Evaluación de la biodistribución y dosis absorbidas en aplicaciones terapéuticas con 223"Ra en pacientes con cáncer de próstata. / Evaluation of biodistribution and absorbed dose in therapeutic application with 223"Ra in patients with prostate cancer.

Porini, Sabrina L. (2018) Evaluación de la biodistribución y dosis absorbidas en aplicaciones terapéuticas con 223"Ra en pacientes con cáncer de próstata. / Evaluation of biodistribution and absorbed dose in therapeutic application with 223"Ra in patients with prostate cancer. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
17Mb

Resumen en español

El cáncer de próstata es una de las principales causas de muerte por cáncer entre los hombres en la Argentina y en el mundo. Esta enfermedad afecta principalmente a los hombres mayores de 65 años. Si es detectada en un estadio temprano las posibilidades de curación son altas pero si se detecta en un estadio avanzado, en donde el cáncer se ha diseminado al resto del cuerpo, se vuelve difícil combatirla. El Dicloruro de Radio-223 (223"RaCl_2) es un radiofármaco que se utiliza para tratar el cáncer de próstata en el estadio en el cual se ha propagado a los huesos formando metástasis. Las propiedades físicas y químicas del 223"Ra producen un efecto terapéutico sobre las metástasis oseas. Por su parte, el 223"Ra es principalmente un emisor de partículas alfa. Cuenta con una progenie radiactiva de seis hijas que decaen, emitiendo a su vez partículas alfa y beta, hasta llegar al 207Pb estable. El 223"Ra, gracias a su configuración electrónica externa, posee una alta anidad por los sitios metastásicos óseos. Una vez depositado sobre la superficie del hueso, este radionucleido y su progenie emiten radiación ionizante, que extermina principalmente a las células cancerosas. En Medicina Nuclear, es muy importante cuantificar la entrega de radiación al paciente, de modo de otorgarle el mejor beneficio con el menor detrimento posible. Por lo tanto, estudiar la dosimetría y la biodistribución de los radiofármacos en el cuerpo humano es esencial. En la presente tesis de maestría, se propuso realizar un estudio de biodistribución y dosimetría del radiofármaco marcado con 223"Ra, administrado a un paciente con cáncer de próstata con metástasis oseas. El estudio consistió en la adquisición de imágenes del paciente bajo tratamiento utilizando una cámara gamma. A partir de las imágenes obtenidas y de un método de calculo disimétrico llamado MIRD (Medical Internal Radiation Dose), comunmente usado en Medicina Nuclear [1, 2], se determino la dosis absorbida en distintas regiones de interés del cuerpo del paciente. El procedimiento para la adquisición de las imágenes de 223"Ra y su progenie se definió mediante un protocolo, el cual se baso en la adquisición de imágenes planares del paciente inyectado con el radiofármaco. Posteriormente, mediante un software específico se cuantificaron las imágenes adquiridas y se determino la actividad presente en regiones de interés del cuerpo del paciente. Finalmente, con los datos obtenidos se calculo la dosis absorbida en cada una de estas regiones siguiendo los lineamientos establecidos en el método de calculo MIRD. Simultáneamente, se realizaron simulaciones con un programa Monte Carlo, llamado ATE [3]. Este programa permite calcular en modo directo parámetros disimétricos como la energía depositada y la dosis absorbida, debido a la desintegración de isotopos radiactivos como el 223"Ra, en cada punto de un determinado medio. El objetivo principal de las simulaciones con GATE fue el de determinar un factor fundamental en dosimetría interna utilizado para el calculo de la dosis absorbida. Este factor se denomina comúnmente valor S y esta definido como la dosis media absorbida en una región blanco, por desintegración del isotopo radiactivo, en una región fuente. Por consiguiente, este valor es constante para la posición y el tamaño de una fuente y de un blanco y para las propiedades del radionucleido considerado. Las simulaciones realizadas con GATE consistieron en la reproducción virtual del decaimiento de una fuente de 223"Ra en el volumen de