Betancourth , Diana M. (2018) Efectos magnetoelásticos en sistemas a base de gadolinio. / Magnetoelastic effects in galolium-based systems. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 13Mb |
Resumen en español
La interacción entre las propiedades magnéticas y las propiedades elásticas dan lugar a una física muy atractiva desde el punto de vista básico por la complejidad de sus características y desde el punto de vista tecnológico por la variedad de sus aplicaciones. En esta tesis doctoral se realizo un estudio teórico-experimental de las propiedades magnetoelásticas de monocristales de GdCoI_n5 y GdRhI_n5, pertenecientes a la familia RMI_n5 (R=Tierra Rara, M=Metal de Transición e In=Indio). Los monocristales estudiados se sintetizaron a través del método de auto flujo. Después de verificar la estequiometra y la estructura cristalina de los monocristales obtenidos, se estudiaron diversas propiedades físicas con el objetivo de comprender el comportamiento a bajas temperaturas y altos campos magnéticos de estos monocristales. Particularmente, de la caracterización magnética se determino que los sistemas de estudio presentan ordenamientos tipo antiferromagnético (AFM) y se evidencio de esta caracterización que las propiedades magnéticas en estos sistemas están dominadas por la contribución de la tierra rara involucrada (R). Por este motivo, este trabajo doctoral se enfoco en comprender el rol que desempeña el Gadolinio (Gd) en las diferentes propiedades del sistema. Con el fin de comprender las propiedades termodinámicas de los sistemas en estudio, se utilizo el método de Monte Carlo Quantico (QMC) para realizar simulaciones que permitieron reproducir las mediciones experimentales de la susceptibilidad magnética y del calor especifico. El modelo propuesto permitió obtener información microscópica del sistema e indagar sobre las interacciones de intercambio presentes. Sin embargo, las simulaciones por QMC no permitieron incorporar una competencia entre las constantes de acoplamiento, ni deformaciones en la red y debido a esta limitación no fue posible utilizarla para reproducir otro tipo de mediciones como la magnetostricción. Los principales resultados de este trabajo están asociados a las propiedades magnetoelásticas cuando se emplearon campos magnéticos altos (hasta 16T). Este fenómeno, conocido como magnetostricción forzada, mostró un efecto muy singular cuando se realizaron mediciones al aplicar un campo magnético a lo largo del eje a o b en la fase ordenada, un efecto que desaparece en el régimen paramagnético. Ademas, las mediciones con campo magnético aplicado a lo largo del eje c presentaron un comportamiento sin fuertes efectos magnetostrictivos. Esta diferencia entre las mediciones longitudinales a lo largo del eje a(b) y el eje c, es clara evidencia de una anisotropa, que no era de esperarse debido a que el ion Gd"3+ tiene un momento angular orbital nulo en el estado fundamental. Sin embargo, en esta tesis se encontró que deformaciones en los parámetros de red del orden de 10"-4A están asociadas con la anisotropa visualizada. Usualmente, deformaciones tan pequeñas suelen ser ignoradas cuando se estudian sus propiedades magnéticas, esto se debe en gran parte a la dificultad experimental para observarlas. Experimentalmente, esta tesis aprovecho la alta resolución y sensibilidad de la técnica de la dilatometra por el método capacitivo para obtener mediciones de los efectos magnetoelásticos en los sistemas GdCo_In5 y GdRhI_n5. Teóricamente para interpretar estos resultados y reproducirlos se desarrollo un modelo con el objetivo de mostrar que a partir del estudio microscópico se puede obtener información microscópica del sistema. Particularmente, el tipo de ordenamiento antiferromagnético, el origen de la anisotropa magnética, la frustración magnética, la cuantificación de los efectos de campo cristalino y de las deformaciones en los parámetros de red. Estos resultados evidencian que el sistema presenta una ligera distorsión que implica un cambio de simetría tetragonal a ortorrombica. Este rompimiento de la simetría tetragonal es una consecuencia directa del acople magnetoelástico y podrá ser una característica general de los compuestos a base de Gd que poseen ordenamiento antiferromagnético con estructura tetragonal.
Resumen en inglés
