Fabricación y caracterización estructural y electrónica de interfaces basadas en óxidos multifuncionales. / Fabrication and structural and electrical characterization of interfaces based on multifunctional oxides.

Navarro Fernández, Henry L. (2019) Fabricación y caracterización estructural y electrónica de interfaces basadas en óxidos multifuncionales. / Fabrication and structural and electrical characterization of interfaces based on multifunctional oxides. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
7Mb

Resumen en español

Se fabricaron y caracterizaron junturas túnel verticales con superconductores de alta temperatura crítica (T_c), utilizando electrodos de GdBa_2Cu_3O_7-δ (GBCO) de 16 nm de espesor y barreras aislantes de SrTiO_3 (STO) y BaTiO_3 (BTO) entre 1 y 4 nm. Estas fueron crecidas mediante la técnica de pulverización catódica DC y RF en sustratos de SrTiO3 (001). Mediante pasos sucesivos de litografía óptica se crearon junturas con áreas de 100, 400, y 900 µm2. Se analizaron las características de las curvas corriente – voltaje (IV) a temperatura ambiente, y el efecto Josephson a bajas temperaturas. Se optimizaron las propiedades morfológicas y superconductoras del electrodo inferior de GBCO. Se encontró que para un espesor de GBCO de 16 nm se obtienen rugosidades medias (RMS) menores que 1 nm y la transición superconductora permanece cercana a la temperatura del nitrógeno líquido (77 K). Se observó una reducción en la formación de defectos 3D cuando el electrodo es crecido sobre una capa de sacrificio de STO de 2 nm. Se estudiaron además las propiedades de las barreras aislantes crecidas sobre GBCO. Mediante microscopía de fuerza atómica conductora encontramos que la conductividad es inhomogénea y se reduce sistemáticamente al aumentar el espesor de la barrera. Los resultados se analizaron considerando efecto túnel como mecanismo de transporte. Los defectos en el electrodo GBCO comienzan a cubrirse al aumentar el espesor de la barrera. Se verificó la ferroelectricidad mediante la respuesta piezoeléctrica (PFM) para una bicapa con 4 nm de BTO. La Tc del GBCO en bicapas se suprime sistemáticamente al aumentar el espesor del aislante. Se analizaron las propiedades de transporte eléctrico en tricapas mediante el estudio de curvas IV a temperatura ambiente. Se estudiaron sistemas simétricos (GBCO/aislante/GBCO) y asimétricos (GBCO/aislante/Nb). Las curvas IV asimétricas con polarización positiva y negativa pueden obtenerse utilizando electrodos con diferentes funciones trabajo. Se obtienen curvas IV con histéresis para barreras de BTO que pueden ser asociadas a migraciones de vacancias de oxígeno. Para las tricapas de GBCO/BTO/GBCO, las curvas IV corresponden a lo esperado en las interfaces asimétricas, lo que indica que el desorden afecta de manera diferente las propiedades en la interfaz inferior (GBCO/aislante) y superior. Finalmente, los resultados de transporte eléctrico en tricapas a bajas temperaturas muestran acoplamiento Josephson para las barreras de STO y BTO ambas de 1 nm y 2 nm (con Tc ≈ 76 K) y no se observa en junturas con barreras de 3 nm y 4 nm (Tc ≈ 41 K). Para barreras de STO de 1 y 2 nm el producto IcRn (Rn: resistencia en estado normal e Ic: corriente crítica) a 12 K es ≈ 4.3 mV y 8.5 mV. Para barreras de BTO de 1 y 2 nm el producto IcRn es 1.53 mV y 7.2 mV. Las junturas exhiben patrones de modulación tipo Fraunhofer en los que la Ic no se suprime completamente con el campo magnético. Esto podría atribuirse a que la conductividad no es homogénea debido a zonas mal cubiertas por la barrera. En las JJ no se observaron efectos asociados a la ferroelectricidad.

