Fabricación y caracterización estructural de laminas delgadas de Cu-Al-Ni con memoria de forma. / Fabrication and structural characterization of Cu-Al-Ni thin films with shape memory.

Morán, Mauricio J. (2019) Fabricación y caracterización estructural de laminas delgadas de Cu-Al-Ni con memoria de forma. / Fabrication and structural characterization of Cu-Al-Ni thin films with shape memory. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
34Mb

Resumen en español

Esta tesis se centra en el estudio de láminas delgadas de aleaciones Cu-Al-Ni con memoria de forma crecidas por pulverización catódica. Éstas poseen potenciales aplicaciones en dispositivos micro electromecánicos. La transformación martensítica del material, que da origen al efecto memoria de forma, es sensible a la microestructura y al espesor de las láminas delgadas. La microestructura, a su vez, depende de las condiciones de fabricación. Con el objetivo de determinar cuáles son las mejores condiciones para obtener láminas delgadas de aleaciones Cu-Al-Ni con efecto memoria de forma, se crecieron láminas a diferentes temperaturas del sustrato (T_S). Esta temperatura, la cual se varió entre temperatura ambiente y 823 K, afecta la microestructura y las características de la transformación martensítica en las láminas. Sobre las láminas que presentaron transformación martensítica, se probaron diferentes métodos para lograr que el material deforme de manera controlada. Estos métodos consistieron en modificar una de las superficies de las láminas, ya sea por litografía con posterior comido iónico o implantación de iones de O o Al. La microestructura de las láminas delgadas fue analizada mediante difracción de rayos X y microscopía electrónica de transmisión. La transformación martensítica fue caracterizada a partir de mediciones de resistencia eléctrica en función de la temperatura. Los resultados muestran que la transformación martensíica es fuertemente afectada por la microestructura, lo cual se evidencia por incrementos en el rango de temperatura de transformación e histéresis mayores respecto a muestras masivas. Se crecieron láminas delgadas de tama~nos de grano comprendidos entre 30 nm y varios micrómetros, las cuales presentan transformación martensítica. Al aumentar el tamaño de grano se encontró que tanto la histéresis como el rango de temperaturas de transformación disminuyen mientras que el salto de resistencia eléctrica aumenta. Esto es producto de la disminución en la densidad de bordes de grano, lo cual disminuye la barrera energética para la transformación martensítica. Analizando láminas delgadas policristalinas de espesores entre 0,10 y 2,25 μm se encontró que al reducir el espesor se estabiliza la fase austenítica, dificultando la transformación martensítica hasta el punto de ser suprimida por completo. El efecto memoria de forma se analizó deformando las láminas a baja temperatura en fase martensítica y observando si se recuperaba la forma al calentar por encima de la temperatura de transformación, en fase austenítica. Este efecto se encontró presente en muestras con tamaños de grano por encima de 100 nm. Se buscó inducir el efecto doble memoria de forma, el cual es la propiedad de los materiales de alternar entre las formas de tanto la fase martensítica como de la fase austenítica. Se halló que la implantación de iones de Al en láminas con tamaño de grano micrométrico dio los mejores resultados.

