Estudio de compuestos Sr_2MgMo_0.9A_0.1O_6-[Delta] (A = Co, Mn y Ni) como material de ánodo SOFCs. / Study of Sr_2MgMo_0.9A_0.1O_6-[Delta] (A = Co, Mn y Ni) as SOFC anode mater.

Dager Caballero, Paola K. (2018) Estudio de compuestos Sr_2MgMo_0.9A_0.1O_6-[Delta] (A = Co, Mn y Ni) como material de ánodo SOFCs. / Study of Sr_2MgMo_0.9A_0.1O_6-[Delta] (A = Co, Mn y Ni) as SOFC anode mater. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

En esta tesis se desarrolló la síntesis y caracterización de compuestos dobles perovskitas Sr_2MgMoO_6 con sustituciones parciales en el sitio del Mo por metales de transición Co, Mn y Ni; es decir, Sr_2MgMo_0.9A_0.1O_6-δ (SMMA, A = Co, Mn y Ni). A la fecha de ejecución de este trabajo sólo se han reportado para el sitio-Mo, sustituciones parciales con Nb, W y V, mientras que, los metales de transición propuestos aquí han sido usados para dopar el sitio-Mg. Los compuestos Sr_2MgMoO_6 y Sr_2MgMo_0.9A_0.1O_6-δ fueron obtenidos a través de la síntesis por el método de combustión en solución y posterior tratamiento térmico en aire. Como parte de este trabajo se optimizaron parámetros relacionados con la síntesis (coeficiente estequiométrico, contenido de nitrato de amonio) y se ajustaron las condiciones de los tratamientos térmicos de manera de obtener materiales monofásicos. La mayoría de las síntesis reportadas en la literatura para los compuestos Sr_2MgMoO_6 y sus derivados se realizan por métodos de estado sólido y sol-gel bajo atmósfera reductora, y a temperaturas superiores a 1200 ºC, en esta tesis fue posible obtener los materiales monofásicos con tratamientos térmicos en aire a temperaturas de: 900 °C para Sr_2MgMoO_6 (SMMO), 1000 °C para Sr_2MgMo_0.9Mn_0.1O_6-δ (SMMMn), 1100 °C para Sr_2MgMo_0.9Ni_0.1O_6-δ (SMMNi) y 1200 °C para Sr_2MgMo_0.9Co_0.1O_6-δ (SMMCo). Los compuestos sintetizados en esta tesis presentan una estructura tipo sal de roca, formada por octaedros alternantes de Mo(A)O_6 y MgO_6 compartiendo las esquinas, con el Sr ubicado en las cavidades cubo-octaédricas. Estos materiales muestran una fase doble perovskita con grupo espacial 𝐼1̅ para polvos SMMO, SMMCo y SMMNi, e 𝐼4/𝑚 para SMMMn. A 800 °C en aire y bajo de 5%H_2 loscompuestos SMMO y SMMA, exhiben una estructura cúbica con grupo espacial 𝐹𝑚3̅𝑚. Estudios termogravimétricos, de titulación coulométrica y de difracción de neutrones desarrollados por otros autores, han reportado que el compuesto Sr_2MgMoO_6 es completamente estequiométrico (δ = 0) en aire. Sobre la base de estos resultados, se hicieron medidas termogravimétricas que permitieron determinar el contenido absoluto de oxígeno de los compuestos SMMO y SMMA bajo atmósfera de aire y de 10%H_2 a 800 ºC. Los ensayos TGA efectuados en esta tesis revelaron que bajo un flujo de 10%H_2 a 800 ºC, el compuestos Sr_2MgMoO_6-δ presenta una concentración de vacancias de oxígeno; δ ≈ 0,06. Mientras que, experimentos TGA en aire a 800 ºC mostraron que el ingreso de metales de transición; Co, Mn y Ni, con estados de oxidación menores al del Mo generan una deficiencia de oxígeno: 0,11 < δ < 0,27; en la doble perovskita Sr_2MgMoO_6-δ. Lo antes mencionado estaría asociado al cambio en el estado de oxidación del Mo (de 6+ a 5+), debido al ingreso de elementos aliovalentes a la estructura de SMMO. La concentración de vacancias de oxígeno aumentó durante las medidas termogravimétricas a 800 °C una vez que la atmósfera es cambiada de aire a 10%H2 (0,07 < ∆δ < 0,16). Experimentos de espectroscopia fotelectrónica de rayos X (XPS) “ex -situ” (antes y después de tratamiento térmico en 10%H_2 a 800 ºC durante 12h) sobre los materiales SMMO y SMMA, permitieron verificar los resultados obtenidos a través de medidas TGA. La concentración de vacancias de oxígeno (δ) en aire por el ingreso de metales de transición en la estructura del SMMO se puede explicar por la presencia de Mo"5+ en los compuestos SMMCo y SMMNi. Por otro lado, el cambio en la no-estequiometria de oxígeno (∆δ) en 10%H_2 a 800 ºC está vinculado al incremento del contenido de Mo"5+ en todos los compuestos (SMMO y SMMA). En los materiales dopados con Co y Mn también se presenta la reducción del estado de oxidación del metal de transición respectivo, lo que incrementa el número de vacancias de oxígeno. En el caso del compuesto SMMNi, los ensayos XPSposteriores a la calcinación en 10%H_2 señalan que la variación en el contenido de oxígeno (∆δ) se debe sólo al cambio de valencia del Mo. Medidas de conductividad eléctrica en aire y 10%H_2 en función de la temperatura indicaron que las dobles perovskitas SMMO y SMMA presentan una conductividad tipo-n. La incorporación de los metales de transición; Co, Mn y Ni resultó perjudicial para la conductividad de