Resumen en inglés

We fabricate and characterize the electrical properties of vertical tunnel junctions based on high temperature (Tc) superconductors and insulator perovskites. We use 16 nm thick GdBa_2Cu_3O_7-d (GBCO) electrodes and SrTiO_3 (STO) and BaTiO_3 (BTO) as insulator barriers (thicknesses between 1 and 4 nm). Samples are grown by the DC and RF sputtering on SrTiO3 (001). Tunnel junctions with areas of 100, 400, and 900 µm2 are fabricated using successive steps including optical lithography and ion milling. We perform current-voltage curves from room to low temperatures. The presence of Josephson coupling at the superconducting state is analyzed. The research is organized in several steps. Initially, we optimize the morphological and superconducting properties a GBCO film (electrode). Superficial 3D defects are reduced by including a 2 nm thick STO buffer layer. Approximately 16 nm thick GBCO films show the optimal balance between morphology and superconductivity, resulting in roughness (RMS) smaller than 1 nm and superconducting transition temperature close to liquid nitrogen (77 K). Then, we grow superconducting/insulator bilayers. The electrical transport across the insulator barriers is characterized by using a conducting atomic force microscope. The results are analyzed considering tunneling as the transport mechanism. The conductivity is inhomogeneous, and it decreases systematically with increasing barrier thickness. We verify the presence of ferroelectricity for a 4 nm thick BTO film. Electric transport versus temperature measurements show that the Tc of the GBCO is systematically suppressed from ≈ 77 K to ≈ 45 K when the insulator barrier thickness is increased from 2 nm to 4 nm. In the third step, we fabricate symmetric (GBCO/insulator/GBCO) and asymmetric (GBCO/insulator/Nb) tunnel junctions. We analyze the electric transport by performing IV curves at room temperature. The results show asymmetric IV curves (at positive and negative polarization) for tunnel junctions with electrodes with different work function. The curves for samples with BTO barriers show hysteresis, which is a signature of migration of oxygen vacancies. In addition, the IV curves for GBCO/BTO/GBCO junctions correspond to that expected for asymmetric interfaces, which suggests different properties at the bottom and top electrodes. Finally, we analyze the electrical properties at low temperatures of tunnel junctions with GBCO electrodes and STO and BTO barriers. The results show Josephson coupling for tunnel junctions with a barrier of 1 nm and 2 nm. The effect is not evidenced for 3 nm and 4 nm and no significant differences appear for STO and BTO. There are no features related to ferroelectricity on the Josephson coupling. The effect disappears at ≈ 76 K and ≈ 45 K for barriers with a thickness of 1 nm and 2 nm, respectively. For STO barriers of 1 and 2 nm, the product IcRn (Rn: resistance in the normal state and Ic: critical current) at 12 K is ≈ 4.3 mV and 8.5 mV, respectively. For BTO barriers of 1 and 2 nm, the product IcRn is ≈ 1.5 mV and ≈ 7.2 mV, respectively. The magnetic field dependence of Ic shows the typical Fraunhofer-like modulation. The Ic value does not go to zero at the nodes, which could be related to the presence of pinholes.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Superconductivity; Superconductividad; Sputtering; Chisporroteo; Josephson junctions; Uniones de Josephson; Tunnel junctions; Uniones de tunel; Thin films; Capas finas
