucose-Avid Para-aortic Lymph Nodes in Patients with Cervical Cancer. International Journal Oncology Biology Physics. 85, 1045-1050, 2013. [33] Cefaro, G., Genovesi, D., Perez, C. Delineating Organs at Risk in Radiation Therapy. 1a ed. Milano: Springer, 2013 [34] Halperin, E., Perez, C., Brady, L. Principles and Practice of Radiation Oncology. 5a ed. Philadelphia: Lippincott, 2008. [35] Radiation Therapy Oncology Group (RTOG). Contouring Atlases. [En linea]. Pensilvania: The American College of Radiology. [Citado el: 10 de Octubre de 2018], https://www.rtog.org/corelab/contouringatlases.aspx. [36] Barwick, T., Taylor, A., Rockall, A. Functional Imaging to Predict Tumor Response in Locally Advanced Cervical Cancer. Current Oncology Reports. 15, 549-558, 2013. [37] Van der Heide, U., Houweling, A., Groenendaal, G., Beets-Tan, R., Lambin, P. Functional MRI for Radiotherapy Dose Painting. Magnetic Resonance Imaging. 30, 1216-1223, 2012. [38] Van der Heide, U., Thorwarth, D. Quantitative Imaging for Radiation Oncology. International Journal of Radiation Oncology Biology Physics. 102, 683-686, 2018. [39] Lai, Y., Chun, W., Clifford, K. Biological Imaging Clinical Oncology: Radiation Therapy Based on Functional Imaging. International Journal of Clinical Oncology. 21, 626-632, 2016. [40] Dickie, B., Rose, C., Kershaw, L., Withey, S., Carrington, B., Davidson, S., et al. The Pronostic Value of Dynamic Contrast-Enhanced MRI Contrast Agent Transfer Constant Ktrans in Cervical Cancer is Explained by Plasma Flow Rather than Vessel Permeability. British Journal of Cancer. 116, 1436-1443, 2017. [41] Zhang, Z., Wang, Z., Zhao, R. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Advanced Cervical Carcinoma: The Advantage of Perfusion Parameters from the Peripheral Region in Predicting the Early Response to Radiotherapy. International Journal of Gynecological Cancer. 28, 1342-1349, 2018. [42] Yamashita, Y., Baba, T., Nishimura, R., Ikeda, S., Takahashi, M., Ohtake, H., et al. Dynamic Contrast-Enhanced MR Imaging of Uterine Cervical Cancer: Pharmacokinetic Analysis with Histopathologic Correlation and Its Importance in Predicting the Outcome of Radiation Therapy. Radiology. 216, 803-809, 2000. [43] Daniel, M., Andrzejewski, P., Sturdza, A., Majercakova, K., Baltzer, P., Pinker, K., et al. Impact of Hibrid PET/MR Technology on Multiparametric Imaging and Treatment Response Assessment of Cervix Cancer. Radiotherapy and Oncology. 125, 420-425, 2017. [44] Guerrero, M., Li, X., Ma, L., Lider, J., Deyoung, C., Erickson, B. Simultaneous Integrated Intensity-Modulated Radiotherapy Boost for Locally Advanced Gynecological Cancer: Radiobiology and Dosimetric Considerations. International Journal Radiation Oncology Biology Physics. 62, 933-939, 2005. [45] Feng, C., Hasan, Y., Kopec, M., Al-Hallaq, H. Simultaneously Integrated Boost (SIB) Spares OAR and Reduces treatment time in Locally Advanced Cervical Cancer. Journal of Applied Clinical Medical Physics. 17, 76-89, 2016. [46] Arnesen, M., Rekstad, B., Stokke, C., Bruheim, K., Londalen, A., Hellebust, T., et al. Short-Course PET Based Simultaneous Integrated Boost for Locally Advanced Cervical Cancer. Radiation Oncology. 