The interaction between magnetic properties and elastic properties (electron-phonon interaction) gives rise to a very interesting physics from a fundamental perspective as well as from a technological point of view due to potential applications. In this doctoral thesis we performed a theorical and experimental study of the magnetoelastic properties of the systems GdCoI_n5 and GdRhI_n5, which belong to the family RMI_n5 (R=Rare earth M=Metal of transition and In=Indium). The single crystals studied were synthesized using the self-flux method. After checking the stoichiometry and the crystal structure of the single crystals the magnetic, thermal and transport properties were studied. In particular, it was determined from the magnetic characterization that the studied systems presented antiferromagnetic type arrangements (AFM). It was evidenced from this characterization that the magnetic properties are dominated by the contribution of the rare earth involved (R). For this reason, this doctoral thesis is focused on understanding the role played by Gadolinium (Gd) in the different properties of the systems. In order to understand the magnetic and thermodynamic properties in the systems under study, the Quantum Monte Carlo method (QMC) was used to perform simulations that allowed to reproduce experimental measurements of magnetic susceptibility and specic heat. The proposed model allowed to obtain microscopic information of the system, particularly on the exchange interactions. However, the simulations by QMC did not allow to incorporate the competition between the coupling constants, nor lattice distortions. Due to this limitation it is not possible to use it to reproduce other type of measurements like the magnetostriction. The main results of this work are associated to the magnetoelastic properties when magnetic elds (up to 16T) were used. This phenomenon, known as forced magnetostriction, showed an abrupt increase in the lattice lengths when the magnetic field was applied along the a or b axes in the ordered phase, whereas the magnetostrictive effect disappears in the paramagnetic regime. In addition, an applied eld along the c-axis did not show any relevant magnetostriction. This dierence between the longitu- dinal measurements along the a(b)-axes and c-axis, is a clear evidence of an anisotropy which was not to be expected due to the zero orbital angular moment of the Gd"3+ in the ground state. In this thesis, it is shown that lattice strains of order 10"-4A are associated with the observed anisotropy. Usually, these small deformations are ignored when studying the magnetic properties. This is due in major part to the experimental dificulty to measure them. Experimentally, this thesis takes advantage of the high resolution and sensitivity of the dilatometry technique by the capacitive method to obtain measurements of the magnetoelastics eects in the GdCoI_n5 and GdRhI_n5 systems. Theoretically, in order to interpret these results and to reproduce them a model was developed aimed to show that from the macroscopic study, microscopy information can be obtained from the system. Particularly, the type of antiferromagnetic arrangement, the origin of the magnetic anisotropy, the magnetic frustration, the quantication of the crystalline field effects and the deformations in the lattice parameters can be predicted from the proposed model. These results show that the system presents a slight distortion that implies a change of tetragonal to orthorhombic symmetry. This breaking of the tetragonal symmetry is a direct consequence of the magnetoelastic coupling and could be a general characteristic of the compounds based on Gd that have antiferromagnetic order in a tetragonal structure.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Gadolinium; Gadolinio; Antiferromagnetism; Antiferromagnetismo; Anisotropy; Anisotropía; [Magnetoelastic effects; Efectos magnetoelásticos] |
Referencias: | [1] J. Jensen, A. Mackintosh, Rare Earth Magnetism: Structure and Excitations, Vol. 1, Clarendon Press, 1991. 1, 2, 5, 17, 20, 111, 113, 123 [2] N. B. Ekreem, A. G. Olabi, T. Prescott, A. Raerty, M. S. J. Hashmi, An overview of magnetostriction, its use and methods to measure these properties, J. Mater. Process. Technol. 191 (2007) 96-101. 1, 2 [3] C. J. Hsu, S. Prikhodko, C. Wang, L. Chen, G. P. Carman, Magnetic anisotropy in nanostrutured Gadolinium, J. Appl. Phys. 111 (2012) 053916. [4] A. G. Olabi, A. Grunwald, Design and application of magnetostrictive materials, Mater. Des. 29 (2008) 469-483. 1 [5] G. Engdahl, Handbook of giant magnetostrictive materials, Elsevier, 1995. 1 [6] E. Hristoforou, A. Ktena, Magnetostriction and magnetostrictive materials for sensing applications, J. Magn. Magn. Mater. 