Referencias:[1] O. Mukhanov, A. Inamdar, T. Filippov, A. Sahu, S. Sarwana and V. Semenov. “Superconductor components for direct digital synthesizer”. IEEE Trans. Appl. Supercond. 17, 416. (2007) [2] D. Roy. “Quantum Mechanical Tunnelling and Its Applications”. World Scientific. 1st. edition. (1986) [3] Masanori Murakami. “Thermal stability of Pb‐alloy Josephson junction electrode materials. I. Effects of film thickness and grain size of Pb‐In‐Au base electrodes”. Journal of Applied Physics. 52, 1309. (1981) [4] A Grimm et al. “A self-aligned nano-fabrication process for vertical NbN–MgO–NbN Josephson junctions”. Supercond. Sci. Technol. 30, 105002. (2017) [5] H. Kamerlingh Onnes. “Communication from the Physical Laboratory of the University of Leiden”. Koninklijke Akademie van Wetenschappen te Amsterdam. 1479–1481, 28 Apr. (1911) [6] W. Meissner and R. Ochsenfeld. “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit”. Naturwissenschaften. 21, 44, 787–788. (1933) [7] F. London and H. London. “The Electromagnetic Equations of the Supraconductor”.Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 149, 866, 71–88. (1935) [8] Shinobu Hikami and Takashi Hirai and Seiichi Kagoshima. “High Transition Temperature Superconductor: YBaCu-Oxide”, Jpn. J. Appl. Phys., 26, 4A, L314. (1987) [9] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. “Theory of superconductivity”, Phys. Rev. 108, 5, 1175. (1957) [10] L. Gao et al. “Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures”, Phys. Rev. B. 50, 6, 4260. (1994) [11] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin. “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system”. Nature, 525, 7567, 73–76. (2015) [12] Pia Jensen Ray. Master Thesis: “Structural investigation of La(2-x)Sr(x)CuO(4+y)”. University of Copenhagen. Denmark. (2015) [13] Philippe Mangin and Rémi Kahn. “Supraconductivité”. EDP Sciences. (2013) [14] M. Tinkham. “Introduction to superconductivity”. New York: McGraw-Hill. (1975) [15] H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles Jr, and J. V. Waszczak. “Scanning-tunneling microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid”. Phys. Rev. Lett. 62, 2, 214. (1989) [16] L. N. Cooper. “Bound electron pairs in a degenerate Fermi gas”. Phys. Rev. 104, 4, 1189. (1956) [17] H. Fröhlich. “Theory of the superconducting state. I. The ground state at the absolute zero of temperature”. Phys. Rev. 79, 5, 845. (1950) [18] J. W. Garland. “Isotope Effect in Superconductivity”. Phys Rev Lett. 11, 3, 114–119. (1963) [19] E. L. Wolf. “Principles of Electron Tunneling Spectroscopy”. Second Edition. Oxford University Press. (2011) [20] W. F. Brinkman. “Tunneling Conductance of Asymmetrical Barriers”. J. Appl. Phys. 41, 5, 1915. (1970) [21] J. G. Simmons. “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film”. J. Appl. Phys. 34, 6, 1793. (1963) [22] I. Giaever. “Energy gap in superconductors measured by electron tunneling”. Phys. Rev. Lett., 5, 4, 147. (1960) [23] B. D. Josephson. “Possible new effects in superconductive tunneling”. Phys. Lett. 1, 251–253. (1962) [24] P. W. Anderson and J. M. Rowell. “Probable Observation of the Josephson Superconducting Tunneling Effect”. Phys Rev Lett. 10, 6, 230–232. (1963) [25] A. Barone and G. Paternò. “Weak Superconductivity Phenomenological Aspects, in Physics and Applications of the Josephson Effect”. Wiley-VCH Verlag GmbH & Co. KGaA. (2005) [26] K. K. Likharev. “Dynamics of Josephson junctions and circuits”. New York: Gordon and Breach Science Publishers. (1986) [27] S. A. Cybart, K. Chen, and R. C. Dynes. “Planar YBaCuO Ion Damage Josephson Junctions and Arrays”. IEEE Trans. Appiled Supercond. 