Resumen en inglés

This thesis focuses on the study of shape memory Cu-Al-Ni thin films based growth by sputtering. These films have potential applications in microelectromechanical systems (MEMS). We found that the martensitic transformation, which originates the shape memory effect, depends on the film thickness and the microstructure. Considering that the microstructure depends on the fabrication conditions and with the objective of determining the optimal growth parameters in Cu-Al-Ni thin films, we modifying the substrate temperature (T_S) between room temperature and 823 K. The changes in the microstructure produced by T_S affect the characteristic features of the martensitic transformation. For the cases where martensitic transformation is observed, we tried to induce controlled shape memory. The methods consisted of supercial modication with geometrical patterns using optical lithography and ion milling, and damage proles using implantation of ions such as O and Al. The microstructure of the thin lms was analyzed by X-ray diffraction and transmission electron microscopy. The martensitic transformation was characterized from resistance versus temperature measurements. The results show that, in comparison with bulk, the changes in the microstructure modify the martensitic transformation temperature, the temperature range of transformation and the hysteresis. We observe martensitic transformation for Cu-Al-Ni thin lms with grain size average between 30 nm and several microns. The increment in the grain size average reduces the temperature range of transformation and the hysteresis, which could be related to the in fluence of the grain boundary density on the energy barriers. The analysis of the martensitic transformation for samples with thicknesses between 0.1 and 2.25 μm shows that the austenitic phase stabilizes as the thickness decreases. The martensitic transformation is completely suppressed for 0.15 μm. We analyze the shape of the memory effect comparing the changes between samples deformed in the martensitic phase (low temperatures) and the austenite phase (room temperature). We found that samples with grain size average above 100 nm recover the original shape. Moreover, we work on producing thin lms that have the two-way memory effect. The best results are obtained for ion implantation with Al.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Thin films; Capas finas; Sputtering; Chisporroteo; [Martensitic transformation; Trasformación martensítica; Shame memory, Memoria de forma]
Referencias:[1] Wilson, S. A., Jourdain, R. P., Zhang, Q., Dorey, R. a., Bowen, C. R., Willander, M., et al. New materials for micro-scale sensors and actuators. Materials Science and Engineering: R: Reports, 56 (1-6), 1-129, jun 2007. [2] Otsuka, K., Wayman, C. M. Shape memory materials. New York: Cambridge University Press, 1998. [3] Waitz, T., Tsuchiya, K., Antretter, T., Fischer, F. D. Phase transformations of Nanocrystalline martensitic materials. MRS Bulletin, 34 (11), 814-821, nov 2009. [4] Chen, Y., Schuh, C. A. Size eects in shape memory alloy microwires. Acta Materialia, 59 (2), 537-553, 2011. [5] La Roca, P. M. Propiedades estructurales y funcionales de laminas y chapas de aleaciones con memoria de forma producidas por técnicas avanzadas. Tesis Doctoral, Universidad Nacional de Rosario, 2014. [6] Miyazaki, S., Otsuka, K. Development of shape memory alloys. ISIJ Internatio- nal, 29 (5), 353-377, 1989. [7] Espinoza Torres, C. Transformacion martenstica y efecto memoria en materiales micro y nanoestructurados. Maestra en ciencias físicas, Instituto Balseiro, 2007. [8] Gastien, R., Corbellani, C., Sade, M., Lovey, F. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt %) single crystals. Acta Materialia, 53 (6), 1685- 1691, apr 2005. [9] Cingolani, E., Ahlers, M., Picornell, C., Rapacioli, R., Pons, J., Cesari, E. Two way shape memory effect in Cu -Al -Ni single crystals. Materials Science and Engineering A, 275, 595 - 599, 1999. [10] Arneodo Larochette, P., Cingolani, E., Ahlers, M. Stabilization and the two way shape memory effect (TWME) in Cu-Zn-Al polycrystals. Materials Science and Engineering: A, 273-275, 600-604, dec 1999. [11] Ren, X., Otsuka, K. Origin of rubber-like behaviour in metal alloys. Nature, 389 (6651), 579-582, 1997. [12] Lagoudas, D. c., Hartl, D. J., Kumar, P. K., Machado, L. G. Shape memory alloys: Modeling and Engineering Applications. Springer, 2007. [13] Barcelo, G., Rapacioli, R., Ahlers, M. The rubber eect in Cu-Zn-Al martensite. Scripta Metallurgica, 12 (12), 1069{1074, dec 1978. [14] La Roca, P., Isola, L., Vermaut, P., Malarra, J. Relationship between grain size and thermal hysteresis of martensitic transformations in Cu-based shape memory alloys. Scripta Materialia, 135, 5-9, jul 2017. [15] Recarte, V., Perez-Landazabal, J. I., Rodrguez, P. P., Bocanegra, E. H., No, M. L., San Juan, J. Thermodynamics of thermally induced martensitic transformations in Cu-Al-Ni shape memory alloys. Acta Materialia, 52 (13), 3941-3948, 2004. [16] La Roca, P., Baruj, A., Sobrero, C. E., Malarra, J. A., Sade, M. Nanoprecipitation effects on phase stability of Fe-Mn-Al-Ni alloys. Journal of Alloys and Compounds, 708, 422-427, 2017. [17] Huang, W. M., Ding, Z., Wang, C. C., Wei, J., Zhao, Y., Purnawali, H. Shape memory. Materials Today, 13 (7-8), 54-61, 2010. [18] Otsuka, K., Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science, 50 (5), 511{678, jul 2005. [19] Perez-Landazabal, J. I., Recarte, V., Sanchez-Alarcos, V., No, M. L., San Juan, J. Study of the stability and decomposition process of the phase in Cu-Al-Ni shape memory alloys. Materials Science and Engineering A, 438-440 (SPEC. ISS.), 734-737, 2006. [20] Gastien, R., Corbellani, C. E., Alvarez Villar, H. N., Sade, M., Lovey, F. C. Pseudoelastic cycling in Cu-14.3Al-4.1Ni (wt %) single crystals. Materials Science and Engineering A, 349 (1-2), 191-196, 2003. [21] San Juan, J. M., No, M. L., Schuh, C. A. Superelasticity and Shape Memory in Micro- and Nanometer-scale Pillars. Advanced Materials, 20 (2), 272-278, jan 2008. [22] Ueland, S. M., Chen, Y., Schuh, C. A. Oligocrystalline Shape Memory Alloys. Advanced Functional Materials, 22 (10), 2094{2099, may 2012. [23] Perez-Landazabal, J. I., Recarte, V., Sanchez-Alarcos, V. In fluence on the martensitic transformation of the beta phase decomposition process in a Cu-Al-Ni shape memory alloy. Journal of Physics: Condensed Matter, 17 (26), 4223-4236, 2005. [24] Perez-Landazabal, J. I., Recarte, V., Perez-Saez, R. B., No, M. L., Campo, J., San Juan, J. Determination of the next-nearest neighbor order in phase in Cu-Al-Ni shape memory alloys. Applied Physics Letters, 81 (10), 1794-1796, 2002. [25] Recarte, V., Lambri, O. A., Perez-Saez, R. B., No, M. L., San Juan, J. Ordering temperatures in Cu-Al-Ni shape memory alloys. Applied Physics Letters, 70 (26), 3513-3515, jun 1997. [26] Arneodo Larochette, P. Efectos de la difusion en cristales martensticos de Cu- Zn-Al. Tesis Doctoral, Instituto Balseiro, 2003. [27] Condo, A. M. Estudio de defectos planares asociados a la transformación martensìtica en aleaciones base Cu por microscopìa electrónica de transmisión. Tesis Doctoral, Instituto Balseiro, 1997. [28] Pelegrina, J., Ahlers, M. The martensitic phases and their stability in Cu-Zn and Cu-Zn-Al alloys I. The transformation between the high temperature phase and the 18R martensite. Acta Metallurgica et Materialia, 40 (12), 3205-3211, dec 1992. [29] Pelegrina, J., Ahlers, M. The martensitic phases and their stability in Cu-Zn and Cu-Zn-Al alloys-III. The transformation between the high temperature phase and the 2H martensite. Acta Metallurgica et Materialia, 40 (12), 3221-3227, dec 1992. [30] Gastien, R. Ciclado pseudoelastico en monocristales de Cu-Al-Ni con memoria de forma, generación de defectos y su relación con las fases metaestables