esferas de agua de diferentes dimensiones. Con los datos de la energía depositada en cada una de las esferas, obtenidos mediante el programa GATE, se calculo la dosis media absorbida por desintegración de 223"Ra, es decir el valor S de 223"Ra para cada una de las esferas simuladas. Con el propósito de validar los resultados obtenidos con el programa GATE para el parámetro S, se realizo una comparación de los valores S obtenidos con GATE con los obtenidos mediante el software OLINDA/EXM, de uso corriente en los servicios de Medicina Nuclear para estudios disimétricos [4]. La comparación evidencio una diferencia relativa, entre los valores S determinados con ambos programas, menor al 1,5%. También se propuso verificar el carácter constante del producto de cada valor S por la masa de su respectiva esfera. Por definicion el valor S es inversamente proporcional a la masa y directamente proporcional a un termino constante característico del radioisotopo. En este termino se encuentran definidas las energías de la radiación emitida por transición nuclear y la fracción de energía absorbida por el medio relativa al tipo de radiación emitida. El resultado del producto (S.m) resulto constante para todas las esferas. Siempre mediante las simulaciones con GATE se propuso verificar la energía emitida por desintegración de 223"Ra en fantomas esféricos de agua. El valor de esta energía, en todos los fantomas, fue aproximadamente 5,77 MeV por desintegración de 223"Ra. Este valor se aproxima a los valores de energía emitida mas probables encontrados, en literatura que van desde los 5,54 MeV hasta los 5,75 MeV por desintegración de 223"Ra [5]. Finalmente, mediante el programa GATE se simulo la desintegración de una fuente de 223"Ra y su progenie en un fantoma de agua virtual identifico al volumen de las regiones de interés evaluadas en las imágenes adquiridas del paciente inyectado con Dicloruro de Radio-223 en la primera parte de nuestros estudios. El objetivo de esta simulación fue calcular el valor de S del 223"Ra y su progenie. Una vez obtenido este valor se lo comparo con el valor de S calculado con el método de calculo MIRD. La diferencia relativa entre ambos valores S fue aproximadamente del 1%. Por otro lado, se evaluó la energía depositada por desintegración del 223"Ra y su progenie. El valor encontrado para esta energía fue aproximadamente 27,86 MeV. La diferencia relativa encontrada entre este valor obtenido con GATE y el valor publicado en otros estudios [6] fue aproximadamente 1,2%, lo cual se considera un buen resultado de la energía depositada simulada por el programa GATE. Consideramos importante seguir trabajando con las simulaciones mediante un programa como GATE. Este programa, además de calcular la energía depositada por una fuente radiactiva y la dosis absorbida en volúmenes simétricos como las esferas, también permite virtualizar partes del cuerpo humano a partir de la segmentación de órganos y tejidos en las imágenes tomográficas del paciente. Por lo tanto, mediante GATE sería posible calcular el valor S del 223"Ra y su progenie en los órganos y tejidos de interés del cuerpo de pacientes reales. Este valor es fundamental en el método MIRD para el calculo de la dosis absorbida. Las simulaciones Monte Carlo pueden resultar una herramienta de apoyo muy útil en Medicina Nuclear cuando se trabaja con radionucleidos terapéuticos como el 223"Ra, dado que para las simulaciones no se requiere la presencia del radiofármaco. Sabemos que el mismo, posee un elevado costo y su disponibilidad esta sujeta a la realización de cada tratamiento. También se podría emplear el programa GATE para simular fuentes con geometrías símiles a la de los sitios de mayor captación y retención de 223"Ra y su progenie. En el tejido oseo sería ideal poder determinar la energía depositada en los nichos trabeculares óseos en proximidades de las metástasis oseas. Por medio de estas simulaciones, se podría estimar la dosis absorbida particularmente por la médula ósea allá presente, que al ser un tejido de elevada radiosensibilidad, limita la cantidad de actividad que un paciente puede recibir.