316 (2007) 372-378. [7] H. Szymczak, From almost zero magnetostriction to giant magnetostrictive effects: recent results, J. Magn. Magn. Mater. 200 (1999) 425-438. 1, 2 [8] V. S. Sastri, J. C. Bunzli, V. R. Rao, G. Rayudu, J. Perumareddi, Modern aspects of rare earths and their complexes, Elsvier Science Publishers B.V, 2003. 1, 112 [9] R. L. Serrano, Determinación de estructuras magnéticas de nuevos compuestos intermetálicos, Tesis Doctoral, Instituto de Fisica, UNICAMP. 1, 6, 82, 113 [10] A. Christianson, E. Bauer, J. Lawrence, P. Riseborough, N. Moreno, P. Pagliuso, J. Sarrao, J. Thompson, E. Goremychkin, F. Trouw, M. Hehlen, R. Mc-Queeney, Crystalline electric eld eects in CeMIn5 (M=Co,Rh,Ir): Superconductivity and the influence of Kondo spin fuctuations, Physical Review B. Condensed Matter and Materials Physics 70 (13) (2004) 134505-1-134505-9. doi:10.1103/PhysRevB.70.134505. 2 [11] M. Kenzelmann, T. Strassle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A. Bianchi, R. Movshovich, E. Bauer, J. Sarrao, J. Thompson, Coupled superconducting and magnetic order in CeCoIn5, Science 321 (5896) (2008) 1652-1654. doi:10.1126/science.1161818. [12] G. Knebel, D. Aoki, J.-P. Brison, L. Howald, G. Lapertot, J. Panarin, S. Raymond, J. Flouquet, Competition and/or coexistence of antiferromagnetism and superconductivity in CeRhIn5 and CeCoIn5, Physica Status Solidi (B) Basic Research 247 (3) (2010) 557{562. doi:10.1002/pssb.200983061. [13] J. Thompson, Z. Fisk, Progress in heavy-fermion superconductivity: Ce115 and related materials, Journal of the Physical Society of Japan 81 (1). doi:10.1143/ JPSJ.81.011002. [14] R. Movshovich, M. Jaime, J. Thompson, C. Petrovic, Z. Fisk, P. Pagliuso, J. Sarrao, Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specic heat and thermal conductivity studies, Physical Review Letters 86 (22) (2001) 5152- 5155. doi:10.1103/PhysRevLett.86.5152. 2 [15] E. R. Callen, H. B. Callen, Static magnetoelastic coupling in cubic crystal, Phys. Rev. 129 (2) (1963) 578-593. 3, 15, 22 [16] E. R. Callen, H. B. Callen, Magnetostriction, forced magnetostriction, and anomalous thermal expansion in ferromagnets, Phys. Rev. 139 (1965) A455-A471. doi:10.1103/PhysRev.139.A455. URL http://link.aps.org/doi/10.1103/PhysRev.139.A455 6, 15 [17] E. R. Callen, H. B. Callen, The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1) power law, J. Phys. Chem. Solids 27 (1966) 1271-1285. 15, 22, 113 [18] E. Callen, Magnetostriction, J. Appl. Phys. 39 (2) (1968) 519-527. doi:http://dx.doi.org/10.1063/1.2163507. URL http://scitation.aip.org/content/aip/journal/jap/39/2/10.1063/1.2163507 15 [19] P. Morin, J. Rouchy, E. du Tremolet de Lacheisserie, Magnetoelastic properties of RZn equiatomic compounds, Phys. Rev. B 16 (1977) 3182-3193. doi:10.1103/PhysRevB.16.3182. URL http://link.aps.org/doi/10.1103/PhysRevB.16.3182 16, 22 [20] P. Morin, S. J. Williamson, Isotropic magnetoelastic properties in Thulium intermetallic compounds, Phys. Rev. B 29 (1984) 1425-1432. doi:10.1103/ PhysRevB.29.1425. URL http://link.aps.org/doi/10.1103/PhysRevB.29.1425 16 [21] P. Morin, D. Schmitt, Origin of the magnetoelasticity in cubic rare-earth intermetallic compounds, Phys. Rev. B 23 (1981) 2278-2289. doi:10.1103/PhysRevB. 23.2278. URL http://link.aps.org/doi/10.1103/PhysRevB.23.2278 16, 113 [22] P. Morin, J. Rouchy, D. Schmitt, Susceptibility formalism for magnetic and quadrupolar interactions in hexagonal and tetragonal rare-earth compounds, Phys. Rev. B 37 (1988) 5401-5413. doi:10.1103/PhysRevB.37.5401. URL http://link.aps.org/doi/10.1103/PhysRevB.37.5401 16, 21, 22, 113 [23] E. W. Lee, Magnetostriction and magnetomechanical eects, Reports on Progress in Physics 18 (1) (1955) 184. URL http://stacks.iop.org/0034-4885/18/i=1/a=305 15 [24] E. W. Lee, The magnetoelastic behaviour of antiferromagnets having helical spin congurations, Proceedings of the Physical Society 84 (5) (1964) 693. URL http://stacks.iop.org/0370-1328/84/i=5/a=307 15 [25] A. del Moral, M. S. Brooks, Field dependence of forced magnetostriction in cubic ferro, ferri and antiferromagnets, Journal of Physics C: Solid State Physics 7 (14) (1974) 2540. URL http://stacks.iop.org/0022-3719/7/i=14/a=017 3, 15, 21 [26] Y. Kalychak, V. Zaremba, R. Pottgen, M. Lukachuk, R. D. Homan, Handbok on the Physisc of Rare Earths. Chapter 218: Rare earth-Transition metal indides, Vol. 34, 2004. 4 [27] N. V. Hieu, The structural study of RTIn5 (T=Co, Rh) compounds, JETEAS 5 (2011) 576-580. 