presentes. Tesis Doctoral, UNiversidad de Buenos Aires, 2005. [31] Recarte, V., Perez-Saez, R. B. Dependence of the martensitic transformation characteristics on concentration in Cu-Al-Ni shape memory alloys. Materials Science and Engineering, 275, 380-384, 1999. [32] Fu, Y. Q., Luo, J. K., Ong, S. E., Zhang, S., Flewitt, A. J., Milne, W. I. A shape memory microcage of TiNi/DLC films for biological applications. Journal of Micromechanics and Microengineering, 18 (3), 2008. [33] San Juan, J., No, M. L., Schuh, C. A. Superelastic cycling of Cu-Al-Ni shape memory alloy micropillars. Acta Materialia, 60 (10), 4093{4106, jun 2012. [34] Bhattacharya, K., James, R. D. The material is the machine. Science, 307 (5706), 53-54, 2005. [35] Krulevitch, P., Lee, A. P., Ramsey, P. B., Trevino, J. C., Hamilton, J., Northrup, M. A. Thin lm shape memory alloy microactuators. Journal of Microelectro- mechanical Systems, 5 (4), 270-282, 1996. [36] Miyazaki, S., Ishida, A. Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Materials Science and Engineering: A, 273-275, 106-133, 1999. [37] Ishida, A., Sato, M. Microstructure and shape memory behaviour of annealed Ti 51.5Ni(48.5-x)Cux (x = 6.5-20.9) thin films. Philosophical Magazine, 87 (35), 5523-5538, 2007. [38] Lovey, F., A.M., C., Guimpel, J., Yacaman, M. Shape memory effect in thin lms of a Cu-Al-Ni alloy. Materials Science and Engineering: A, 481-482, 426-430, may 2008. [39] Machain, P., Condo, A. M., Domenichini, P., Pozo Lopez, G., Sirena, M., Correa, V. F., et al. Martensitic transformation in as-grown and annealed nearstoichiometric epitaxial Ni2MnGa thin films. Philosophical Magazine, 95 (23), 2527-2538, 2015. [40] Phillips, F. R., Fang, D., Zheng, H., Lagoudas, D. C. Phase transformation in free-standing SMA nanowires. Acta Materialia, 59 (5), 1871-1880, mar 2011. [41] Frick, C., Orso, S., Arzt, E. Loss of pseudoelasticity in nickel-titanium sub-micron compression pillars. Acta Materialia, 55 (11), 3845-3855, jun 2007. [42] San Juan, J., Gomez-Cortes, J. F., Lopez, G. A., Jiao, C., No, M. L. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars. Applied Physics Letters, 104 (1), 011901, jan 2014. [43] Otsuka, K., Ren, X. Recent developments in the research of shape memory alloys. Intermetallics, 7 (5), 511-528, may 1999. [44] Backen, A., Yeduru, S. R., Diestel, A., Schultz, L., Kohl, M., Fahler, S. Epitaxial Ni-Mn-Ga lms for magnetic shape memory alloy microactuators. Advanced Engineering Materials, 14 (8), 696-709, 2012. [45] San Juan, J., No, M. Superelasticity and shape memory at nano-scale: Size effects on the martensitic transformation. Journal of Alloys and Compounds, 577, S25-S29, nov 2013. [46] La Roca, P., Isola, L., Sobrero, C., Vermaut, P., Malarra, J. Grain size eect on the thermal-induced martensitic transformation in polycrystalline Cu-based shape memory alloys. Materials Today: Proceedings, 2, S743-S746, 2015. [47] Sutou, Y., Omori, T., Yamauchi, K., Ono, N., Kainuma, R., Ishida, K. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Materialia, 53 (15), 4121-4133, sep 2005. [48] Sutou, Y., Omori, T., Kainuma, R., Ishida, K. Grain size dependence of pseudoelasticity in polycrystalline Cu-Al-Mn-based shape memory sheets. Acta Mate- rialia, 61 (10), 3842-3850, jun 2013. [49] Moran, M. J., Condo, A. M., Haberkorn, N. Recrystallization and martensitic transformation in nanometric grain size Cu-Al-Ni thin films grown by DC sputtering at room temperature. Materials Characterization, 139 (September 2017), 446-451, 2018. [50] La Roca, P., Isola, L., Vermaut, P., Malarra, J. Relationship between martensitic plate size and austenitic grain size in martensitic transformations. Applied Physics Letters, 106 (22), 221903, jun 2015. [51] Petryk, H. ~A., Stupkiewicz, S., Maciejewski, G. Interfacial energy and dissipation in martensitic phase transformations. Part II: Size eects in pseudoelasticity. Journal of the Mechanics and Physics of Solids, 