15, 2, 241–244. (2005) [28] S. Shapiro. “Josephson Currents in Superconducting Tunneling: The Effect of Microwaves and Other Observations”. Phys Rev Lett, 11, 2, 80–82. (1963) [29] R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau. “Quantum Interference Effects in Josephson Tunneling”. Phys Rev Lett. 12, 7, 159–160. (1964) [30] R. Cantor and F. Ludwig. “SQUID Fabrication Technology in The SQUID Handbook”. Wiley-VCH Verlag GmbH & Co. KGaA. (2005) [31] P. Chaudhari et al. “Direct measurement of the superconducting properties of single grain boundaries in YBa2Cu3O7- δ”. Phys. Rev. Lett. 60, 16, 1653. (1988) [32] H. R. Yi, M. Gustafsson, D. Winkler, E. Olsson, and T. Claeson. “Electromagnetic and microstructural characterization of YBa2Cu3O7 step edge junctions on (001) LaAlO3 substrates”. J. Appl. Phys. 79, 12, 9213. (1996) [33] D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke. “High-transition-temperature superconducting quantum interference devices”. Rev. Mod. Phys. 71, 3, 631. (1999) [34] S. Miura et al. “Properties of a YBCO/insulator/YBCO trilayer and its application to a multilayer Josephson junction”. Supercond. Sci. Technol. 9, A59-A61. (1996) [35] C. Bernhard and J. L. Tallon. “Thermoelectric power of YCaBaCuO: Contributions from CuO planes and CuO chains”. Phys. Rev. B. 54, 14, 10201-10209. (1996) [36] J. Orenstein and A. J. Millis. “Advances in the Physics of High-Temperature Superconductivity”. Science 288, 5465, 468-474. (2000) [37] Bollinger, R. K.; White, B. D.; Neumeier, J. J.; Sandim, H. R. Z.; Suzuki, Y.; dos Santos, C. A. M.; Avci, R.; Migliori, A.; Betts, J. B. “Observation of a Martensitic Structural Distortion in V, Nb, and Ta”. Physical Review Letters. 107, 7, 075503. (2011) [38] Matthias, B. T.; Geballe, T. H.; Compton, V. B. “Superconductivity”. Reviews of Modern Physics. 35, 1. (1963) [39] Peiniger, M.; Piel, H. “A Superconducting Nb3Sn Coated Multicell Accelerating Cavity”. Nuclear Science. 32, 5, 3610–3612. (1985) [40] V. Lemanov, E. P. Smirnova, P. P. Syrnikov, and E. A. Tarakanov. “Phase transitions and glasslike behavior in Sr1−xBaxTiO3”. Phys. Rev. B. 54, 3151. (1996) [41] S. A. Hayward and E. K. H. Salje. “The pressure-temperature phase diagram of BaTiO3: a macroscopic description of the low-temperature behavior”. J. Phys.: Condens. Matter. 14, 36. (2002) [42] Moulson AJ, Herbert JM. “Electroceramics”. Chapman & Hall, London. (1995) [43] Nuraje N, Su K. “Perovskite ferroelectric nanomaterials”. Nanoscale 5, 8752–8780. (2013) [44] J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom. “Room - temperature ferroelectricity in strained SrTiO3”. Nature 430, 758. (2004) [45] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom. “Enhancement of ferroelectricity in strained BaTiO3 thin films”. Science 306, 1005. (2004) [46] E. Kay. “Magnetic field effects on an abnormal truncated glow discharge and their relation to sputtered thin film growth”. Journal of Applied Physics. 34, 4, 760-768. (1963) [47] O. Nakamura. Thesis: “High Tc, thin films and superlattices; Synthesis and Characteristics”. University of California, San Diego. (1993) [48] Davidse, P. D, Maissel, L. I. “Dielectric thin films through rf sputtering”. Journal of Applied Physics. 