Resumen en inglés

Prostate cancer is one of the leading causes of cancer deaths among men worldwide and in Argentina. This disease aects mainly men over 65 years old. If it is detected at an early stage, the possibilities of healing are high but if it is detected at an advanced stage, where the cancer has spread to the rest of the body, it becomes diffcult to ght against it. Radium-223 dichloride (223"RaCl_2) is a radiopharmaceutical that is being used to treat prostate cancer at the stage where it has spread to the bones, forming metastasis. The physical and chemical properties of 223"Ra produce a therapeutic effect on bone metastases. In one hand, 223"Ra is mainly an alpha emitter. It has a radioactive progeny of six daughters, that decay by emitting alpha and beta particles, to reach stable lead (207Pb). Due to its external electronic conguration, 223Ra, also has a high afinity for sites of bone metastasis. Once it has been deposited on the tumor site, 223"Ra and its progeny emits ionizing radiation that exterminates mainly carcinogenic cells. In Nuclear Medicine, it is very important to quantify the radiation delivered to patients, in order to give them the best benet out of the treatment with the least possible detriment. Therefore, it is essential to study the dosimetry and biodistribution of radiopharmaceuticals in the human body. In the present master's thesis, it has been proposed to carry out a biodistribution and dosimetry study of the radiopharmaceutical labeled with 223"Ra, which was administered to a patient with prostate cancer and with bone metastases. The study consisted in the acquisition of images of the patient under treatment using a gamma camera. Based on the images obtained and with a dosimetric calculation method called MIRD (Medical Internal Radiation Dose) [1, 2], commonly used in Nuclear Medicine, the absorbed dose was determined in different regions of interest of the patient's body. The procedure for the acquisition of images of 223"Ra and its progeny was dened through a protocol, which was based on the acquisition of planar images of the patient injected with the radiopharmaceutical. Subsequently, by employing an image quantication software the activity present at the regions of interest of the patient's body was determined. Finally, with the data obtained, the absorbed dose in each of these regions was calculated following the guidelines established in the MIRD calculational method. Simultaneously, simulations were carried out with a Monte Carlo program, called GATE [3]. This program allows the calculation in a direct mode of dosimetric parameters such as the energy deposited and the absorbed dose, at each point in a given medium, due to the disintegration of radioactive isotopes like 223"Ra. The main goal of the simulations with GATE was to determine a fundamental factor in internal dosimetry used for the calculation of the absorbed dose. This factor is commonly known as the S-value and is dened as the average absorbed dose in a target region, due to the disintegration of a radioactive isotope, in a source region. Therefore, this value is constant for the position and size of a source and a target regions and for the properties of the radionuclide being considered. The simulations with GATE consisted of virtual reproductions of a decaying source of 223"Ra inside the volume of water spheres of different dimensions. With the data of the energy deposited, per disintegration of 223Ra, in each of the spheres obtained through the GATE program the mean abosorbed dose was calculated, that is to say the S-value of 223"Ra for each of the spheres. In order to validate the results obtained with the GATE program for the S parameter, a comparison was made with those obtained by the software OLINDA/ EXM, commonly used in Nuclear Medicine services for dosimetric studies [4]. The comparison showed a relative difference between the S-values determined with both programs, less than 1,5%. It was also proposed to verify the constant nature of the product of each S-value by the mass of its respective sphere. By denition, the S-value is inversely proportional to the mass and directly proportional to a constant term characteristic of the radioisotope. In this