la doble perovskita Sr_2MgMoO_6 en aire, ya que los valores de conductividad disminuyeron de 3 × 10"−2 S/cm para SMMO a 1 × 10"−5 S/cm para SMMMn y SMMNi. Por otra parte, en atmósfera de 10%H_2 se observó que, la conductividad de la muestra no dopada, SMMO, fue de aproximadamente 0,7 S/cm; mientras que los compuestos dopados con los metales de transición; Co, Mn y Ni mostraron valores de conductividad de 0,8; 0,25 y 0,6 S/cm respectivamente. Los valores de energía de activación, Ea ~ 0,9 eV; calculados para los materiales dopados con Mn y Ni fueron asociados a conductividad predominantemente de tipo iónico. Por otro lado, los valores Ea ~ 0,3 eV para los compuestos SMMO y SMMCo se relacionaron con conductividad mayoritariamente electrónica. Los tamaños de granos de los compuestos SMMO y SMMA sintetizados en esta tesis, el cual estuvo en un rango entre 200 nm y 1 μm, tuvieron un impacto positivo sobre la respuesta electroquímica de los materiales, como fue visto por medidas de impedancia a 800 °C en 10%H_2. Los valores de resistencia de área específica para los compuestos SMMO y SMMA en condición de ánodo fueron hasta 2 órdenes de magnitud menores a las reportadas en la literatura. En condición de cátodo (800 °C y aire), usando el compuesto La_0.85Sr_0.15MnO_3 (LSM) como colector de corriente se observó que el ingreso de metal de transición a la estructura del compuesto Sr_2MgMoO_6 disminuye la resistencia de área específica de un valor aproximado de 10 Ωcm"2 para SMMO a 2 Ωcm"2 para SMMCo. Lo anterior, abre la posibilidad de una configuración de celda de combustible de óxido sólido simétrica (S-SOFC, del inglés: Symmetrical-SOFC), lo que disminuiría los costos de fabricación.Finalmente, estudios de difracción de rayos X a temperatura ambiente de polvos SMMO y SMMA antes y después de un tratamiento térmico en 10%CH_4 a 800 °C durante 18 h, mostraron que la estructura doble perovskita para estos compuestos se conserva. Los patrones de XRD posteriores a la calcinación en metano no mostraron picos de fases adicionales relacionados al carbón. La resistencia a la deposición de carbón de las dobles perovskitas SMMO y SMMA en comparación con polvos comerciales de Ni-CGO, hace que los compuestos Sr_2MgMoO_6 y Sr_2MgMo_0.9A_0.1O_6-δ sean particularmente atractivos para ser usados como ánodos en SOFCs que utilicen hidrocarburos ligeros como combustibles.

Resumen en inglés

In this thesis the synthesis and characterisation of Sr_2MgMoO_6 (SMMO) double perovskite compound with partial substitutions of Mo by transition metals Co, Mn and Ni; i.e, Sr_2MgMo_0.9A_0.1O_6-δ (SMMA; A = Co, Mn and Ni) was carried out. At the beginning of this work, only partial substitutions with Nb, W, and V on Mo-site hadbeen reported, whilst transition metals as those proposed here (Co, Mn and Ni) only had been used to replace Mg in SMMO compound. Sr_2MgMoO_6 and Sr_2MgMo_0.9A_0.1O_6-δ compounds were synthesised through the combustion-solution method followed by a thermal treatment in air. In order to obtain single-phase materials, several parameters related to synthesis such as stoichiometry coefficient and amount of ammonium nitrate, as well as the thermal treatment conditions were optimised. According to literature most of Sr_2MgMoO_6 compounds and its derivatives have been synthesised by solid state reaction, and sol-gel method under reductive atmosphere at temperatures above 1200 ºC. In the present thesis it was possible to obtain single phase materials at lower temperatures: 900 °C for Sr_2MgMoO_6 (SMMO), 1000 °C for Sr_2MgMo_0.9Mn_0.1O_6-δ (SMMMn), 1100 °C for Sr_2MgMo_0.9Ni_0.1O_6-δ (SMMNi) and 1200 °C for Sr_2MgMo_0.9Co_0.1O_6-δ (SMMCo). The SMMO and SMMA compounds synthesised in this thesis present a rocksalt structure formed by alternating Mo(A)O_6 and MgO_6 octahedra sharing the corners with Sr located in the cube-octahedral cavities. These materials showed a double perovskite phase with space group (s.g) 𝐼1̅ for SMMO, SMMCo and SMMNi, also 𝐼4/𝑚 for SMMMn. At 800 ºC under air and 5%H_2 atmospheres SMMO and SMMA displayed a cubic structure with s.g 𝐹𝑚3̅𝑚. Thermogravimetric, coulometric titration and neutron diffraction studies reported by other authors indicate that Sr_2MgMoO_6-δ has full stoichiometry in air (δ = 0). Based on the above mentioned, thermogravimetric analysis (TGA) measurements were performed to determine the absolute oxygen content for SMMO and SMMA compounds under air and 10%H_2 atmospheres at 800 ºC. TGA measurements indicated that Sr_2MgMoO_6-δ under 10%H_2 flux at 800 ºC displayed a concentration of oxygen vacancies, δ ≈ 0.06. The incorporation Mn, Co, Ni to the SMMO double perovskite structure increases the oxygen non-stoichiometry to values 0.11 < δ < 