37, 2, 574-579. (1966) [49] M. Ohring. “Materials Science of Thin Films”. Academic Press London. (2002) [50] K. D. Vernon-Parry. “Scanning electron microscopy: an introduction”. III-Vs Rev. 13, 4, 40–44. (2000) [51] B. Bhushan. “Springer Handbook of Nanotechnology”. Springer-Verlag Berlin Heidelberg. (2010) [52] Roger Proksch, Asylum Research and Sergei Kalinin. “Piezoresponse Force Microscopy with Asylum Research AFMs”. Asylum Research App Note 10. (2009) [53] M. Sirena. “Roughness influence in the barrier quality of ferroelectric/ferromagnetic tunnel junctions, model, and experiments”. J. Appl. Phys. 110, 063923. (2011) [54] M. Hawley, I.D. Raistrick, J.G. Beery, R.J. Houlton. “Growth Mechanism of Sputtered Films of YBa2Cu3O7 Studied by Scanning Tunneling Microscopy”. Science 251, 1587. (1991) [55] Muzeyyen Ece, Ester Garcia Gonzalez, Hanns-Ulrich Habermeier, Baybars Oral, J. “Evolution of morphology, crystallinity, and growth modes of thin superconducting YBa2Cu3O7−x films on SrTiO3 and NdGaO3 substrates”. Journal of Applied Physics. 77, 1646–1649. (1995) [56] N. Haberkorn, F. Lovey, A. Condo, and J. Guimpel. “HRTEM study of the interfaces and stacking defects in superconducting/magnetic perovskite superlattices”. J. Appl. Phys. 97, 53511. (2005) [57] J. Guimpel, E. E. Fullerton, O. Nakamura, y I. K. Schuller. “Interface structure in high-Tc superlattices”. J. Phys.: Condens. Matter. 5, A383. (1993) [58] Fork D.K., Connell G.A.N., Fenner D.B., Boyce J.B., Phillips J.M., Geballe T.H. “YBCO Films and YSZ Buffer Layers Grown in Situ on Silicon by Pulsed Laser Deposition”. Science and Technology of Thin Film Superconductors 2. Springer, Boston, MA, USA. (1990) [59] J.A. Venables, G.D.T. Spiller, M. Hanbucken. “Nucleation and growth of thin films”. Rep. Prog. Phys. 47, 399. (1984) [60] X. Y. Zheng, D.H. Lowndes, S. Zhu, J.D. Budai, R.J. Warmack. “Early stages of YBa2Cu3O7-delta epitaxial growth on MgO and SrTiO3”. Phys. Rev. B. 45, 7584. (1992) [61] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma. “Atomic Control of the SrTiO3 Crystal Surface”. Science 266, 1540. (1994) [62] M. Kareev, S. Prosandeev, J. Liu, C. Gan, A. Kareev, J. W. Freeland, Min. Xiao, and J. Chakhalian, “Atomic control and characterization of surface defect states of TiO2 terminated SrTiO3 single crystals”. Appl. Phys. Lett. 93, 061909. (2008) [63] A. Biswas, P. B. Rossen, C. H. Yang, W. Siemons, M. H. Jung, I. K. Yang, R. Ramesh, and Y. H. Jeong. “Universal Ti-rich termination of atomically flat SrTiO3 SrTiO3 (001), (110), and (111) surfaces”. Appl. Phys. Lett. 98, 051904 (2011) [64] A. Crassous. PhD. Thesis. “Contribution à l’étude des effets de champ à l’échelle nanométrique dans des hétérostructures d’oxydes”. Paris. France. (2011) [65] Ryota Shimizu, Katsuya Iwaya, Takeo Ohsawa, Susumu Shiraki, Tetsuya Hasegawa, Tomihiro Hashizume, Taro Hitosugi. “Atomic-Scale Visualization of Initial Growth of Homoepitaxial SrTiO3 Thin Film on an Atomically Ordered Substrate”. ACS Nano 5, 7967. (2011) [66] T. Ohsawa, K. Iwaya, R. Shimizu, T. Hashizume, T. Hitosugi. “Thickness - dependent local surface electronic structures of homoepitaxial SrTiO3 thin films”. J. Appl. Phys. 108, 73710. (2010). [67] L. Avilés Félix et al. “Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions”. Nanotechnology 23, 495715. (2012) [68] Guus Rijnders et al. “Influence of substrate–film interface engineering on the superconducting properties of YBa2Cu3O7−δ”. Appl. Phys. Lett. 84, 1150. (2004) [69] B. Wuyts, V.V. Moshchalkov, Y. Bruynseraede. “Resistivity and Hall effect of metallic oxygen-deficient YBa2Cu3Ox films in the normal state”. Phys. Rev. B. 53, 9418. (1996) [70] J. F. Schooley, W. R. Hosler, and M. L. Cohen. “Superconductivity in Semiconducting SrTiO3”. Phys. Rev. Lett. 12, 474. (1964) [71] K. A. Muller and H. Burkard. “SrTiO3: An intrinsic quantum paraelectric below 4 K”. Phys. Rev. B. 19, 3593. (1979) [72] G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski. “Ionic Polarizability of Conductive Metal Oxides and Critical Thickness for Ferroelectricity in BaTiO3”. Phys. Rev. Lett. 96, 107603. (2006) [73] Changjian Li, et al. “Ultrathin BaTiO3-Based Ferroelectric Tunnel Junctions through Interface Engineering”. Nano Lett. 15, 4, 2568-2573. (2015) [74] N. Haberkorn et al. “Antiferromagnetism at the YBaCuO/LaCaMnO interface”. Appl. Phys. Lett. 84, 3927. (2004) [75] Y. Gim, A. W. Kleinsasser, and J. B. Barner. “Current injection into high temperature superconductors: Does spin matter?”