11, 1-8, 2016. [47] Cihoric, N., Tapia, C., Kruger, K., Aaebersold, D., Klaeser, B., Lossl, K. IMRT with 18FDG-PET Based Simultaneous Integrated Boost for Treatment of Nodal Positive Cervical Cancer. Radiation Oncology. 9, 1-8, 2014. [48] Cree, A., Livsey, J., Barraclough, L., Dubec, M., Hambrock, T., Van Herk, M. et al. The Potential Value of MRI in External-Beam Radiotherapy for Cervical Cancer. Clinical Oncology, 30, 737-750, 2018. [49] Paulson, E., Crijns, S., Keller, B., Wang, J., Schmidt, M., Coutts, G., et al. Consensus Opinion on MRI Simulation for External Beam Radiation Treatment Planning. Radiotherapy and Oncology. 121, 187-192, 2016. [50] Devic, S. MRI Simulation for Radiotherapy Treatment Planning. Medical Physics. 39, 6701-6711, 2012. [51] Barillot, I., Reynaud, A. The Use of MRI in Planning Radiotherapy for Gynecological Tumours. Cancer Imaging. 6, 100-106, 2006. [52] Liney, G., Moerland, M. Magnetic Resonance Imaging Acquisition Techniques for Radiotherapy Planning. Radiation Oncology. 24, 160-168, 2014. [53] Brock, K., Dawson, L. Principles of Magnetic Resonance Imaging Integration in a Computed Tomography-Based Radiotherapy Workflow. Radiation Oncology. 24, 169-174, 2014. [54] Schmidt, M., Payne, G. Radiotherapy Planning Using MRI. Physics in Medicine and Biology. 60, 323-361, 2015. [55] Chan, P., Dinniwell, R., Haider, M., Bin Cho, Y., Jafray, D., Lockwood, G., et al. Inter- and Intrafractional Tumor and Organ Movement in Patients with Cervical Cancer Undergoing Radiotherapy: A Cinematic-MRI Point of Interest Study. International Journal Oncology Biology Physics. 70, 1507-1515, 2008. [56] Lee, C., Shrieve, D., Gaffney, D. Rapid Involution and Mobility of Carcinoma of the Cervix. International Journal Oncology Biology Physics. 58, 625-630, 2004. [57] Lim, K., Kelly, V., Stewart, J., Xie, J., Cho, Y., Moseley, J., et al. Pelvic Radiotherapy for Cancer of the Cervix: Is What You Plan Actually What Deliver? International Journal Oncology Biology Physics. 74, 304-312, 2009. [58] Seppenwoolde, Y., Stock, M., Buschmann, M., Georg, D., Bauer, K., Potter, R., et al. Impact of Organ Shape Variations on Margin Concepts for Cervix Cancer ART. Radiotherapy and Oncology. 120, 526-531, 2016. [59] Schippers, M., Bol, G., Leeuw, A., Heide, U., Raaymakers, Bas., Verkooijen, H., et al. Position Shifts and Volume Changes of Pelvic and Para-aortic Nodes During IMRT for Patients with Cervical Cancer. Radiotherapy and Oncology. 111, 442-445, 2014. [60] Platero, J., Guirado, D., Sanchez, A., Ruiz, W., Velázquez, S. Radiobiología Clínica. 1ª ed. Madrid: Sociedad Española de Física Médica, 2003. [61] Gasinska, A., Fowler, J., Lind, B., Urbamski, K. Influence of Overall Treatment Time and Radiobiological Parameters on Biologically Effective Doses in Cervical Cancer Patients Treated with Radiation Therapy Alone. Acta Oncológica. 43, 657-666, 2004. |
Materias: | Medicina > Medicina nuclear Medicina > Radioterapia |
Divisiones: | Fundación Centro de Medicina Nuclear y Molecular de Entre Ríos |
Código ID: | 771 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 24 Feb 2021 10:17 |
Última Modificación: | 24 Feb 2021 10:17 |
Personal del repositorio solamente: página de control del documento