58 (3), 373-389, 2010. [52] Shilo, D., Mendelovich, A., Novak, V. Investigation of twin boundary thickness and energy in CuAlNi shape memory alloy. Applied Physics Letters, 193113 (2007), 19-22, 2007. [53] Romero, R., Pelegrina, J. L. Change of entropy in the martensitic transformation and its dependence in Cu-based shape memory alloys. Materials Science and Engineering A, 354 (1-2), 243-250, 2003. [54] Waitz, T., Pranger, W., Antretter, T., Fischer, F. D., Karnthaler, H. P. Competing accommodation mechanisms of the martensite in nanocrystalline NiTi shape memory alloys. Materials Science and Engineering A, 481-482 (1-2 C), 479-483, 2008. [55] Lehnert, T., Grimmer, H., Boni, P., Horisberger, M., Gotthardt, R. Characterization of shape-memory alloy thin films made up from sputter-deposited Ni/Ti multilayers. Acta Materialia, 48 (16), 4065{4071, 2000. [56] Konig, D., Buenconsejo, P. J., Grochla, D., Hamann, S., Pfetzing-Micklich, J., Ludwig, A. Thickness-dependence of the B2-B19 martensitic transformation in nanoscale shape memory alloy thin films: Zero-hysteresis in 75 nm thick Ti51Ni38Cu11thin films. Acta Materialia, 60 (1), 306-313, 2012. [57] Kumar, A., Singh, D., Kaur, D. Grain size effect on structural, electrical and mechanical properties of NiTi thin films deposited by magnetron co-sputtering. Surface and Coatings Technology, 203 (12), 1596-1603, mar 2009. [58] Lovey, F. C., Torra, V. Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Progress in Materials Science, 44, 189-289, 1999. [59] Ueland, S. M., Schuh, C. A. Surface roughness-controlled superelastic hysteresis in shape memory microwires. Scripta Materialia, 82, 1-4, 2014. [60] Minemura, T., Andoh, H., Kita, Y., Ikuta, I. Shape memory eect and microstructures of sputter-deposited Cu-Al-Ni films. Journal of Materials Science Letters, 4 (6), 793-796, 1985. [61] Espinoza Torres, C., Condo, A. M., Haberkorn, N., Zelaya, E., Schryvers, D., Guimpel, J., et al. Structures in textured Cu-Al-Ni shape memory thin lms grown by sputtering. Materials Characterization, 96, 256-262, 2014. [62] Domenichini, P., Condo, A. M., Soldera, F., Sirena, M., Haberkorn, N. In fluence of the microstructure on the resulting 18R martensitic transformation of polycrystalline Cu-Al-Zn thin films obtained by sputtering and reactive annealing. Ma- terials Characterization, 114 (1), 289-295, apr 2016. [63] Haberkorn, N., Lovey, F., Condo, A., Guimpel, J. Development and characterization of shape memory Cu-Zn-Al thin lms. Materials Science and Engineering: B, 170 (1-3), 5-8, jun 2010. [64] Haberkorn, N., Condo, A., Espinoza, C., Jaureguizahar, S., Guimpel, J., Lovey, F. Bulk-like behavior in the temperature driven martensitic transformation of Cu-Zn-Al thin films with 2H structure. Journal of Alloys and Compounds, 591, 263-267, apr 2014. [65] Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M. TiNi-based thin lms in MEMS applications: A review. Sensors and Actuators, A: Physical, 112 (2-3), 395-408, 2004. [66] Choudhary, N., Kaur, D. Shape memory alloy thin films and heterostructures for MEMS applications: A review. Sensors and Actuators, A: Physical, 242, 162-181, 2016. [67] Duerig, T. W., Melton, K. N., Stockel, D., Wayman, C. M. Engineering Aspects of Shape Memory Alloys. Elsevier, 1990. [68] Wasa, K. Handbook of Sputter Deposition Technology. Elsevier Ltd, 2012. [69] Research Institute of Precision Machine Manufacturing. [70] Soria, S. R. Defectos inducidos por la irradiación con iones de helio en aleaciones de aluminio. Maestra en ciencias físicas, Instituto Balseiro, 2012. [71] Kittel, C. Introduction to Solid State Physics. John Wiley & Sons Inc, 2008. [72] Williams, D. B., Carter, C. B. Transmission Electron Microscopy. Springer US, 2009. [73] Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., et al. Scanning Electron Microscopy and X-ray Microanalysis. Springer US, 2003. [74] Thornton, J. A. In fluence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. Journal