4 [28] J. I. Facio, D. Betancourth, P. Pedrazzini, V. F. Correa, V. Vildosola, D. J. Garcia, P. S. Cornaglia, Why the Co-based 115 compounds are different: The case study of GdMIn5 (M=Co, Rh, Ir), Phys. Rev. B. 91 (2015) 014409. doi:10.1103/PhysRevB.91.014409. URL http://link.aps.org/doi/10.1103/PhysRevB.91.014409 4, 13, 24, 26, 76, 89, 91, 94, 115, 116, 200 [29] E. Granado, Investigating strongly correlated electron systems with synchrotron X-ray diraction at LNLS, Physica B: Condensed Matter 354 (14) (2004) 320 - 325, proceedings of the Workshop At the Frontiers of Condensed Matter. Magnetism, Magnetic Materials, and their Applications. doi:http://dx.doi.org/10.1016/j.physb.2004.09.073. URL http://www.sciencedirect.com/science/article/pii/S0921452604009706 5, 11, 18, 26, 112, 123 [30] E. Granado, B. Uchoa, A. Malachias, R. Lora-Serrano, P. G. Pagliuso, H. Westfahl, Magnetic structure and critical behavior of GdRhIn5: Resonant X-ray diffraction and renormalization group analysis, Phys. Rev. B. 74 (2006) 214428. doi:10.1103/PhysRevB.74.214428. URL http://link.aps.org/doi/10.1103/PhysRevB.74.214428 18, 20, 44, 75, 112, 117, 122, 128, 133, 137, 138, 139, 143, 155, 158, 166 [31] K. Latka, R. Kmiez, M. Rams, R. Pottgend, Z. Naturforsch., Antiferromagnetic ordering in GdRhIn5, ChemInform 59b (2004) 947-957. doi:10.1002/chin.200451015. 11, 26, 44, 111, 117, 128, 138 [32] R. Lora-Serrano, D. J. Garcia, D. Betancourth, R. P. Amaral, N. S. Camilo, E. Estevez-Rams, L. A. Ortellado, P. G. Pagliuso, Dilution eects in spin 7=2 systems. the case of the antiferromagnet GdRhIn5, J. Magn. Magn. Mater. 405 (2016) 304 - 310. doi:http://dx.doi.org/10.1016/j.jmmm.2015.12.093. URL http://www.sciencedirect.com/science/article/pii/S030488531530963X 5, 76, 84, 113 [33] S. J. Blundel, Magnetism in Condensed Matter, Oxford University Press In, 2001. 6, 17, 18, 27, 76, 77 [34] L. Oroszlany, A. Deak, Magnetism of Gadolinium: A rst-principles perspective, Phys. Rev. Lett. 115 (2015) 1-5. 6 [35] S. Y. Dankov, A. M. Tishin, V. K. Pecharsky, K. A. Gschneidner, Magnetic phase transitions and the magnetothermal properties of Gadolinium, Phys. Rev. B 57 (1998) 3478-3490. [36] P. Caravan, J. Erey, E. Thomas, J. McMuurry, R. B. Lauer, Gadolinium III chelates as MRI contrast agents: Struture, dynamics, and applications, Chem. Rev 60A (1999) 2293-2352. 6 [37] F. Freyne, Magnetoelastic anomaly in gadolinium, Phys. Rev. B. 5 (1971) 1327- 1340. 6 [38] H. Hof, K. Kronmuller, Magnetic properties of plastically deformed Gadolinium single crystal, Physica 80B (1975) 464-472. [39] J. W. Cable, W. C. Koehler, A neutron study of the spin reorientation transition in Gd, J. Appl. Phys. 53 (1984) 1904-1906. [40] D. J. W. Geldart, P. Hargraves, Anisotropy of the critical magnetic susceptibility of Gadolinium, Phys. Rev. Lett. 62 (1989) 2728-2731. 111 [41] U. Nitzsche, M. Richter, I. Chaplygin, K. Koepernik, I. Opahle, H. Eschrig, Electronic structure and magnetostriction in bulk Gadolinium, J. Mag. Magn Mat. (2004) 272-276doi:doi:10.1016/j.jmmm.2003.12.399. 6 [42] E. Frey, F. Schwabl, S. Henneberg, O. Hartmann, R.Wapplin, A. Kratzer, G. Klavis, Determination of the universality class of Gadolinium, Phys. Rev. Lett. 79 (1997) 5142-5145. 6 [43] A. L. M. Doerr, M. Rotter, Magnetostriction in rare-earth based antiferromagnetism, Adv. Phys. 54 (2005) 1-66. 61, 111 [44] A. Ferdinand, A. Probst, A. Michels, R. Birringer, S. N. Kaul, Critical behaviour of nanocrystalline Gadolinium: evidence for random uniaxial dipolar universality class, J. Phys.:Condens. Matter 26 (2014) 056003. 6 [45] M. Colariati-tosti, S. L. Simak, R. Ahuja, L. Nordstrom, O. Eriksson, D. Aberg, S. Edvardsson, M. S. S. Brooks, Origin of the magnetic anisotropy of Gd metal, Phys. Rev. Lett. 91 (2003) 157201. 6 [46] M. Colariati-tosti, Theory of the magnetic anisotropy of Gd metal, J. Magn. Magn. Mater 1 (2004) 272-276. 6, 20, 111 [47] M. Colariati-tosti, T. Burkert, O. Eriksson, L. Nordstrom, M. S. S. Brooks, Theory of the temperature dependence of the easy axis of magnetization in hcp Gd, Phys. Rev. B. 72 (2005) 094423. 6 [48] R. Kruk, M. Ghafari, H. Hahn, D. Michles, R. Birringer, C. E. Krill, R. Kmiec, M. Marszalek, Grain-size-dependent magnetic properties of nanocrystalline Gd, Phys. Rev. B. 73 (2006) 054420. [49] P. M. Shand, J. G. Bohnet, J. Goertzen, J. E. Shield, D. Schmitter, G. Shelburne, D. L. Leslie-Pelecky, Magnetic behavior of melt-spun Gadolinium, Phys. Rev. B 77 (2008) 184415. [50] A. Abdelouahed, M. Alouani, Magnetic anisotropy in Gd, GdN and GdFe2 tuned by the energy of Gadolinium 4f states, Phys. Rev. B 79 (2009) 054406. [51] M. Pylak, L. Dobrzynski, H. Sormann, Spin polarization of conduction electrons and electronic structure of Gadolinium, Phys. Scr. 88 (2013) 035708. [52] H. Jang, B. Y. Kang, B. Cho, M. Hashimoto, D. Lu, C. Burns, C. Kao, J. Lee, Observation of orbital order in half-lled 4f Gd compound, Phys. Rev. Lett. 117 (2016) 216404. 