term, the emitted radiation energies per nuclear transition are dened as well as the energy absorbed fraction by the medium relative to each type of radiation emitted. The result for the product (S.m) was constant for all spheres. Always through GATE simulations it was proposed to verify the energy emitted by disintegration of 223"Ra in spherical water phantoms. This energy value, in all of the phantoms, was approximately 5,77 MeV per disintegration of 223"Ra. This value approximates the most likely values of emitted energy per desintegration of 223"Ra found in literature. These values lies within a range that goes from 5,54 MeV up to 5,75 MeV [5]. Finally, by means of the GATE program, it was simulated the disintegration a of source of 223"Ra and its progeny in a virtual water phantom identical to the volume of the regions of interest evaluated in the images acquired of the patient, who was injected with Radium-223 Dichloride. The goal of this simulation was to calculate the S-value of 223"Ra and its progeny. Once this value was obtained it was compared with the S-value calculated by the MIRD calculational method. The relative dierence between both the S-values was approximately 1%. On the other hand, the energy deposited by desintegration of 223"Ra and its progeny was assessed. The value found for this energy, was approximately 27,86 MeV. The relative difference found between this value obtained with GATE and the value published in other studies [6] it was approximately 1,2%, which was considered a good result for the energy deposited by 223"Ra, simulated by the GATE program. We consider that it is important to continue working on simulations through programs like GATE. This program, besides calculating the energy deposited by a radioactive source and the absorbed dose in symmetrical volumes such as spheres, also allows to virtualise parts of the human body from the segmentation of organs and tissues in tomographic images of the patient. Therefore, through GATE program it would be possible to calculate the S-value of 223"Ra and its progeny, in organs and tissues of interest. This value is fundamental in the MIRD method for calculating of the dose absorbed. Monte Carlo simulations can be a very useful and supporting tool in Nuclear Medicine, when working with therapeutic radionuclides such as 223"Ra. Mainly because its presence is not required for the simulations and because we know that it has a high cost and its availability is subject to the completion of each treatment. In particular, the GATE program could also be used to simulate sources with geometries similar to that of the sites with the highest uptake and retention of 223"Ra and its progeny. In the bone tissue it would be important to determine the energy deposited in the trabecular bone niches in proximities of bone metastases. In this way, it could be assessed the absorbed dose in the bone marrow, which is present therein and that has a high radiosensitivity, which limits the amount of activity that a patient can receive.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Prostate; Próstata, Neoplasms; Cáncer; Dosimitry; Dosimetría
Referencias:[1] Loevinger R., Budinger IF., and Watson EE. MIRD primer for absorbed dose calculations. The Society of Nuclear Physics. Medical Internal Radiation Dose Committee. Revised Edition, 1991. [2] Loevinger R. and Berman M. A revised schema for calculating the absorbed dose from biologically distributed radionuclides, MIRD Pamphlet No. 1 Revised. The Society of Nuclear Medicine. Medical Internal Radiation Dose Committee., 1976. [3] OpenGate collaboration group. Users Guide v7.2. Last modied on 8th February 2016. Disponible en <http://wiki.opengatecollaboration.org>. [4] Stabin MG., Sparks RB., and Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med, 46:1023-7, 2005. [5] 223Ra. LNE - LNHB/CEA Table de Radionucleides. Disponible en: <http://www.nucleide.org>. [6] Flux GD. Imaging and dosimetry for radium-223: the potential for personalized treatment. Br J Radiol, 90:20160748, 2017. Disponible en: <https://doi.org/10.1259/bjr.20160748>. [7] Ferlay J., Soerjomataran I., Ervik M., Dikshit R, Eser S., and Mathers C. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. 