0.27, in air at 800 ºC. This behaviour should be mainly related toa change of the oxidation state of Mo (from 6+ to 5+) due to the incorporation of aliovalent elements to SMMO-structure. The concentration of oxygen vacancies increased once the atmosphere was switched from air to 10%H_2 (0.07 < Δδ< 0.16). “Ex-situ” X-ray photoelectron spectroscopy experiments (XPS) (before and after a thermal treatment in 10%H_2-Ar at 800 ºC for 12 h) on SMMO and SMMA materials allowed verifying the TGA results. Concentration of oxygen vacancies (δ) in air due to the partial substitution of Mo by transition metals can be explained by the presence of Mo"5+ in SMMCo and SMMNi compounds. The change of oxygen non-stoichiometry (Δδ) in 10%H_2 at 800 ºC is related to an increase of Mo"5+ content in SMMO and SMMA compounds. In addition to this, a change on the oxidation state of transition metals was also observed for the Co- and Mn-containing compounds. In regard to SMMNi compound, XPS experiments after thermal treatment in 10%H_2 indicate that the variation in oxygen content is only associated to an increase of Mo"5+ content. Electrical conductivity measurements at 800 ºC in air and 10%H_2 with temperature displayed that SMMO and SMMA exhibit n-type conductivity. The transition metal (Co, Mn or Ni) incorporation was detrimental for conductivity of Sr_2MgMoO_6 double perovskite in air. Conductivity values decreased from 3 × 10−2 S/cm for SMMO to 1 × 10−5 S/cm for SMMMn and SMMNi compounds. On the other hand, under 10%H_2 flux it was detected that, conductivity for non-doped sample was 0.7 S/cm; whilst conductivity values for SMMCo, SMMMn and SMMNi were 0.8, 0.25 and 0.6 S/cm respectively. The activation energy values, Ea < 0.9 eV for SMMMn and SMMNi double perovskitas, were associated to conductivity with a predominant ionic transport, and Ea < 0.3 eV for SMMO and SMMCo samples were mainly related to electronic conductivity. The EIS measurements at 800 ºC and 10%H_2 showed that the small grain size (200 nm - 1μm) of SMMO and SMMA compounds had a positive impact on the electrochemical response of these materials. Under condition of anode, the area specific resistance (ASR) values were up to 2 orders of magnitude smaller than those registered in literature. Meanwhile, under condition of cathode (air-800 ºC) andusing La_0.85Sr_0.15MnO_3 (LSM) compound as current collector, it was observed that Mo-substitution by transition metals (Co, Mn or Ni) on Mo-site of Sr_2MgMoO_6 structure decreases from 10 Ωcm"2 for SMMO to 2 Ωcm"2 for SMMCo. The aforementioned, opens up the possibility of a symmetrical solid oxide fuel cell (SSOFC) configuration, which would reduce fabrication costs. Finally, XRD studies at room temperature of SMMO and SMMA powders, before and after a thermal treatment under 10%CH_4 atmosphere at 800 ºC during 18 h, showed that SMMO and SMMA maintenance their double perovskita structure. The carbon-deposition resistance showed by Sr2MgMoO6 and Sr_2MgMo_0.9A_0.1O_6-δ double perovskites in comparison with Ni-CGO commercial powders indicates that SMMO and SMMA compounds shaping up as candidates for SOFC’s anodes using light hydrocarbons as fuels.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Anodes; Anodos; Perovskite; Perovoskita; Conductivity; Conductividad; [Double perovskite; Doble perovskita; Electrochemical properties; Propiedades electroquímicas]
Referencias: [1]Birol F, Argiri M. World energy prospects to 2020. Energy 24 1999;24:905–18. [2] Botas J, Calles J, Dufour J, Miguel GS. La economía del hidrógeno. Una vision global sobre la revolucion energética del siglo XXI. Grupo de Ingeniería Química y Ambiental. Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, 2015. http://www.aecientificos.es/empresas/aecientificos/documentos/LAECONOMIADEL HIDROGENO.pdf [3] Zerta M, Schmidt PR, Stiller C, Landinger H. Alternative World Energy Outlook (AWEO) and the role of hydrogen in a changing energy landscape. Int J Hydrogen Energy 2008;33:3021–5. [4] Khatib H. IEA World Energy Outlook 2011 — A comment. Energy Policy 2012;48:737–43. [5] Comisión Europea (2003) Hydrogen energy and fuel cells. A vision of our future. Informe EUR 20719 EN, European Commission, Directorate-General for Research, Directorate J – Energy, Bruselas http://europa.eu.int/comm/research/energy/pdf/hydrogen-report_en.pdf [6] Dunn S. Hydrogen futures: toward a sustanable energy system. Int J Hydrog Ener 2002;27:235–64. [7] González A, McKeogh E, Gallachóir BÓ. The role of hydrogen in high wind energy penetration electricity systems: The Irish case. Renew Energy 2004;29:471–89. [8] Curtin S, Gangi J, IEA, Tan EK, Materials N, Flexcell T, et al. Development of Fuel Cell and Hydrogen 2009-2010. Technol