6 [53] A. Lindbaum, M. Rotter, Handbook of Magnetic Materials. Chapter 4, Spontaneous magnetoelastic eects in Gadolinium Compounds, Vol. 14, Elsvier, 2002. 6, 113 [54] M. Rotter, Magnetic properties in Gadolinum compounds, Tesis Doctoral. Technsche Universitat Dresden (2003). 8, 16, 20, 104 [55] M. Doerr, M. Rotter, A. Devishvili, A. Stunault, J. J. Perenboom, T. Tsutaoka, A. Tanaka, Y. Narumi, M. Zschintzsch, M. Loewenhaupt, Magnetostructural irreversibilities in R5Ge3 (R=Gd, Nd) intermetallics, J. Phys: Confer. Series 150 (2009) 042025. 6 [56] M. Rotter, M. Loewenhaupt, M. Doerr, A. Lindbaum, H. Sassik, K. Ziebeck, B. Beuneu, Dipole interaction and magnetic anisotropy in Gadolinium compounds, Phys. Rev. B 68 (2003) 144418. doi:10.1103/PhysRevB.68.144418. URL http://link.aps.org/doi/10.1103/PhysRevB.68.144418 7, 111 [57] M. Rotter, M. Doerr, M. Loewenhaupt, A. Lindbaum, K. Ziebeck, B. Beuneu, Diffraction experiments on GdCu2In using hot neutrons, Physica B: Condensed Matter 350 (13) (2004) E63 - E66, proceedings of the Third European Conference on Neutron Scattering. doi:http://dx.doi.org/10.1016/j.physb.2004.03.018. URL http://www.sciencedirect.com/science/article/pii/S0921452604002613 7 [58] M. Rotter, M. Loewenhaupt, Magnetoelastic paradox: Abscence of simmetrybreaking distorsion below TN in antiferromagnetic system without orbital moment, EPL 75 (2006) 160-166. 7, 8, 9, 109 [59] M. Rotter, M. Loewenhaupt, The magnetoelastic paradox in GdAg2 and GdRu2Si2, J. Magn. Magn. Mater. 310 (2007) 1383-1385. 9, 104 [60] N. Mehboob, Magnetostriction of GdAg2, PrFe4As12, and GdVO3 measured with a capacitance dilatometer, Tesis de Maestría. Universitat Wien (2009). 109, 113 [61] N. Mehboob, M. Rotter, Thermal expansion and magnetostriction of GdAg2 and relations to the magnetoelastic paradox, Solid State Commun. 15 (2011) 1112-1116. 7, 9 [62] P. C. Caneld, B. K. Cho, K. W. Dennis, Magnetic properties of single crystal GdNi2B2C, Phys. B.: Phys. Cond. Matt. 215 (1995) 337-343. 7 [63] K. Tomala, J. P. Sanchez, P. C. Canfield, Z. Drzazga, A. Winiarska, Squared spin modulated versus spiral like magnetic structures in GdNi2B2C: A 155Gd mossbauer eect investigation, Phys. Rev. B 58 (1998) 8534-8541. 8, 10 [64] M. E. Massalami, A. Takeya, K. Hirata, M. Amara, R. M. Galera, D. Schimitt, Magnetic phase diagram of GdNi2B2C: A 155Gd two ion magnetoelasticity and anistropic exhange couplings, Phys. Rev. B 67 (2003) 144421. 22, 104 [65] G. A. Zvyagina, I. E. Chupis, V. D. Fil', K. R. Zhekov, Y. A. Avramenko, S. lk. Lee, Magneto-elastic interacion and acoustic nonreciprocity in GdNi2B2C, J. Low. Temp. Phys. 33 (2007) 952-956. [66] P. Normile, M. Rotter, C. Detlefs, J. Jensen, P. Canfeld, J. A. Blanco, Magnetic ordering in GdNi2B2C revisited by resonant X ray scattering evidence for the double q model, Phys. Rev. B 88 (2013) 054413. 7, 8, 10 [67] K. H. Muller, G. Fuchs, S. L. Drechsler, V. N. Narozhnyi, Handbook of Magnetic Materials. Chapter 3, Magnetic and superconducting properties of rare earth borocarbides of the type RNi2B2C, Vol. 14, Elsevier, 1995. 7 [68] P. Caneld, B. Cho, K. Dennis, Magnetic properties of single crystal GdNi2B2C, Phys. B. 215 (1995) 337-343. 8 [69] M. Rotter, A. Schneidewind, M. Doerr, Interpreting magnetic X ray scattering on Gd compounds using the McPhase simulation program, Physica B. Condensed matter 345 (2004) 231-234. 9, 111 [70] J. Jensen, M.Rotter, Magnetic double -q ordering of tetragonal GdNi2B2C: A way to explain the magnetoelastic paradox, Phys. Rev. B 77 (2008) 1-6. 9, 10, 104, 113 [71] N. V. Hieu, H. Shishido, T. Takeuchi, A. Thamizhavel, H. Nakashima, K. Sugiyama, R. Setta, T. D. Matsuda, Y. Haga, M. Hagiwara, K. Kindo, Y. Onuki, Unique magnetic properties of NdRhIn5, TbRhIn5, DyRhIn5 and HoRhIn5, J. Phys. Soc. Japan 75 (2006) 074708. 11 [72] N. V. Hieu, Magnetic properties and crystalline electric eld scheme in RRhIn5 (R:Rare Earth), J. Phys. Soc. Jpn. 76 (2007) 1. 11, 73, 75, 76, 89, 116, 200 [73] D. Landau, E. M. Lifshitz, Quantum Mechanics: Non Relativisty Theory. 3a Edition, Elsevier, 2013. 14 [74] E. P. Wohlfarth, Handbook of Magnetic Materials, Vol. 1, North-Holland Publishing Company, 1980. 