2013. Disponible en: <http://globocan.iarc.fr. Consultado el 17 Ene 2018>. [8] Ferlay L., Soerjomataran I., Dikshit R., Eser S., Mathers C., and Rebelo M. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5):E359-E386. Doi:10.1002/ijc.29210. [9] Nilsson S. Radium-223 Therapy of Bone Metastases in Prostate Cancer. Semin Nucl Med., 46(6):544-556, 2016. Doi:10.1053/j.semnuclmed.2016.07.007. [10] Bruland S., Nilsson S., Fisher DR., and Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223-Ra: adjuvant or alternative to conventional modalities? Clin. Cancer Res., 12(20Pt 2):6250s-7s, 2006. [11] Michaelson MD., Cotter SE., Gargollo PC., Zietman AL., Dahl DM., and Smith MR. Management of Complications of Prostate Cancer Treatment. A cancer journal for clinicians, 58(4):196-213, 2008. Doi:10.3322/CA.2008.0002. [12] Nilsson S. Radionuclide therapies in prostate cancer: Integrating radium-223 in the treatment of patients with metastatic castration-resistant prostate cancer. Curr Oncol Rep., 18:14, 2016. [13] Oyen W., Sundram F., Haug. AR, Kairemo K., Lewington V., and Maenpaa H. Radium-223 Dichloride (Ra-223) for the Treatment of Metastatic Castrationresistant Prostate Cancer: Optimizing Clinical Practice in Nuclear Medicine Centers. Journal of OncoPathology, pages 1-25, 2015. Doi:10.13032/tjop.2052-5931.100121. [14] Bayer HealthCare Pharmaceuticals. Full prescribing information. XOFIGO (Radium-223 dichloride). Injection, for intravenous use. 2013. Consultado el 12 May 2017. Disponible en: <http://www.accessdata.fda.gov>. [15] Bayer AG. Radium-223 dichloride EMA summary of product characteristics. Consultado el 12 May 2017. Disponible en: <http://www.ema.europa.eu>. [16] Bruland S., Jonasdottir TJ., Fisher DR., and Larsen RH. Radium-223: From Radiochemical Development to Clinical Applications in Targeted Cancer Therapy. Current Radiopharmaceuticals. Journal of Nuclear Medicine, 1(3):203-208, Sep 2008. Doi:102174/1874471010801030203. [17] Wikipedia contributors. Bethe formula | Wikipedia, The Free Encyclopedia, Consultado el 19 Oct 2018. Disponible en: <https://en.wikipedia.org>. [18] Abou SD., Ulmert D., Doucet M., Hobbs R., Riddle R., and Thorek LJD. Whole-Body and Microenvironmental Localization of Radium-223 in Nave and Mouse Models of Prostate Cancer Metastasis. J Natl Cancer Inst., 108(5):1-9, 2016. Epub: 18 Dec 2015. [19] Turner PG., and O'Sullivan JM. 223Ra and other bone-targeting radiopharmaceuticals-the translation of radiation biology into clinical practice. Br J Radiol, page 88:20140752, 2015. Doi:10.1259/bjr.20140752. [20] Speer T.W. Targeted Radionuclide Therapy. 2010. ISBN:9780781796934. [21] Henriksen G., Fisher DR., Roeske JC., Bruland S., and Larsen RH. Targeting of osseous sites with -emitting 223Ra: comparison with the -emitter 89Sr in mice. Journal of Nuclear Medicine, 44(2):252-259, 2003. [22] Siegel AJ., Thomas SR., Stubbs JB., Stabin MG., Hays MT., and Koral KF. MIRD Pamphlet N 16: Techniques for Quantitative Radiopharmaceutical Biodistribution Data Acquisition and Analysis for Use in Human Radiation Dose Estimates. J Nuc Med, pages 4037S-61S, 1999. [23] Bubendorf L., Schoepfer A., Wagner U., Sauter G., Moch H., and Willi N. Human Pathology. Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. 31:578-583, 2000. [24] Weinfurt KP., Li Y., Castel LD., Saad F., Timbie JW., Glendenning GA., and Schulman KA. The signicance of skeletal-related events for the health-related quality of life of patients with metastatic prostate cancer. Annals of Oncology, 16(4):579-584, 2005. Doi:10.1093/annonc/mdi122. [25] Saunders - Elsevier. Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health. 2003. 7th edition. Disponible en: <https://medicaldictionary. thefreedictionary.com/prostate>. [26] Johns Hopkins Medicine. Health Library. Anatomy of the Prostate Gland. Disponible en <https://www.hopkinsmedicine.org/healthlibrary>. P01257. [27] Dunglison R. A dictionary of Medical Science: Containing a Conscise Account of the Various Subjects and Terms. 1846. 6th Edition. Ed. Lea and Blanchard. Philadelphia. [28] Xue Y., Sonke G., Schoots C., Schalken J., Verhofstad A., and De La Rosette J. Proliferative activity and branching morphogenesis in the human prostate: a closer look at pre- and postnatal prostate growth [online]. 