. J. Appl. Phys. 90, 4063. (2001) [76] M. van Zalk, M. Veldhorst, A. Brinkman, J. Aarts, and H. Hilgenkamp. “Magnetization induced resistance switching effects in La0.67Sr0.33MnO3/ YBa2Cu3O7−δ bi- and trilayers”. Phys. Rev B. 79, 134509. (2009) [77] A. Crassous et al. “Nanoscale Electrostatic Manipulation of Magnetic Flux Quanta in Ferroelectric/Superconductor BiFeO3/YBa2Cu3O7−δ Heterostructures”. Phys. Rev. Lett. 107, 247002. (2011) [78] V. Garcia and M. Bibes. “Ferroelectric tunnel junctions for information storage and processing”. Nat. Commun. 5, 4289. (2014) [79] J. C. Fisher and I. Giaever. “Tunneling Through Thin Insulating Layers”. Journal of Applied Physics. 32, 172. (1961) [80] R. Holm. “The Electric Tunnel Effect across Thin Insulator Films in Contacts” Journal of Applied Physics 22, 569. (1951) [81] J. G. Simmons. “Low‐Voltage Current‐Voltage Relationship of Tunnel Junctions”. Journal of Applied Physics 34, 238. (1963) [82] T. J. Coutts. “Electrical Conduction in Thin Metal Films”. Elsevier, New York. (1947) [83] H. Navarro, M. Sirena, J. Kim, and N. Haberkorn. “Smooth surfaces in very thin GdBaCuO films for application in superconducting tunnel junctions”. Phys. C 510, 21. (2015) [84] K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, P. Pappas, and J. M. Martinis. “Conducting atomic force microscopy for nanoscale tunnel barrier characterization”. Rev. Sci. Instrum. 75, 2726. (2004) [85] F. Bardou. “Rare events in quantum tunneling”. Europhys. Lett. 39, 239. (1997) [86] I. C. Infante, F. Sanchez, V. Laukhin, A. Perez del Pino, J. Fontcuberta, K. Bouzehouane, S. Fusil, and A. Barthelemy. “Functional characterization of SrTiO3 tunnel barriers by conducting atomic force Microscopy”. Appl. Phys. Lett. 89, 172506. (2006) [87] M. Sirena, L. Avilés Félix, N. Haberkorn. “High-Tc Superconductor/insulating bilayers for the development of ultra-fast electronics”. Appl. Phys. Lett. 103, 52902. (2013) [88] C. N. Berglund and W. S. Baer. “Electron Transport in Single - Domain, Ferroelectric Barium Titanate”. Phys. Rev. 157, 358. (1967) [89] T. Hirano, M. Ueda, K.-i. Matsui, T. Fujii, K. Sakuta, and T. Kobayashi. “Dielectric Properties of SrTiO3 Epitaxial Film and Their Application to Measurement of Work Function of YBa2Cu3Oy Epitaxial Film”. Jpn. J. Appl. Phys. 31, Part 2, L1345. (1992) [90] D. P. Cann and C. A. Randall. “Electrode effects in positive temperature coefficient and negative temperature coefficient devices measured by complex‐plane impedance analysis”. J. Appl. Phys. 80, 1628. (1996) [91] I. Pallecchi, G. Grassano, D. Marre, L. Pellegrino, M. Putti, and A. S. Siri. “SrTiO3-based metal–insulator–semiconductor heterostructures”. Appl. Phys. Lett. 78, 2244. (2001) [92] A. P. Chen, F. Khatkhatay, W. Zhang, C. Jacob, L. Jiao, and H. Wang. “Strong oxygen pressure dependence of ferroelectricity in BaTiO3/ SrRuO3/ SrTiO3 epitaxial heterostructures”. J. Appl. Phys. 114, 124101. (2013) [93] Yoshimi Kubo, Tsutomu Yoshitake, Junji Tabuchi, Yukinobu Nakabayashi, Atsushi Ochi, Kazuaki Utsumi, Hitoshi Igarashi and Masatomo Yonezawa. “Effect of Oxygen Deficiency on the Crystal Structure and Superconducting Properties of the YBa2Cu3Oy”, Japan. J. Appl. Phys. 26, 5, 768–770. (1987) [94] V. Vonk et al. “Strain-induced structural changes in thin YBa2Cu3O7−x films on SrTiO3 substrates”. Thin Solid Films. 