15 [75] J. F. Janak, Uniform susceptibilities of metallic elements, Phys. Rev. B. 16 (1977) 255-262. doi:10.1103/PhysRevB.16.255. URL http://link.aps.org/doi/10.1103/PhysRevB.16.255 15 [76] P. Morin, J. Rouchy, Z. Kazei, Magnetic and magnetoelastic properties in tetragonal TbPO4, Phys. Rev. B 50 (1994) 12625-12634. doi:10.1103/PhysRevB. 50.12625. URL http://link.aps.org/doi/10.1103/PhysRevB.50.12625 16 [77] P. Morin, J. Rouchy, Z. Kazei, Magnetoelastic properties and level crossing in HoVO4, Phys. Rev. B 51 (1995) 15103-15112. doi:10.1103/PhysRevB.51. 15103. URL http://link.aps.org/doi/10.1103/PhysRevB.51.15103 16 [78] H. A. Kramers, L'interaction entre les atomes magnetogenes dans un cristal paramagnetique, Physica 1 (1) (1934) 182-192. doi:http: //dx.doi.org/10.1016/S0031-8914(34)90023-9. URL http://www.sciencedirect.com/science/article/pii/S0031891434900239 17 [79] P. W. Anderson, Antiferromagnetism. theory of superexchange interaction, Phys. Rev. 79 (1950) 350-356. doi:10.1103/PhysRev.79.350. URL http://link.aps.org/doi/10.1103/PhysRev.79.350 17 [80] M. A. Ruderman, C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96 (1954) 99-102. doi:10.1103/ PhysRev.96.99. URL http://link.aps.org/doi/10.1103/PhysRev.96.99 17 [81] R. Lora-Serrano, L. M. Ferreira, D. J. Garcia, E. Miranda, C. Giles, J. G. S. Duque, E. Granado, P. G. Pagliuso, Structurally tuned magnetic properties of intermetallic antiferromagnets, Physica B: Condensed Matter 384 (12) (2006) 326 - 328, lAW3M-05Proceedings of the Seventh Latin American Workshop on Magnetism, Magnetic Materials and their Applications. doi:http://dx.doi.org/10.1016/j.physb.2006.06.035. URL http://www.sciencedirect.com/science/article/pii/S0921452606013433 18 [82] T. Moriya, New mechanism of anisotropic superexchange interaction, Phys. Rev. Lett. 4 (1960) 228-230. doi:10.1103/PhysRevLett.4.228. URL http://link.aps.org/doi/10.1103/PhysRevLett.4.228 19 [83] K. H. J. Buschow, F. R. D. Boer, Physics of Magnetism and Magnetic Materials, Vol. 1, Kluwer Acadmic Publishers, 2003. 20, 21 [84] J. Mulak, Z. Gajek, The Effective Crystal Field Potential, Elsevier Science Ltda., 2000. 20, 21 [85] D. J. Newman, N. Betty, Crystal eld handbook, Cambridge University Press, 2000. 20 [86] W. H. Stevens, Matrix elements and operator equivalents connected with magnetic properties of rare earth ions, Proc. Phys. Soc. A65 (1952) 209-215. 21 [87] M. T. Hutchings, Point charge calculations of energy levels of magnetic ions in crystalline electric fields, Solid. State. Phys. 16 (1964) 227-273. 21 [88] R. J. Elliott, Magnetic Properties of Rare Earth Metals, Springer Science Business, 1971. 21 [89] W. M. Lai, D. H. Rubin, E. Krempl, Introduction to continuum mechanics, Butterworth-Heinemann, 2009. 22 [90] J. Fernandez, A. Aligia, Private conversation. 22, 181, 183 [91] C. Kittel, Introduction to Solid State Physics, Vol. 1, John Wiley & sons, 1996.29 [92] A. Sandvik, J.Kurkijarvi, Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B. 43 (1991) 5950-5961. 34, 185 [93] F. Alet, A Quick introduction to Quantum Monte Carlo methods, Unv. Paul Salbatier Tolouse. URL http://alps.compphys.org/mediawiki/images/d/d8/QMC.PSI.pdf 37 [94] O. F. Syljuasen, A. W. Sandvik, Quantum Monte Carlo with direct loop, Phys. Rev. E. Statical, Nolinear, and soft Matter Physics 046701 (4) (2002) 1-28. 38 [95] ALPS, Project. URL http://alps.comp-phys.org 38, 186 [96] ALPS, Todo Group, Departament of physics. University of Tokyo. URL http://exa.phys.s.u-tokyo.ac.jp./en/projects/ 38 [97] P. D. Loly, Spin wave theory of the Heisenberg model for large spin and the classical limit, Annals of physicis 56 (1970) 40-57. 40 [98] E. H. Lieb, The classical limit of quantum spin systems, Commun. math. Phys. 31 (1973) 327-340. [99] D. A. Garanin, K. Kladko, P. Fulde, Quasiclassical Hamiltonians for large spin systems, J. Eur. Phys. B. 14 (2000) 293-300. [100] National Research Council. Condensed Matter and materials physics. Basic Research for tomorrow's technology, Vol. 14, The National Academies Press, 1995. [101] C. L. Henley, Lectura 4.1. Spin Hamiltonians and exchange interactions, P654, 2008. 40 [102] Wolfram Research. Wolfram Mathematica. URL http://www.wolfram.com/mathematica/ 40 [103] Z. Fisk, J. P. Remeika, Chapter 81: Growth of Single Crystal from Molten Metal Fluxes, Vol. 12, Elsevier Science Publishers B.V, 1989. 48 [104] P. C. Caneld, Z. Fisk, Growth of single crystal from metallic fluxes, Philos. Mag. B 65 (1992) 1117-1123. 48 [105] C. R. Brundle, J. C. A. Evans, S. Wilson, Encyclopedia of materials characterization, Manning Publications Co., 1992. 50 [106] B. D. Cullity, Elements of X Ray Diffraction, Addison-Wesley Publishing Company, Inc., 1956. 