of Vacuum Science and Technology, 12 (4), 830-835, 1975. [75] B. D. Cullity, S. R. S. Elements of X-Ray Diraction. Pearson, 2001. [76] Molnar, P., Sittner, P., Novak, V., Lukas, P. Twinning processes in Cu-Al- Ni martensite single crystals investigated by neutron single crystal diraction method. Materials Science and Engineering A, 481-482 (1-2 C), 513-517, 2008. [77] Vishnoi, R., Singhal, R., Kaur, D. Thickness dependent phase transformation of magnetron-sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films. Journal of Nanoparticle Research, 13 (9), 3975-3990, 2011. [78] Waitz, T., Antretter, T., Fischer, F. D., Karnthaler, H. P. Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Materials Science and Technology, 24 (8), 934-940, 2008. [79] Gastien, R., Corbellani, C. E., Bozzano, P. B., Sade, M. L., Lovey, F. C. Low temperature isothermal ageing in shape memory CuAlNi single crystals. Journal of Alloys and Compounds, 495 (2), 428-431, apr 2010. [80] La Roca, P., Isola, L., Vermaut, P., Malarra, J. Relationship between martensitic plate size and austenitic grain size in martensitic transformations. Applied Physics Letters, 106 (22), 221903, jun 2015. [81] Wu, X., Kutschej, K., Kneissl, A. C. Deposition and heat treatment of CuAlNi shape memory thin films. Materialwissenschaft und Werkstotechnik, 34 (5), 484-489, 2003. [82] Adachi, H., Hata, T., Wasa, K. Basic Process of Sputtering Deposition. En: Handbook of Sputtering Technology, Lcd, pags. 295-359. Elsevier, 2012. [83] Sutou, Y., Omori, T., Kainuma, R., Ishida, K., Ono, N., Ishida, K. Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metallurgical and Materials Transactions A, 33 (9), 2817-2824, sep 2002. [84] Yeduru, S., Backen, A., Kubel, C., Wang, D., Scherer, T., Fahler, S., et al. Microstructure of free-standing epitaxial Ni{Mn{Ga films before and after variant reorientation. Scripta Materialia, 66 (8), 566-569, apr 2012. [85] Ghebouli, B., Cherif, S.-M., Layadi, A., Helifa, B., Boudissa, M. Structural and magnetic properties of evaporated Fe thin films on Si(111), Si(100) and glass substrates. Journal of Magnetism and Magnetic Materials, 312 (1), 194-199, may 2007. [86] Lawler, J., Schad, R., Jordan, S., van Kempen, H. Structure of epitaxial Fe films on MgO(100). Journal of Magnetism and Magnetic Materials, 165, 224-226, 1997. [87] Bayer, B. C., Khan, A. F., Mehmood, M., Barber, Z. H. Eect of substrate on processing of multi-gun sputter deposited, near-stoichiometric Ni2MnGa thin lms. Thin Solid Films, 518 (10), 2659-2664, 2010. [88] Sharma, A., Mohan, S., Suwas, S. Structural, microstructural and magnetic investigations on the epitaxially grown Ni2MnGa(010) lms on MgO(100) substrate. Intermetallics, 77, 6{13, 2016. [89] Kaumann-Weiss, S., Hahn, S., Weigelt, C., Schultz, L., Wagner, M. F., Fahler, S. Growth, microstructure and thermal transformation behaviour of epitaxial Ni-Ti films. Acta Materialia, 132, 255-263, 2017. [90] Wang, X., Vlassak, J. J. Thickness and lm stress eects on the martensitic transformation temperature in equi-atomic NiTi thin lms. Mechanics of Materials, 88, 50-60, 2015. [91] Pan, G., Cao, Z., Wei, M., Shi, J., Xu, L., Meng, X. Thickness and grain size dependence of B2-R martensitic transformation behaviors in nanoscale TiNi films. Materials Letters, 130, 285-288, 2014. [92] Ishida, A., Sato, M. Thickness eect on shape memory behavior of Ti-50.0at. %Ni thin film. Acta Materialia, 51 (18), 5571-5578, 2003. [93] Wan, D., Komvopoulos, K. Thickness eect on thermally induced phase transformations in sputtered titanium-nickel shape-memory lms. Journal of Materials Research, 20 (6), 1606-1612, 2005. [94] Teichert, N., Auge, A., Yuzuak, E., Dincer, I., Elerman, Y., Krumme, B., et al. Influence of lm thickness and composition on the martensitic transformation in epitaxial Ni-Mn-Sn thin films. Acta Materialia, 86, 279-285, 2015. [95] Thornton, J. A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 