449, 133–137.(2004) [95] A. I. Buzdin. “Proximity effects in superconductor-ferromagnet heterostructures”. Rev. Mod. Phys. 77, 935. (2005) [96] Niebieskikwiat et al. “Magnetotransport of manganite superlattices: Investigating the role of a magnetic insulating spacer”. Appl. Phys. Lett. 93, 123120. (2008) [97] Griffiths D. J. “Introduction to Quantum Mechanics”. 2nd Edition. Upper Saddle River, NJ: Pearson Education. (2005) [98] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K. “Giant room-temperature magnetoresistance in single-crystal Fe/ MgO/Fe magnetic tunnel junctions”. Nat. Mater. 3, 868. (2004) [99] Fumeaux C, Herrmann W, Kneubühl F. K and Rothuizen H. “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation Infrared”. Phys. Technol. 39, 123. (1998) [100] Li M et al. “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies”. Adv. Electron. Mater. 1, 1500069. (2015) [101] Lü W et al. “Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration”. Adv. Mater. 29, 1606165. (2017) [102] Sawa A. “Resistive switching in transition metal oxides”. Mater. Today 11, 28. (2008) [103] Lee J. S, Lee S and Noh T. W. “Resistive switching phenomena: a review of statistical physics approaches”. Appl. Phys. Rev. 2, 031303. (2015) [104] Cuellar F. A et al. “Reversible electric-field control of magnetization at oxide interfaces”. Nat. Commun. 5, 4215. (2014) [105] Kohlstedt H, Pertsev N A, Rodríguez Contreras J and Waser R. “Theoretical current–voltage characteristics of ferroelectric tunnel junctions”. Phys. Rev. B. 72, 125341. (2005) [106] Béa H et al. “Anisotropic bimodal distribution of blocking temperature with multiferroic BiFeO3 epitaxial thin films”. Appl. Phys. Lett. 89, 242114. (2006) [107] Bibes M et al. “Nanoscale multiphase separation at La2/3Ca1/3MnO3/SrTiO3 interfaces”. Phys. Rev. Lett. 87, 67210. (2001) [108] Junquera P G. “Critical thickness for ferroelectricity in perovskite ultrathin films”. Nature 422, 506. (2003) [109] Béa H et al. “Ferroelectricity down to at least 2 nm in multiferroic BiFeO3 epitaxial thin films”. Japan. J. Appl. Phys. 45, L187. (2006) [110] Haberkorn et al. “Glasslike behavior at the PrBa2Cu3O7 / La0.75Sr0.25MnO3 interface”. Physical Review B. 75, 024427.(2007) [111] Pertsev N A, Rodriguez Contreras J, Kukhar V G, Hermanns B ,Kohlstedt Hand Waserless R. “Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3 epitaxial films”. Appl. Phys. Lett. 83, 3356. (2003) [112] Kim D J, Lu H, Ryu S, Bark C-W, Eom C-B, Tsymbal E Y and Gruverman A. “Ferroelectric tunnel memristor”. Nano Lett. 12, 5697. (2012) [113] Gray B. A. et al. “Superconductor to Mott insulator transition in YBa2Cu3O7/ LaCaMnO3 heterostructures”. Sci. Rep. 6, 33184. (2016) [114] B. Wuyts, E. Osquiguil, M. Maenhoudt, S. Libbrecht, Z. X. Gao, and Y. Bruynseraede. “Influence of the oxygen content on the normal-state Hall angle in YBa2Cu3Oxn films”. Phys. Rev. B. 47, 5512(R). (1993) [115] J. Gonzalez Sutter, L. Neñer, H. Navarro, G. Leyva, S. Fusil, K. Bouzehouane, N. Haberkorn, M. Sirena. “Oxygen influence in the magnetic and the transport properties of ferroelectric/ferromagnetic heterostructures”. Thin Solid Films. 639, 42–46. (2017) [116] E E Mitchell, K E Hannam, J Lazar, K E Leslie, C J Lewis, A Grancea, S T Keenan, S K H Lam and C P Foley. “2D SQIF arrays using 20.000 YBCO high Rn Josephson junctions”. Supercond. Sci. Technol. 