51 [107] User manual: MPMS-5S Magnetic Property Measurement System. 52 [108] G. M. Schmiedesho, A. W. Lounsbury, D. J. Luna, S. J. Tracy, A. J. Schramm, S. W. Tozer, V. F. Correa, S. T. Hannahs, T. P. Murphy, E. C. Palm, A. H. Lacerda, S. L. Budko, P. C. Caneld, L. Smith, J. C. Lashley, J. C. Cooley, Versatile and compact capacitive dilatometer, Rev. Sci. Instrum 77 (2006) 1-7. 54, 55, 61 [109] F. R. Kroegner, C. A. Swenson, Absolute linear thermal expansion measurements on Cooper an Aluminum from 5 to 320K, J. Appl. Phys. 48 (1977) 853-864. 54, 60, 61 [110] User manual: Ultra-Precision Capacitance Bridge AH2700A 50 Hz-20 kHz., 2003. URL http://www.andeen-hagerling.com/ah2700a.htm 56, 57 [111] D. Perez, Diseño e implementación de MEMS para mediciones de transiciones de fase en sistemas de vórtices superconductores con desorden, Tesis Doctoral, Instituto Balseiro, Universidad del Cuyo, 2015. 57 [112] User manual: Cryostat Oxford Instruments, 1999. 57, 66 [113] User manual: LTC-21 Temperature Controller Conductus. 58 [114] W. D. Callister., D. G. Rethwisc, Materials Science and Engineering: An Introduction, Jhon Wiley & Sons, 2009. 59 [115] R. P. Reed, Thermal Expansion, Clarendon Press, 1983. 59 [116] H. E. Burke, Handbook of Magnetic Phenomena, Van Nostrand Reinhold Company Inc, 1986. 61 [117] J. M. Chicharro, Estudio de la magnetostriccion por interferometria de Speckle, Tesis Doctoral, Universidad Politecnica de Madrid (2000). 61 [118] P. Pedrazzini, Estudio comparativo de inestabilidades magnéticas en compuestos de Cerio, Tesis Doctoral, Instituto Balseiro, Universidad del Cuyo (2003). 62 [119] G. Jorge, Excitaciones magnéticas en superconductores de alta temperatura crítica y otros sistemas fuertemente correlacionados, Tesis Doctoral, Universidad de Buenos Aires (2004). 63, 64 [120] S. Tagliati, A. Rydh, Classical temperature modulated calorimetry: A review, Thermochimic Acta 304-305 (1997) 1-26. 64 [121] S. Tumanski, Handbook of magnetic measurement, Taylor & Francis group, CRC Press, 2011. 66 [122] User manual: Keitheley Model 182 Sensitive Digital voltmeter. 66 [123] User manual: Keitheley Model 220 Programable current Source. 66 [124] G. Dyos, The Handbook of Electrical Resistivity, The Institution of Enegineering and Technology, 2012. 67 [125] Kalychak, Composition and crystal structure of rare earths Co In compounds, J. Alloys Compd. 291 (1999) 80-88. 72 [126] M. R. Eskildsen, C. D. Dewhurst, B. W. Hoogenboom, C. Petrovic, P. C. Caneld, Hexagonal and square flux line lattices in CeCoIn5, Phys. Rev. Lett. 90 (2003) 187001. doi:10.1103/PhysRevLett.90.187001. URL http://link.aps.org/doi/10.1103/PhysRevLett.90.187001 73 [127] X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, X. H. Chen, Anisotropy in the electrical resistivity and susceptibility of superconducting BaFe2As2 single crystals, Phys. Rev. Lett. 102 (2009) 117005. doi:10.1103/PhysRevLett.102.117005. URL http://link.aps.org/doi/10.1103/PhysRevLett.102.117005 73 [128] P. G. Pagliuso, J. D. Thompson, M. F. Hundley, J. L. Sarrao, Z.Fisk, Crystal structure and low temperature magnetic properties of RmMIn(3m+2) compounds (M=Rh or Ir; m=1,2; R=Sm or Gd), Phys. Rev. B 63 (2001) 1. 73 [129] G. H. Dieke, H. M. Crosswhite, The spectra of the doubly and triply ionized rare earths, Appl. Opt. 2 (1963) 675-686. 77, 182 [130] H. P. Myers, W. Sucksmith, The spontaneous magnetization of Cobalt, Proc. R. Soc. Lond. A 207 (1951) 427-446. 79 [131] R. N. Grass, W. J. Stark, Gas phase synthesis of FCC-Cobalt nanoparticles, J. Mater. Chem. 16 (2006) 1825-1830. 79 [132] M. B. Fontes, J. C. Trochez, B. Giordanengo, S. L. Budko, D. R. Sanchez, E. M. Baggio-Saitovitch, M. A. Continentino, Electron-magnon interaction in RNiBC (R=Er, Ho, Dy, Tb, and Gd) series of compounds based on magnetoresistance measurements, Phys. Rev. B. 60 (1999) 6781-6789. doi:10.1103/PhysRevB.60. 6781. URL http://link.aps.org/doi/10.1103/PhysRevB.60.6781 81 [133] A. J. Devang, C. V. Tomy, S. K. Malik, Magnetic, transport and thermal properties of ternary indides R2CoIn8 (R=rare earths and Y ), J. Phys.: Condens. Matter. 19 (13) (2007) 136216. URL http://stacks.iop.org/0953-8984/19/i=13/a=136216 81 [134] Y. I. Spichkin, A. M. Tishin, K. A. Gschneidner, Elastic properties of a high purity Gadolinium single crystal, J. Magn. Magn. Mater. 204 (1999) 5-10. 84 [135] S. Y. Dankov, A. M. Tishin, V. K. Pecharsky, K. A. Gschneidner, Magnetic phase transitions and magnetothermal properties of Gadolinium, Phys. Rev. B 57 (1998) 5-10. 