49:132-9, 2001. Disponible en: <https://www.ncbi.nlm.nih.gov/m/pubmed/11582592>. [29] Wein AJ., Kavoussi LR., Partin AW., and Novick AC. Campbell-Walsh: Urología, 3:2711, 2008. [30] Berges RR., Vukanovic J., Epstein JI., CarMichel M., Cisek L., and Johnson DE. Implication of Cell Kinetic Changes during the Progression of Human Prostatic Cancer. Clin. Cancer Res., 1:473-80, 1995. [31] Xing N., Chen Y., Mitchell SH., and Young CYF. Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis, 22(3):409-414, 2001. Doi:10.1093/carcin/22.3.409. [32] Wikipedia. La enciclopedia libre. Testosterona., Consultado en 2017. Disponible en: <https://es.wikipedia.org>. [33] McVary Kevin T. BPH: Epidemiology and Comorbidities. Am J Manag Care, 12:S122-S128, 2006. [34] Dobs A., Rosner W., and Wilson J. Hiperplasia prostatica benigna (Agrandamiento de la próstata). The Journal of Clinical Endocrinology & Metabolism, 90(10):E1, 2005. Doi:10.1210/jcem.90.10.9992. [35] Longe Jacqueline L. Prostate Cancer. The Gale Encyclopedia of Medicine, Consultado el 16 Ene 2018. Disponible en: <https://medical-dictionary.thefreedictionary.com>. [36] Instituto Nacional del Cáncer. Ministerio de Salud. Presidencia de la Nación. Cáncer de próstata. Diagnóstico y tratamiento. Acceso: 12 Feb 2018. Disponible en: <http://www.msal.gov.ar/inc>. [37] Instituto Nacional del Cáncer. Tratamiento del cáncer de próstata PDQr - Versión para para profesionales de salud. Consultado el 10 Nov 2017. Disponible en: <https://www.cancer.gov/espanol>. [38] Bray F., Ren JS., Masuyer E., and Ferlay J. Estimates of global cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer., 132:1133-45, 2013. Doi:10.1002/ijc.27711. [39] International Agency for Research on Cancer. GLOBOCAN 2012 (IARC). Section of Cancer Surveillance. Population fact sheets, consultado el 17 Ene 2018. Disponible en: <http://gco.iarc.fr/today>. [40] Shore Neal. Management of early-stage prostate cancer. The American journal of managed care, 20(12):S260-72, 2014. Disponible en: <http://europepmc.org/abstract/MED/25734965>. [41] Catalona WJ, Smith DS., Ratliff TL., Dodds KM., Coplen DE., and Yuan JJ. Measurement of Prostate-Specic Antigen in Serum as a Screening Test for Prostate Cancer. New England Journal of Medicine, 324(17):1156-1161, 1991. Doi:10.1056/NEJM199104253241702. [42] Lojanapiwat B., Anutrakulchai W., Chongruksut W., and Udomphot C. Correlation and diagnostic performance of the prostate-specic antigen level with the diagnosis, aggressiveness, and bone metastasis of prostate cancer in clinical practice. Prostate international, 2014. Doi:10.12954/PI.14054. [43] Heidenreich A., Bolla M., Joniau S., Mason MD., Matveev N., and Mottet N. Guía clínica sobre el cáncer de próstata. European Association of Urology, pages 22-42. Actualización: abril 2010. [44] Haid M., Rabin D., King KM., Feinstein CM., Janson KL., and Levine SR. Digital rectal examination, serum prostate specic antigen, and prostatic ultrasound: how effective is this diagnostic triad? J Surg Oncol., 56:32-38, 1994. [45] Kheiraoui F., Favaretti C., Ferriero AM., Sacchini D., Danesi R., and De Vincentis G. Radio-223 nel trattamento del carcinoma della prostata metastatico resistente alla castrazione (mCRPC): risultati di una valutazione di Health Technology Assessment. QIJPH, 5(7), 2016. [46] Norum J., Traasdahl ER., Totth A., Nieder C., and Olsen JA. Health Economics and Radium-223 (Xogo R) in the Treatment of Metastatic Castration- Resistant Prostate Cancer (mCRPC): A Case History and a Systematic Review of the Literature. Global Journal of Health Science, 8(4):1-9, 2016. Doi:10.5539/gjhs.v8n4p1. [47] American Joint Committee on Cancer. AJCC Cancer Staging Manual. volume Springer. 6th Edition, 2002. [48] Wikipedia. La enciclopedia libre. Escala de Gleason. Consultado en 2017. Disponible en: <https://es.wikipedia.org>. [49] Cedo MB. Skeletal implications of prostate cancer. J Musculoskel Neuron Interact, 3(2):112-117, 2003. [50] Costa L., Badia X., Chow E., Lipton A., and Wardley A. Impact of skeletal complications on patient's quality of life, mobility, and functional independence. Support Care Cancer - Review, 16:879-889, 2008. Doi:10.1007/s00520-008-0418-0. [51] Thomson Jon C. Netter. Atlas práctico de anatomía ortopédica. Cap.1,2, 2011. 