Roadmap 2014;22:55–62. [9] Conte M, Prosini PP, Passerini S. Overview of energy/hydrogen storage: State-ofthe-art of the technologies and prospects for nanomaterials. Mater Sci Eng B SolidState Mater Adv Technol 2004;108:2–8. [10] Stambouli A.B. Fuel cells: The expectations for an environmental-friendly and sustainable source of energy. Renewable and Sustainable Energy Reviews 15 (2011)4507– 4520 [11] Cruiz J, Canales-Vázquez J. Pilas combustibles de óxido sólido. An Quím 2006;102(4):5–14. [12] Singhal SC, Kendall K. Introduction to SOFCs. In: Solid Oxide Fuel Cells Fundam. Des. Appl. Singhal SC, Kendal K, editors. High Temp., 2003, p. 1–22. [13] Milewski J, Budzianowski W. Recent key technical barriers in solid oxide fuel cell technology. Arch Thermodyn 2014;35:17–41. [14] Gutiérrez Jodra L. El Hidrógeno, Combustible del Futuro. CiencExactFísNat (Esp) 2005;99:49–67. [15] Carrette L, Friedrich KA., Stimming U. Fuel Cells - Fundamentals and Applications. Fuel Cells 2001;1:5–39. [16] de Boer B. SOFC Anode: Hydrogen oxidation at porous Ni an Ni/yttrium-stabilized zirconia cermet anodes. Thesis, University of Twente, 1998. ISBN 90-36511909 [17] Zhou X, Yan N, Luo J. Fuel Cells Running on Alternative Fuels. RSC Energy and Environment Series No. 7 Solid Oxide Fuel Cells: From Materials to System Modeling Edited by Meng Ni and Tim S. Zhao, 2013. [18] O’Hayre RrP. Fuel Cell Fundamentals. 3rd Edition, Ed. Wiley, New York: 2009. [19] Mayén-mondragón R. Celdas de combustible de Óxido Sólido..... ¿Una de las soluciones al problema energético?, Ide@s CONCYTEG, 6 (72), 2011;6:647–61. [20] Irshad M, Siraj K, Raza R, Ali A, Tiwari P, Zhu B, et al. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance, Appl. Sci. 2016;6: 75. [21] A. Montenegro. Estudio de reacción de electrodo de compuestos Ln2NiO4+ δ (Ln: La, Pr Y Nd) y reactividad con diferentes electrolitos, Tesis. Centro Atómico Bariloche - Instituto Balseiro, 2013. [22] Zuo Chendong, Mingfei Liu and Meilin Liu. Solid Oxide Fuel Cells in Sol-Gel Processing for Conventional and Alternative Energy. Boston, MA: Springer US; 2012. [23] Goodenough JB. Oxide-Ion Electrolytes. Annu Rev Mater Res 2003;33:91–128. . [24] Ishihara T, Sammes NM, Yamamoto O. Electrolytes n.d. Singhal SC, Kendal K, editors. High Temp. Solid Oxide Fuel Cells Fundam. Des. Appl., 2003, p.83-117 [25] Zhang L, Liu F, Brinkman K, Reifsnider KL, Virkar A V. A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy. J Power Sources 2014;247:947–60. [26] Jacobson AJ. Materials for solid oxide fuel cells. Chem Mater 2010;22:660–74. [27] Orera A, Slater PR. New Chemical Systems for Solid Oxide Fuel Cells. Chem Mater 2010;22:675–90. [28] Ormerod RM. Solid oxide fuel cells. Chem Soc Rev 2003;32:17–28. [29] Yokokawa H, Horita T. Cathodes. In: Singhal SC, Kendal K, editors. High Temp. Solid Oxide Fuel Cells Fundam. Des. Appl., 2003, p. 119–44. [30] Tedmon CS, Spacil HS, Mitoff SP. Cathode Materials and Performance in High- Temperature Zirconia Electrolyte Fuel Cells. J Electrochem Soc 1969;116:1170. [31] Mcevoy A. Anodes. In: Singhal SC, Kendal K, editors. High Temp. Solid Oxide Fuel Cells Fundam. Des. Appl., 2003, p. 149 - 171. [32] Goodenough JB, Huang Y-H. Alternative anode materials for solid oxide fuel cells. J Power Sources 2007;173:1–10. [33] Zhao L, Jiang SP. Advanced Electrode Materials for Solid Oxide Fuel Cells in Nanostructured and Advanced Materials for Fuel Cells. Ed S.P Jiang and P.K Shen, CRC PressTaylor & Francis Group, 2015 [34] Costa-Nunes O, Gorte RJ, Vohs JM. Comparison of the performance of Cu-CeO2- YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas. J Power Sources 2005;141:241–9. [35] Gorte RJ, Vohs JM. Novel SOFC anodes for the direct electrochemical oxidation ofhydrocarbons. J Catal 2003;216:477–86. [36] Gorte RJ, Vohs JM, McIntosh S. Recent developments on anodes for direct fuel utilization in SOFC. Solid State Ionics 2004;175:1–6. [37] Alvarado-Flores J, Ávalos-Rodríguez L. Materiales para ánodos, cátodos y electrolitos utilizados en celdas de combustible de óxido sóli. Rev Mex Fis 2013;59:66–87. [38] Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas CG. Hydrogenation of CO2 over Ru/YSZ electropromoted catalysts. ACS Catal 2012;2:770–80. [39] Nakos A, Souentie S, Katsaounis A. Electrochemical promotion of methane oxidation on Rh/YSZ. Appl Catal B Environ 2010;101:31–7. [40] Sato K, Nakamura J, Uchijima T, Hayakawa T, Hamakawa S, Tsunoda T, et al. Role of rhodium anode in the YSZ-aided CH4 oxidation into syngas. Solid State Ionics 2000;136–137:753–9. [41] Dpto Química Orgánica, Universidad de La Laguna. Investigación Química II: Pilas de combustible de óxidos sólidos (SOFC) An. Quím. 2006, 102(4), 5−14 2006:5–14. [42] Fang X, Zhu G, Xia C, Liu X, Meng G. Synthesis and properties of Ni-SDC cermets for IT-SOFC anode by co-precipitation. Solid State Ionics 2004;168:31–6. [43] Gill JK, Pandey OP, Singh K. Ionic conductivity, structural and thermal properties of Sr 2+ doped Y 2Ti2O7 pyrochlores for SOFC. Int J Hydrogen Energy 2012;37:3857– 64. [44] Graves C. Recycling CO2 by Electrolysis of CO2 and H2O Economics and Electrode Materials. Columbia University, 2010. [45] Holtappels P, Poulsen FW, Mogensen M. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications. Solid State Ionics 2000;135:675–9. [46] Kaiser A, Bradley JL, Slater PR, Irvine JTS. Tetragonal tungsten bronze type phases (Sr1-xBax)0.6Ti0.2Nb0.8O3-δ: Material characterization and performance as SOFC anodes. Solid State Ionics 2000;135:519–24. 47] Fergus JW. Oxide anode materials for solid oxide fuel cells. Solid State Ionics 2006;177:1529–41. [48] Sfeir J. LaCrO3-based anodes: Stability considerations. J Power Sources 2003;118:276–85. [49] Sin A, Kopnin E, Dubitsky Y, Zaopo A, Gullo LR, et al. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. J Power Sources 2005;145:68–73. [50] Huang Y-H. Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells. Science (80- ) 2006;312:254–7. [51] King G, Woodward PM. Cation ordering in perovskites. J Mater Chem 2010;20:5785. [52] Fergus JW. Perovskite oxides for semiconductor-based gas sensors. Sensors Actuators, B Chem 2007;123:1169–79. [53] Demarco M, Blackstead HA, Dow JD, Wu MK, Chen DY, Chien FZ, et al. Mössbauer effect observed by the 99Ru Mo 2000;62:301–3. [54] Dow JD, Harshman DR. Origin of high-temperature superconductivity, Physica B 312–313 (2002) 53–55 [55] Ramadass N. Preparation and haracterization of La2TiMO6 (M = Co, Ni, Cu and Zn) perovskites. J. inorg, nucl. Chem.1978;40:1453–4. [56] Li M, Pietrowski MJ, De Souza R a, Zhang H, Reaney IM, Cook SN, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 2014;13:31–5. [57] García-Hernández M, Martínez JL, Martínez-López MJ, Casais MT, Alonso JA. Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series. Phys Rev Lett 2001;86:2443– 6. [58] Guo RS, Wei QT, Li HL, Wang FH. Synthesis and properties of La0.7Sr0.3MnO3 cathode by gel combustion. Mater Lett 2006;60:261–5. [59] Vasala S, Karppinen M. A2B′B″O6 perovskites: A review. Prog Solid State Chem2014;43. [60] Howard CJ, Kennedy BJ, Woodward PM. Ordered double perovskites ± a grouptheoretical analysis research papers. Acta Crystallogr Sect B Struct Sci 2006:463– 71. [61] Woodward PM. Octahedral Tilting in Perovskites. I. Geometrical Considerations. Acta Crystallogr Sect B Struct Sci 1997;53:32–43. [62] Faik A. Estudio las estructuras cristalinas y de las transiciones de fase en nuevos materiales con wolframio y antimonio. Tesis doctoral, Facultad de Ciencia y Tecnología, Universidad del País Vasco; 2009. [63] Choy J-H. Competiton of Covalency between CrIII-O and TaV-O. J Sol State Chem III 1994;370 - 9. [64] Ramadass N. ABO3-type oxides-Their structure and properties-A bird’s eye view. Mater Sci Eng 1978;36:231–9. [65] Shannon BYRD, H M, Baur NH, Gibbs OH, Eu M, Cu V. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Cryst. 1976; A32: 751 [66] Vasala S. Properties and Applications of A2B’B”O6 Perovskites: from Fuel Cells to Quasi-Low-Dimensional Magnetism. Doctoral Thesis, School of Chemical Technology, 2014. [67] Glazer AM. The classification of tilted octahedra in perovskites. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 1972;28:3384–92. [68] Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr Sect A 1975;31:756–62. [69] Gassoumi A, Saad H-E MM. Electronic band structure and optoelectronic properties of double perovskite Sr2MgMoO6 through modified Becke-Johnson potential. Mater Sci Semicond Process 2016;50:14–9. [70] Zheng K, Świerczek K. Physicochemical properties of rock salt-type ordered Sr2MMoO6 (M=Mg, Mn, Fe, Co, Ni) double perovskites. J Eur Ceram Soc2014;34:4273–84. [71] Mark T. Anderson, Kevin Greenwood, Taylor GA. B-CATION ARRANGEMENTS IN DOUBLE PEROVSKITES. Prog Solid St Chem 1993;22:197–233. [72] Zhang X , Wang Q, Gu Bl. Study of the Order - Disorder Transition in A(B'B'')O3 Perovskite Type Ceramics. J Am Ceram Soc 1991;74:2846–50. [73] Galasso F, Darby W. Ordering of the Octahedrally Coördinated Cation Position in the Perovskite Structure. J Phys Chem 1962;66:131–2. [74] Galasso F, Katz L, Ward R. Substitution in the Octahedrally Coördinated Cation Positions in Compounds of the Perovskite Type 1,2. J Am Chem Soc 1959;81:820– 3. [75] Bernuy-Lopez C, Allix M, Bridges C a., Claridge JB, Rosseinsky MJ. Sr2MgMoO6 - δ : Structure, Phase Stability, and Cation Site Order Control of Reduction. Chem Mater 2007;19:1035–43. [76] Matsuda Y, Karppinen M, Yamazaki Y, Yamauchi H. Oxygen-vacancy concentration in A2MgMoO6−δ double-perovskite oxides. J Solid State Chem 2009;182:1713–6. [77] Marrero-López D, Peña-Martínez J, Ruiz-Morales JC, Gabás M, Núñez P, Aranda M a. G, et al. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid State Ionics 2010;180:1672–82. [78] Zhang L, He T. Performance of double-perovskite Sr2−xSmxMgMoO6−δ as solid-oxide fuel-cell anodes. J Power Sources 2011;196:8352–9. [79] Marrero-López D, Peña-Martínez J, Ruiz-Morales JC, Martín-Sedeño MC, Núñez P. High temperature phase transition in SOFC anodes based on Sr2MgMoO6-. J Solid State Chem 2009;182:1027–34. [80] Ji Y, Huang Y-H, Ying J-R, Goodenough JB. Electrochemical performance of Ladoped Sr2MgMoO6−δ in natural gas. Electrochem Commun 2007;9:1881–5. [81] Huang Y-H, Dass RI, Denyszyn JC, Goodenough JB. Synthesis and Characterization of Sr2MgMoO6−δ. J Electrochem Soc 2006;153:A1266. [82] Marrero-López D, Peña-Martínez J, Pérez-Coll D, Núñez P. Effects of preparationmethod on the microstructure and transport properties of La2Mo2O9 based materials. J Alloys Compd 2006;422:249–57. [83] Xie Z, Zhao H, Du Z, Chen T, Chen N, Liu X, et al. Effects of Co Doping on the Electrochemical Performance of Double Perovskite Oxide Sr2MgMoO6 − δ as an Anode Material for Solid Oxide Fuel Cells. J. Phys. Chem. C 2012, 116: 9734−43 [84] Xie Z, Zhao H, Chen T, Zhou X, Du Z. Synthesis and electrical properties of Al-doped Sr 2 MgMoO 6- d as an anode material for solid oxide fuel cells. Int J Hydrogen Energy 2011;36:7257–64. [85] Xie Z, Zhao H, Du Z, Chen T, Chen N. Electrical , Chemical , and Electrochemical Properties of Double Perovskite Oxides Sr2Mg1 − xNixMoO6 − δ as Anode Materials for Solid Oxide Fuel Cells. J. Phys. Chem. C 2014, 118: 18853−60 [86] Dorai AK, Masuda Y, Joo J-H, Woo S-K, Kim S-D. Influence of Fe doping on the electrical properties of Sr2MgMoO6−δ. Mater Chem Phys 2013;139:360–3. [87] Nagai I, Shirakawa N, Ikeda SI, Iwasaki R, Nishimura H, Kosaka M. Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure. Appl Phys Lett 2005;87:1–4. [88] Maekawa T, Kurosaki K, Muta H, Uno M, Yamanaka S. Thermal and electrical properties of perovskite-type strontium molybdate. J Alloys Compd 2005;390:314–7. [89] Vasala S, Lehtimäki M, Haw SC, Chen JM, Liu RS, Yamauchi H, et al. Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6 − δ SOFCanode material. Solid State Ionics 2010;181:754–9. [90] Escudero MJ, Gómez de Parada I, Fuerte a., Daza L. Study of Sr2Mg(Mo0.8Nb0.2)O6−δ as anode material for solid oxide fuel cells using hydrocarbons as fuel. J Power Sources 2013;243:654–60. [91] Wang FY, Zhong G Bin, Luo S, Xia L, Fang LH, Song X, et al. Porous Sr2MgMo1- xVxO6-d ceramics as anode materials for SOFCs using biogas fuel. Catal Commun 2015;67:108–11. [92] Howell TG, Kuhnell CP, Reitz TL, Sukeshini a. M, Singh RN. A2MgMoO6Troncoso L, Martínez-Lope MJ, Alonso J a., Fernández-Díaz MT. Evaluation of Sr2MMoO6 (M = Mg, Mn) as anode materials in solid-oxide fuel cells: A neutron diffraction study. J Appl Phys 2013;113:23511. [94] Marrero−López D, Peña−Martínez J, Ruiz−Morales JC, Pérez−Coll D, Aranda M a. G, Núñez P. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6−δ anode. Research Bulletin 2008; 43: 2441–2450 [95] Patil KC. T Aruna and Sambandan Ekambaram. Combustion synthesis, Curr Opin Solid State Mater Sci 1997; 2: 158 -65 [96] Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 2008;12:44–50. [97] Patil KC, Aruna ST, Mimani T. Combustion synthesis: an update. Curr Opin Solid State Mater Sci 2002;6:507–12. [98] Civera A, Pavese M, Saracco G, Specchia V. Combustion synthesis of perovskitetype catalysts for natural gas combustion. Catal Today 2003;83:199–211. [99] Aruna S., Muthuraman M, Patil K. Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells. Solid State Ionics 1998;111:45–51. [100] Epifani M, Melissano E, Pace G, Schioppa M. Precursors for the combustion synthesis of metal oxides from the sol–gel processing of metal complexes. J Eur Ceram Soc 2007;27:115–23. [101] Chanquía CM, Vega-Castillo JE, Soldati AL, Troiani H, Caneiro A. Synthesis and characterization of pure-phase La0.75Sr0.25Cr0.5Mn0.5O3−δ nanocrystallites for solid oxide fuel cell applications. J Nanoparticle Res 2012;14:1104. [102] Dager PK, Chanquía CM, Mogni L, Caneiro A. Synthesis of pure-phase Sr2MgMoO6 nanostructured powder by the combustion method. Mater Lett 2015;141:248–51. [103] J Rodríguez-Carvajal. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 1993;192:55. [104] Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, et al. Scanning Electron Microscopy and X-ray Microanalysis. vol. 44. 