29, 06LT01. (2016) [117] P. Virtanen, A. Ronzani, and F. Giazotto. “Josephson Photodetectors via Temperature-to-Phase Conversion”. Phys. Rev Appl. 9, 054027. (2018) [118] Y. Dagan, R. Krupke, and G. Deutscher. “Determination of the superconducting gap in YBa2Cu3O7−δ by tunneling experiments under magnetic fields”. Phys. Rev. B. 62, 146. (2000) [119] Vincenzo Lacquaniti, Domenico Andreone, Natascia De Leo, Matteo Fretto, Andrea Sosso, and Mikhail Belogolovskii. “Engineering Overdamped Niobium-Based Josephson Junctions for Operation Above 4.2 K”. IEEE Trans. Appl. Supercond. 19, 234. (2009) [120] Z. Wang,H. Terai, W. Qiu, K. Makise, Y. Uzawa, K. Kimoto, and Y. Nakamura. “High-quality epitaxial NbN/AlN/NbN tunnel junctions with a wide range of current density”. Appl. Phys. Lett. 102, 142604. (2013) [121] G. Burnell, D.-J. Kang, H. N. Lee, S. H. Moon, B. Oh, and M. G. Blamire. “Planar superconductor-normal-superconductor Josephson junctions in MgB2”. Appl. Phys. Lett. 79, 3464. (2001) [122] Elias Galan, Daniel Cunnane, X X Xi and Ke Chen. “Sandwich-type MgB2/TiB2/MgB2 Josephson junctions”. Supercond. Sci. Technol. 27, 065015. (2014) [123] S. A. Cybart, E. Y. Cho, T. J. Wong, B. H. Wehlin, M. K. Ma, C. Huynh, and R. C. Dynes. “Nano Josephson superconducting tunnel junctions in YBa2Cu3O(7-δ) directly patterned with a focused helium ion beam”. Nat. Nanotechnol. 10, 598. (2015) [124] A. Carrington and F. Manzano. “Magnetic penetration depth of MgB2”. Physica C. 385, 205. (2003) [125] Alexander M. Gabovich and Alexander I. Voitenko. “Anomalous temperature dependence of the stationary Josephson tunnel current in junctions between d-wave superconductors”. Low Temp. Phys. 40, 9, 816. (2014) [126] N. Bergeal, J. Lesueur, and M. Sirena. “Using ion irradiation to make high Tc Josephson junctions”. Journal of Applied Physics. 102, 083903. (2007) [127] Y. Cuia, Ke Chen, and Qi Li, X. X. Xi, J. M. Rowell. “Degradation-free interfaces in MgB2/insulator/Pb Josephson tunnel junctions”. Appl. Phys. Lett. 89, 202513. (2006) [128] A. V. Pan et al. “Enhancing Properties of High‐Temperature Superconducting Step‐Edge Josephson Junctions by Nano‐Multilayers with a Small Mismatch”. Adv. Mater. Inter. 1, 1300112. (2014) [129] Taro Yamashita, Akira Kawakami, and Hirotaka Terai. “NbN-Based Ferromagnetic 0 and π Josephson Junctions”. Phys. Rev. Applied. 8, 054028. (2017) [130] Anupama B. Kaul et al. “Internally shunted sputtered NbN Josephson junctions with a TaNx barrier for nonlatching logic applications”. Appl. Phys. Lett. 78, 99. (2001) [131] S. M. Frolov, D. J. Van Harlingen, V. A. Oboznov, V. V. Bolginov, and V. V. Ryazanov. “Measurement of the current-phase relation of superconductor/ ferromagnet/ superconductor π Josephson junctions”. Phys. Rev. B. 70, 144505. (2004) [132] Weihnacht, M. “Influence of Film Thickness on DC. Josephson Current”. Physica Status Solidi B. 32, 2:169. (1969) [133] D. E. McCumber. “Effect of ac Impedance on dc Voltage-Current Characteristics of Superconductor Weak-Link Junctions”. J. Appl. Phys. 39, 3113. (1968) [134] H. Navarro et al. “Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions”. Mater. Research Exp. 5, 016408. (2018) [135] D. Niebieskikwiat et al. “Nanoscale Magnetic Structure of Ferromagnet/ Antiferromagnet Manganite Multilayers”. Phys. Rev. Lett. 99, 247207. (2007) [136] Jason P. Sydow et al. “Effects of Oxygen Content on YBCO Josephson Junction Structures”. IEEE Transactions on Applied Superconductivity. 9, 2. (1999)
Materias:Física > Materia condensada
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas
Código ID:798
Depositado Por:Tamara Cárcamo
Depositado En:12 Feb 2021 11:39
Última Modificación:12 Feb 2021 11:39

Personal del repositorio solamente: página de control del documento