2nd ed. ISBN:8445821008. [52] Panchbhavi Vinod K. Bone Marrow Anatomy. Updated: 2017/11/29. Disponible en <https://emedicine.medscape.com/article/1968326-overview>. [53] International Atomic Energy Agency. American Association of Physicists in Medicine. Asia-Oceania Federation of Organizations for Medical Physics. European Federation of Organizations for Medical Physics. Diagnostic Radiology Physics: a handbook for teachers and students. 2014. Disponible en: <https://www-pub.iaea.org>. [54] Lassmann M., Hansched H., Chiesa C., Hindorf C., Flux GD, Luster M., and EANM Dosimetry Committee. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging, 35(7):1405-12, 2008. Doi:10.1007/s00259-008-0761-x. [55] J. Lata. Fisiología y siopatología osea - Physiology and bone physiopathology. An. Sist. Sanit. Navar., 26(3), 2003. [56] Jin JK., Dayyani F., and Gallick GE. Steps in Prostate Cancer Progression that lead to Bone Metastasis. International journal of cancer Journal international du cancer, 128(11):2545-2561, 2011. Doi:10.1002/ijc.26024. [57] Salas-Herrera I. and Huertas-Gabert LC. Dolor oseo inducido por cáncer metastásico: Fisiopatología y Tratamiento. Acta med. costarric, 46(1):07-12, 2004. ISSN:0001-6012. [58] Parker C., Nilsson S., Heinrich D., Helle SI., O'Sullivan JM., and Fossa SD. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med., 369:213-23, 2013. [59] Henriksen G., Breistol K., Bruland S., Fodstad O., and Larsen RH. Signi cant Antitumor Effect from Bone-seeking, alpha-particle-emitting 223Ra Demonstrated in an Experimental Skeletal Metastases Model. Cancer Research, 62:3120-3125, 2002. [60] Suominen MI., Fagerlund KM., Rissanen JP., Konkol YM., Morko JP, and Peng Z. Radium-223 inhibits osseous prostate cancer growth by dual targeting of cancer cells and bone microenvironment in mouse models. Clin Cancer Res., 2017. Doi:10.1158/1078-0432.CCR-16-2955. [61] Parker C., Heidenreich A., Nilsson S., Shore N., Fossa SD., and Chodacki A. Current approaches to incorporation of radium-223 in clinical practice. Prostate Cancer and Prostatic Diseases-Review article, 2018. Doi:10.1038/s41391-017-0020-y. [62] Science Encyclopedia. Alkaline Earth Metals - Beryllium, Magnesium, Calcium, Strontium, Barium, Radium [online]. Consultado en Nov 2017. Disponible en: <http://science.jrank.org/pages/225/Alkaline-Earth-Metals.html>. [63] Du Y., Carrio I., De Vincentis G., Fanti S., Ilhan H., and Mommsen C. Practical recommendations for radium-223 treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging, 2017. Doi:10.1007/s00259-017-3756-7. [64] Wikipedia. Cadena de desintegración - Wikipedia, la enciclopedia libre. Descargado el 17 Sep 2018. Disponible en: <https://es.wikipedia.org>. [65] Kukleva E., Kozempel J., Vlk M., Micolova P., and Vopalka D. Preparation of 227Ac/223Ra by neutron irradiation of 226Ra. Journal of Radioanalytical and Nuclear Chemistry, 304(1), 2014. Doi:10.1007/s10967-014-3432-3. [66] Laboratoire National Henri Becquerel. Atomic and Nuclear data [en línea]. [Consultado el: 7 Oct 2017]. <http://www.lnhb.fr/nuclear-data/nuclear-datatable/>. [67] Skarsgard LD. Radiobiology with heavy charged particles: a historical review. Phys Med, 14:1-19, 1998. [68] Sgouros G., Roeske J., McDevitt MR., Palm S., Allen B., and Fisher DR. MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of -Particle Emitters for Targeted Radionuclide Therapy. J Nuc Med, 51(2):311-328, 2010. [69] Bioing. Escobar Pedro Pablo. Medicina Nuclear - Cámara Gamma. Medicina Nuclear Capítulo 4. Electromedicina [online]. Disponible en: <https://es.slideshare.net/MANUEL0104/mn20-20clase204>. Consultado el 23 Oct 2018. [70] Scuffham et al. J. Imaging of Ra-223 with a small-pixel CdTe detector. JINST, 10(01):C01029, 2015. [71] Nilsson S., Franzen L., Parker C., Tyrrell C., Blom R., and Tennvall J. Bonetargeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Clin Cancer Res, 8:587-594, 2007. Doi:10.1016/s1470-2045(07)70147-x. [72] Nilsson S., Larsen RH, and Fossa SD. First clinical experience with alphaemitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res, 11:4451-4459, 2005. [73] Nilsson S., Strang P., Aksnes AK., Franzen L., Olivier P., and Pecking A. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur J Cancer, 48:678{86, 2012. Doi:10.1016/j.ejca.2011.12.023. [74] Parker C., Heinrich D., Helle SI., O'Sullivan JM., Fossa SD., and Chodacki A. Overall survival benet and impact on skeletal-related events for radium-223 chloride (Alpharadin) in the treatment of castration-resistant prostate cancer (CRPC) patients with bone metastases: a phase III randomized trial (ALSYMPCA). Eur Urol Suppl, 11:E130-U523, 2012. [75] Bayer HealthCare Pharmaceuticals Inc. Highlights of Prescribing Information. XOFIGO (Radium{223 Dichloride). Injection, for Intravenous Use, Initial U.S. Approval:2013. Revised May 2017. Disponible en: <http://www.fda.gov/medwatch>. [76] Hindorf C., Glatting G., Chiesa C., Linden O., and Flux GD. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging, pages 1-13, 2010. doi:10.1007/s00259-010-1422-4. [77] Hague C., Logue J., editors: Schoenfelder V., Lichti G., and Winkler C. Clinical experience with radium-223 in the treatment of patients with advanced castrate-resistant prostate cancer and symptomatic bone metastases. Therapeutic Advances in Urology, 8:175-180, 2016. Doi:10.1177/1756287216629870. [78] Chittenden SJ., Hindorf C., Parker CC., Lewington VJ., Pratt BE., Johnson B., and Flux GD. A Phase 1, Open-Label Study of the Biodistribution, Pharmacokinetics, and Dosimetry of 223Ra-Dichloride in Patients with Hormone- Refractory Prostate Cancer and Skeletal Metastases. The Journal of Nuclear Medicine, 56:1-7, 2015. Doi:10.2967/jnumed.115.157123. [79] Nuclear Fields. Collimators for Nuclear Medicine. Collimator List [en línea]. [Consultado en: May 2017]. <http://www.nuclearelds.com/collimatorslist.htm>. [80] Hindorf C., Chittenden S., Aksnes AK., Parker C., and Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl Med Commun, 33:726-732, 2012. [81] Illanes L. and Etcheverri MA. Física de la medicina nuclear: introducción al control y verificación de los equipos, una guía práctica. 1ra. ed. 2016. Universidad Nacional de La Plata. [82] Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., and Pietzsch T. Fiji: an open-source platform for biological-image analysis. Nature methods, 9:676-682, 2012. PMID 22743772. Doi:10.1038/nmeth.2019. [83] Carrasquillo JA., O'Donoghue JA., Pandit-Taskar N., Humm JL., Rathkopf DE., and Slovin SF. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castration-resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging, 2013. Doi:10.1007/s00259-013-2427-6. [84] McNair A. ICRU Report 33 - Radiation Quantities and Units Pub: International Commission on Radiation Units and Measurements. Journal of Labelled Compounds and Radiopharmaceuticals, 18(9):1398-1398, 1981. Doi:10.1002/jlcr.2580180918. [85] Stabin MG. Demystifying internal dose calculations. Health Physics. Report of Committee ii on Permissible Dose for Internal Radiation, 3, 1960. [86] Snyder WS., Ford MR.,Warner GG., andWatson SB. nm/mird panphlet N 11: "S,"Absorbed Dose per Unit Cumulated Activity for selected Radionuclides and Organs. The Society of Nuclear Medicine, page 69, 1975. [87] Visvikis D., Bardies M., Chiavassa S., Danford C., Kirov A., Lamare F., and Maigne L. Use of the GATE Monte Carlo package for dosimetry applications. Nucl Instr Methods Phys Res Sect A. Elsevier Science, 569:335-340, 2006. [88] Ferrer L., Chouin N., and Bitar A. Implementing dosimetry in GATE: Dosepoint kernel validation with GEANT4 4.8.1. Cancer Biother Radiopharmaceuticals, 22:125-129, 2007. [89] Sarrut D., Bardiffes M., Boussion N., Freud N., Jan S., and Letang JM. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med. Phys., 41:064301-14, 2014. Doi:0094-2405/2014/41(6)/064301/14/$30.00. [90] Kane R. and Ma PX. Mimicking the nanostructure of bone matrix to regenerate bone. Materials Today. Elsevier Inc., 16(11):418-423, 2013. Doi:10.1016/j.mattod.2013.11.001. [91] Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J. Nucl. Med., 34:689-94, 1993.
Materias:Medicina > Medicina nuclear
Medicina > Física médica
Divisiones:FUESMEN
Código ID:775
Depositado Por:Tamara Cárcamo
Depositado En:17 Feb 2021 09:10
Última Modificación:17 Feb 2021 09:44

Personal del repositorio solamente: página de control del documento