11 (4), 666-670, 1974. [96] Jianxin, W., Bohong, J., Hsu(Xu Zuyao), T. Influence of grain size and ordering degree of the parent phase on Ms in a CuZnAl alloy containing boron. Acta Metallurgica, 36 (6), 1521-1526, jun 1988. [97] Van Humbeeck, J., Chandrasekaran, M., Delaey, L. The influence of post quench ageing in the beta-phase of the transformation characteristics and the physical and mechanical properties of martensite in a Cu-Al-Ni shape memory alloy. ISIJ International, 29 (5), 388-394, 1989. [98] Araujo, V., Gastien, R., Zelaya, E., Beiroa, J., Corro, I., Sade, M., et al. Effects on the martensitic transformations and the microstructure of CuAlNi single crystals after ageing at 473K. Journal of Alloys and Compounds, 641, 155-161, 2015. [99] Purswani, J., Spila, T., Gall, D. Growth of epitaxial Cu on MgO(001) by magnetron sputter deposition. Thin Solid Films, 515 (3), 1166-1170, 2006. [100] Jiang, H., Klemmer, T. J., Barnard, J. A., Payzant, E. A. Epitaxial growth of Cu on Si by magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16 (6), 3376-3383, 1998. [101] Kato, M.,Wada, M., Sato, A., Mori, T. Overview no. 78 Epitaxy of cubic crystals on (001) cubic substrates. Acta Metallurgica, 37 (3), 749-756, mar 1989. [102] Ikeda, T., Kawashima, Y., Itoh, H., Ichinokawa, T. Surface structures and growth mode for the surfaces depending on heat treatment. Surface Science, 342 (1-3), 11-20, nov 1995. [103] Walker, F., Specht, E., McKee, R. Film/substrate registry as measured by anomalous x-ray scattering at a reacted, epitaxial Cu/Si(111) interface. Physical Review Letters, 67 (20), 2818-2821, nov 1991. [104] Wang, X., Jia, Y., Yao, Q., Wang, F., Ma, J., Hu, X. The calculation of the surface energy of high-index surfaces in metals at zero temperature. Surface Science, 551 (3), 179-188, 2004. [105] Sutou, Y., Omori, T., Kainuma, R., Ishida, K. Ductile Cu-Al-Mn based shape memory alloys: general properties and applications. Materials Science and Technology, 24 (8), 896-901, aug 2008. [106] Pinhero, P. J., Anderegg, J. W., Sordelet, D. J., Besser, M. F., Thiel, P. A. Surface oxidation of Al-Cu-Fe alloys: A comparison of quasicrystalline and crystalline phases. Philosophical Magazine B, 79 (1), 91-110, jan 1999. [107] Recarte, V., Perez-Saez, R. B., No, M. L., San Juan, J. Ordering kinetics in Cu-Al-Ni shape memory alloys. Journal of Applied Physics, 86 (10), 5467-5473, 1999. [108] Gastien, R., Corbellani, C., Araujo, V., Zelaya, E., Beiroa, J., Sade, M., et al. Changes of shape memory properties in CuAlNi single crystals subjected to isothermal treatments. Materials Characterization, 84, 240-246, oct 2013. [109] LaGrange, T., Gotthardt, R. Martensitic Transformation of Partially Irradiated Ni-Ti Films, Resulting in a New Technique For Designing Micro-Actuators. Materials Science Forum, 426-432, 2219-2224, 2003. [110] Grummon, D. S., Gotthardt, R. Latent strain in titanium{nickel thin lms modi ed by irradiation of the plastically-deformed martensite phase with 5 MeV Ni2+. Acta Materialia, 48 (3), 635-646, feb 2000. [111] Braun, S., Sandstrom, N., Stemme, G., Van Der Wijngaart, W. Wafer-scale manufacturing of bulk shape-memory-alloy microactuators based on adhesive bonding of titanium-nickel sheets to structured silicon wafers. Journal of Mi- croelectromechanical Systems, 18 (6), 1309-1317, 2009. [112] Gill, J. J., Chang, D. T., Momoda, L. A., Carman, G. P. Manufacturing issues of thin lm NiTi microwrapper. Sensors and Actuators A: Physical, 93 (2), 148-156, sep 2001. [113] Bechtold, C., Lima De Miranda, R., Quandt, . E. Capability of Sputtered Micropatterned NiTi Thick Films. Shape Memory and Superelasticity, 1 (3), 286-293, 2015. [114] Ding, G., Yu, A., Zhao, X., Xu, D., Cai, B., Shen, T. Patterning of nickel-titanium SMA lms with chemical etching by a novel multicomponent etchant. Device and Process Technologies for MEMS and Microelectronics, 3892 (1), 340-345, 1999. [115] Ye, C., Cheng, G. J. Scalable patterning on shape memory alloy by laser shock assisted direct imprinting. Applied Surface Science, 258 (24), 10042-10046, 2012. [116] Tsuchiya, K., Marukawa, K. Order-disorder transition in Cu-Zn-Al martensite under electron irradiation. Journal of Electron Microscopy, 48 (4), 375-380, 1999. [117] Tolley, A., Ahlers, M. Irradiation eects on the <=> 18R martensitic transformation in Cu-Zn-Al alloys. Journal of Nuclear Materials, 205 (C), 339-343, oct 1993. [118] Zelaya, E., Tolley, A., Condo, A., Fichtner, P. Ion irradiation induced precipitation of phase in Cu-Zn-Al-Ni. Materials Science and Engineering: A, 444 (1-2), 178-183, jan 2007. [119] LaGrange, T., Abromeit, C., Gotthardt, R. Microstructural modications of Ni- Ti shape memory alloy thin films induced by electronic stopping of high-energy heavy ions. Materials Science and Engineering A, 438-440 (SPEC. ISS.), 521- 526, 2006. [120] Harriott, L. Limits of lithography. Proceedings of the IEEE, 89 (3), 366-374, mar 2001. [121] Tolley, A., Ahlers, M. Influence of neutron irradiation on the martensitic transformation in 18R CuZnAl single crystals. Scripta Metallurgica, 23 (12), 2117-2120, dec 1989. [122] Tolley, A., Macht, M. P., Muller, M., Abromeit, C.,Wollenberger, H. Stabilization of Cu-Zn-Al 18R martensite by 2 MeV proton irradiation. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 72 (6), 1633-1647, 1995. [123] Tolley, A. The eect of electron irradiation on the <=> 18R martensitic transformation in Cu-Zn-Al alloys. Radiation Eects and Defects in Solids, 128 (3), 229-245, 1994. [124] Zelaya, E., Tolley, A., Condo, A. M., Lovey, F. C., Fichtner, P. F., Bozzano, P. B. Ion irradiation induced formation of close packed particles in Cu-Zn-Al. Scripta Materialia, 53 (1), 109-114, 2005. [125] Tolley, A., Abromeit, C. Microstructural changes due to ion irradiation in - CuZnAl alloys. Scripta Metallurgica et Materialia, 55 (6), 1016-1031, 1995. [126] Zengin, R., Ceylan, M. Influence of neutron irradiation on the characteristics of Cu-13%wt.Al-4 %wt.Ni shape memory alloy. Materials Letters, 58 (1-2), 55-59, jan 2004. [127] Tatar, C., Zengin, R. The eects of -irradiation on some physical properties of Cu-13.5 wt. %Al-4 wt. %Ni shape memory alloy. Materials Letters, 59 (26), 3304{3307, 2005. [128] LaGrange, T., Gotthardt, R. Post-annealing of ion irradiated TiNi SMA thin lms. Materials Science and Engineering A, 378 (1-2 SPEC. ISS.), 448-452, 2004. [129] Wang, Z. G., Zu, X. T., Wu, J. H., Liu, L. J., Mo, H. Q., Huo, Y. Electron irradiation-induced evolution of the martensitic transformation characteristics in a CuZnAl shape memory alloy. Journal of Alloys and Compounds, 364 (1-2), 171{175, 2004. [130] Ahmed, M., Husain, S., Iqbal, Z., Hashmi, F., Khan, A. Phase transformations in rapidly solidied CuAlNi phase alloys. Scripta Metallurgica, 22 (6), 803-808, jan 1988. [131] Pelegrina, J. L., Fabietti, L. M., Condo, A. M., Pozo Lopez, G., Urreta, S. E., Condo, A. M., et al. The influence of microstructure on the martensitic transformation in Cu-Zn-Al melt-spun ribbons. Philosophical Magazine, 90 (20), 2793-2805, jul 2010. [132] Leu, S. S., Hu, C. T. The aging eect on Cu-Zn-Al shape memory alloys with low contents of aluminum. Metallurgical Transactions A, 22 (1), 25-33, 1991. [133] Wu, M. H., Perkins, J., Wayman, C. M. Long range order, antiphase domain structures, and the formation mechanism of 1 ("Bainite") plates in A CuZnAl alloy. Acta Metallurgica, 37 (7), 1821-1837, 1989. [134] Rapacioli, R., Ahlers, M. The influence of short-range disorder on te martensitic transformation in CuZn and CuZnAl alloys. Acta Metallurgica, 27 (5), 777-784, may 1979.
Materias:Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:799
Depositado Por:Tamara Cárcamo
Depositado En:05 Mar 2021 08:30
Última Modificación:05 Mar 2021 08:30

Personal del repositorio solamente: página de control del documento