2003.JEOL Ltd. Scanning Electron Microscope A To Z .website: http://www.jeol.com [106] Sheehan JG. Electron Microscopy. FEI COMPANY; 1995. [107] Bumbrah GS, Sharma RM. Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 2016;6:209–15. [108] Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc 2016;11:664–87. [109] Pérez JL, Murillo R, Gómez R. Espectroscopías Infrarroja Y Raman. http://sistemas.fciencias.unam.mx/~fam/Fam/EsRaman.pdf [110] L. Mogni. Estudio de nuevos conductores mixtos para aplicaciones electroquímicas de alta temperatura. Tesis doctoral, Instituto Balseiro - Universidad Nacional de Cuyo, 2007 [111] A. Caneiro A, P. Bavdaz, J. Fouletier and J.P. Abriata. Adaptation of an electrochemical system for measurement and regulation of oxygen partial pressure to a symmetrical thermogravimetric analysis system developed using a Cahn 1000 electrobalance. Rev Sci Instrum 1982;53:1072. [112] Macdonald JR. Impedance spectroscopy: old problems and new developments. Electrochim Acta 1990;35:1483–92. [113] Macdonald JR, Johnson W. Fundamentals of Impedance Spectroscopy. In: Barsoukov E, Macdonald JR, editors. Impedance Spectrosocpy. Theory, Exp. Appl. Second, New Jersey: John Wiley and Sons; 2005, p. 606. [114] Macdonald DD. Review of mechanistic analysis by electrochemical impedance spectroscopy. Electrochim Acta 1990;35:1509–25. [115] Barrera EW, Fernández O, Vera E, Ortíz CA. Simulación de funciones de transferencia para Epectroscopia de Impedancia Electroquímica (EIS). Revista Colombiana de Física 2006;38:1331–4. [116] Gamry Instruments. Basics of Electrochemical Impedance Spectroscopy n.d. http://www.gamry.com.117] Macdonald JR. Impedance spectroscopy. Ann Biomed Eng 1992;20:289–305. [118] dos Santos-Gómez L, León-Reina L, Porras-Vázquez JM, Losilla ER, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics 2013;239:1–7. [119] Zhang L, Zhou Q, He Q, He T. Double-perovskites A2FeMoO6−δ (A=Ca, Sr, Ba) as anodes for solid oxide fuel cells. J Power Sources 2010;195:6356–66. doi:10.1016/j.jpowsour.2010.04.021. [120] Vasala S, Lehtimäki M, Huang YH, Yamauchi H, Goodenough JB, Karppinen M. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6-δ (M = Mg, Mn, Fe, Co, Ni, Zn). J Solid State Chem 2010;183:1007–12. [121] Kong L, Liu B, Zhao J, Gu Y, Zhang Y. Synthesis of nano-crystalline Sr2MgMoO6-δ anode material by a sol-gel thermolysis method. J. Power Sources 2009;188:114–7. [122] Vasala S, Yamauchi H, Karppinen M. Role of SrMoO4 in Sr2MgMoO6 synthesis. J Solid State Chem 2011;184:1312–7. [123] Bernuy−Lopez C. (ICSD Collection code no. 173121) [124] Graves C. Molybdate Based Ceramic Negative-electrode Materials for Solid Oxide Cells Transactions ECS 2010;28:173–92. [125] Porto SPS, Scott JF. Raman spectra of CaWoO4, SrWoO4, CaMooO4, and SrMoO4. Phys Rev 1967;157:716–9. [126] Jalili H, Heinig NF, Leung KT. X-ray photoemission study of Sr2FeMoO6 and SrMoO4 films epitaxially grown on MgO(001): Near-surface chemical-state composition analysis. Phys Rev B 2009;79:1–8. [127] Kumar P, Singh NK, Singh RK, Singh P. Influence of Ni/Mo ratio on structural and electrical properties of double perovskite system Sr2Ni1+xMo1−xO6−δ. Appl Phys A Mater Sci Process 2015;121. [128] Siny IG, Tao R, Katiyar RS, Guo R, Bhalla a. S. Raman spectroscopy of Mg-Ta orderdisorder in. J Phys Chem Solids 1998;59:181–95. [129] Iliev MN, Abrashev M V., Litvinchuk AP, Hadjiev VG, Guo H, Gupta A. Ramanspectroscopy of ordered double perovskite La2CoMnO6 thin films. Phys Rev B - Condens Matter Mater Phys 2007;75:1–6. [130] Manoun B, Mirinioui F, Tamraoui Y, Solhy A, Yang W, Lazor P. Temperature and nickel substitution effects on the phase transitions in the Sr2Zn1−xNixWO6 (0 ≤ x ≤ 1) double perovskite. J Alloys Compd 2016;689:233–45. [131] Ratheesh R, Wöhlecke M, Berge B, Wahlbrink T, Haeuseler H, Rühl E, et al. Raman study of the ordering in Sr(B0.5Nb0.5)O3 compounds. J Appl Phys 2000;88:2813. [132] Zhao F, Yue Z, Gui Z, Li L. Preparation, Characterization and Microwave Dielectric Properties of A 2 BWO6 (A=Sr, Ba; B=Co, Ni, Zn) Double Perovskite Ceramics. Jpn J Appl Phys 2005;44:8066. [133] Liegeois-Duyckaerts M, Tarte P. Vibrational studies of molybdates, tungstates and related c compounds-III. Ordered cubic perovskites A2BIIBVIO6. Spectrochim Acta Part A Mol Spectrosc 1974;30:1771–86. [134] Navarro J, Frontera C, Rubi D, Mestres N, Fontcuberta J. Aging of Sr2FeMoO6 and related oxides. Mater Res Bull 2003;38:1477–86. [135] Huang Y, Liang G, Croft M, Lehtima M, Karppinen M, Goodenough JB. Double- Perovskite Anode Materials Sr2MMoO6 ( M = Co , Ni ) for Solid Oxide Fuel Cells. Chem. Mater. 2009, 21, 2319–2326 [136] Li C, Wang W, Zhao N, Liu Y, He B, Hu F, et al. Structure properties and catalytic performance in methane combustion of double perovskites Sr2Mg1-xMnxMoO6- Appl Catal B Environ 2011;102:78–84. [137] Li C, Wang W, Xu C, Liu Y, He B, Chen C. Double perovskite oxides Sr2Mg1- xFexMoO6-δ for catalytic oxidation of methane. J Nat Gas Chem 2011;20:345–9. doi:10.1016/S1003-9953(10)60211-3. [138] Sher F, Venimadhav A, Blamire MG, Dabrowski B, Kolesnik S, Attfield JP. Structural, magnetic and transport properties of Sr2Fe1−xMgxMoO6 double perovskites. Solid State Sci 2005;7:912–9. [139] McIntyre NS, Johnston DD, Coatsworth LL, Davidson RD, Brown JR. X-Ray Photoelectron Spectroscopic Studies of Thin-Film Oxides of Cobalt and Molybdenum.Surf Interface Anal 1990;15:265–72. [140] Hagiwara M, Katsumata K, Renard JP. ESR study on the ground state properties of the S = 1 linear chain Heisenberg antiferromagnet. J Magn Magn Mater 1990;90– 91:225–6. [141] Hurdequint, H., Kouvel J.S MP. Electron spin resonance study of disordered Ni-Mn alloy. J Magn Magn Mater 1983;31–34:5–8. [142] Zhang ZH, Wu SY, Xu P, Li LL. Theoretical studies of the EPR parameters for Ni2+ and Co+ in MgO. Brazilian J Phys 2010;40:361. [143] Weckhuysen BM, Verberckmoes AA, Uytterhoeven MG, Mabbs FE, Collison D, De Boer E, et al. Electron Spin Resonance of High-Spin Cobalt in Microporous Crystalline Cobalt-Containing Aluminophosphates. J Phys Chem B 2000;104:37–42. [144] Verberckmoes AA. EPR di CoII Td easy-plane e easy-axis. Microporous Mesoporous Mater 1998;22: 165-78 [145] Jin Y, Chen X, Sun Q, Sheng N, Liu Y, Bian C, et al. Supporting Information Solvent- Free Syntheses of Hierarchically Porous. Chem A Eur J 2014; 1-11. [146] Cooper SR, Dismukes GC, Klein MP, Calvin M. Mixed Valence Interactions in Di-poxo Bridged Manganese Complexes. Electron Paramagnetic Resonance and Magnetic. Journal Am Chem Soc 1978; (100:23): 7248-52 . [147] Hureau C, Blondin G, Cesario M, Un S. Direct measurement of the hyperfine and gtensors of a Mn(III)-Mn(IV) complex in polycrystalline and frozen solution samples by high-field EPR. J Am Chem Soc 2003;125:11637–45. [148] Teutloff C, Schäfer KO, Sinnecker S, Barynin V, Bittl R, Wieghardt K, et al. High-field EPR investigations of MnIIIMnIV and MnIIMnIII states of dimanganese catalase and related model systems. Magn Reson Chem 2005;43:51–64. [149] Jiang L, Liang G, Han J, Huang Y. Effects of Sr-site deficiency on structure and electrochemical performance in Sr2MgMoO6 for solid-oxide fuel cell. J Power Sources 2014;270:441–8. doi:10.1016/j.jpowsour.2014.07.079. [150] Zhu X, Wang H, Yang W. Structural stability and oxygen permeability of cerium lightlydoped BaFeO3-δ ceramic membranes. Solid State Ionics 2006;177:2917–21. [151] Sun XF, Guo RS, Li J. Preparation and properties of yttrium-doped SrTiO3 anode materials. Ceram Int 2008;34:219–23. [152] Dasgupta N. Crystal structure , thermal expansion and electrical conductivity. Mater Sci Eng 2002;90:278–86. [153] Raffaele R, Anderson HU, Sparlin DM, Parris PE. Sr-doped La(Cr, Mn)O3. Phys Rev B 1991;43:7991–9. [154] Sehlin SR, Anderson HU, Sparlin DM. Electrical characterization of the (La,Ca)(Cr,Co)O3 system. Solid State Ionics 1995;78:235–43. [155] Dong X, Gardner P, Reitz TL, Chen F, Directorate P, Force A. Advances in Solid Oxide Fuel Cells VI: Ceramic Engineering and Science Proc. In: Ohji SMT, editor. P. Singh, New Jersey: Wiley; 2010, p. 31–41. [156] Wang F, Zhong G, Luo S, Xia L, Fang L, Song X. Porous Sr2MgMo1 − xVxO6−d ceramics as anode materials for SOFCs using biogas fuel 2015;67:108–11. [157] Baqué L. Preparación y Caracterización de Cátodos de Alto Rendimiento para Celdas de Combustible de Óxido Sólido de Temperatura Intermedia INTERMEDIA. Universidad Nacional de Cuyo - Instituto Balseiro, 2011. [158] Greiner Y, Mascot M, Naa CF, Fasquelle D. Magnetic field effect on the electrochemical performance of La0.7Sr0.3MnO3-δ cathodes. Appl Phys Lett 2016;109:0–4. [159] Ralph JM, Rossignol C, Kumar R. Cathode Materials for Reduced-Temperature SOFCs. J Electrochem Soc 2003;150:A1518–22. [160] Mogni L V, Yakal K, Chanquía C, Gao Z, Wang H, Caneiro A, et al. Study of Electrode Performance for Nanosized La0.4Sr0.6Co0.8Fe0.2O3-d IT-SOFC Cathode. ECS Trans 2015;66. [161] Piao J, Sun K, Zhang N, Chen X, Xu S, Zhou D. Preparation and characterization off Pr1-xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 2007;172:633–40. [162] Liu Q, Dong X, Xiao G, Zhao F, Chen F. A novel electrode material for symmetrical SOFCs. Adv Mater 2010;22:5478–82.
Materias:Física > Física de materiales
Divisiones:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Caracterización de materiales
Código ID:786
Depositado Por:Tamara Cárcamo
Depositado En:27 Feb 2019 12:17
Última Modificación:27 Feb 2019 12:17

Personal del repositorio solamente: página de control del documento