84 [136] D. Betancourth, J. I. Facio, P. Pedrazzini, C. B. R. Jesus, P. G. Pagliuso, V. Vildosola, P. S. Cornaglia, D. J. Garcia, V. F. Correa, Low temperature magnetic properties of GdCoIn5, J. Magn. Magn. Mater. 374 (2015) 744-747. doi:http://dx.doi.org/10.1016/j.jmmm.2014.09.024. URL http://www.sciencedirect.com/science/article/pii/S0304885314008440 85, 89, 113 [137] D. C. Wallace, Thermodynamics of Crystals, Vol. 1, 1998. 90 [138] P. Cermak, M. Divis, M. Kratochvilova, P. Javorsky, Specic heat study of R2RhIn8 (R=Y, La, Lu) compounds, Solid State Commun. 163 (2013) 55 - 59. doi:http://dx.doi.org/10.1016/j.ssc.2013.03.028. URL http://www.sciencedirect.com/science/article/pii/S0038109813001531 90 [139] D. Betancourth, V. F. Correa, D. J. Garcia, Evidence of a low energy anisotropy in GdCoIn5, J. Low. Temp. Phy. 179 (2015) 90-93. doi:10.1007/s10909-014-1233-2. 111, 112 [140] M. S. S. Brooks, D. A. Goodings, Spin wave theory of the magnetocrystalline anisotropy in Gadolinium metal, Journal of Physics C Solid State Physics 1 (5) (1968) 1279. URL http://stacks.iop.org/0022-3719/1/i=5/a=316 111, 127, 140 [141] A. Szytula, J. Leciejewicz, Handbook on the physics and chemestry of rare earths. Chapter 83: Magnetic properties of ternary intermetallic compounds of the RT2X2 type, Vol. 12, Elsevier Science Publishers B.V, 1989. 113 [142] A. Szytula, Handbook of Magnetic Materials. Chapter 2, Magnetic properties of ternary intermetallic rare earth compounds, Vol. 6, Elsvier Science Publishers B.V, 1996. 113 [143] R. S. Kumar, L. Cornelius, J. L. Sarrao, Compressibility of CeMIn5 and CeMIn8 (M= Rh, Ir and Co) compounds, Phys. Rev. B 70 (2004) 214526. 116, 201 [144] R. S. Kumar, H. Kohlmann, B. E. Light, L. Cornelius, V. Raghavan, T. W. Darling, J. L. Sarrao, Anisotropic elastic properties of CeRhIn5, Phys. Rev. B 69 (2004) 014515. 116, 201 [145] D. C. Johnston, Magnetic dipole interactions in crystals, Phys. Rev. B 93 (2016) 014421. doi:10.1103/PhysRevB.93.014421. URL https://link.aps.org/doi/10.1103/PhysRevB.93.014421 119, 123 [146] M. L. M. Rotter, Magnetic struture of GdCu2, J. Magn. Magn. Mater. 214 (2000) 281-290. 127 [147] J. I. Facio, Una estrategia de principios de primeros principios para el estudio de sistemas multiorbitales fuertemente correlacionados., Tesis Doctoral, Instituto Balseiro, Universidad del Cuyo. 132 [148] F. Arante, D. J. Garcia, Private conversation. 140 [149] B. G. Wybourne, Energy levels of trivalent Gadolinium and ionic contributions to the ground state splitting, Phys. Rev 148 (1966) 317-327. 181 [150] W. V. Linden, A Quantum Monte Carlo approach to many body physics, Phys. Rep. 2-3 (1992) 53-102. 185 [151] H. Q. Ding, Phase transition and thermodynamics of quantum XY model in two dimensions, Phys. Rev. B. 45 (1991) 230-242. 185 [152] Y. Okabe, M. Kikuchi, Quantum Monte Carlo simulation of the spin 0.5 XXZ model on the square lattice, J. Phys. Soc. Jpn. 57 (1988) 4351-4358. 185 [153] J. D. Reger, A. P. Young, Monte Carlo simulation of the spin 0.5 Heisenberg antiferromagnet on a square lattice, Phys. Rev. B. 37 (1988) 5978-5981. 185 [154] M. S. Makiv, H. Ding, Two dimensionsal spin 0.5 Heisenberg antiferromagnet: A Quantum Monte Carlo study, Phys. Rev. B. 43 (1990) 3562-3574. 185 [155] O. A. Petrenko, C. Ritter, M. Yethiraj, D. M. Paul, Investigation of the low temperature spin liquid behavior of the frustrated magnet Gadolinium Gallium Garnet, Phys. Rev. Lett. 80 (1998) 4570-4573. 186 [156] S. S. Sosin, L. A. Prozorova, A. I. Smirnov, A. I. Golov, I. B. Berkuto, O. A. Petrenko, G. Balakrishnan, M. E. Zhitomirsky, Magnetocaloric effect in Pyrochlore antiferromagnet Gd2Ti2O7, Phys. Rev. B. 71 (2005) 094413. 186 [157] E. P. Nobrega., N. A. de Oliveira., P. J. von Rankeand, A. Troper, Monte Carlo calculations of the magnetocaloric effect in Gd5SixGe4x compounds, Phys. Rev. B. 72 (2005) 134426. 186 [158] F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Korner, A. Lauchli, S. Manmana, P. McCulloch, F. Michel, R. Noack, G. Schmid, U. Schollwock, F. Stockli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, The ALPS project: Open source software for strongly correlated system, J. Phys. Soc. Jpn. 74 (2005) 30-35. 186 [159] B. C. Melot, K.Page, R. Seshadri, E. M. Stoudenmire, L. Balents, D. L. Bergman, T. Proen, Magnetic frustration on the Diamon lattice of the A-Site magnetic spinels CoAl2Ga4: The role of lattice expansion and site disorder, Phys. Rev. B. 80 (2009) 104420. 186 [160] F. Kormann, A.Dick, T. Hickel, J. Neugebauer, Rescaled Monte Carlo approach for magnetic systems: Ab initio thermodynamics of BCC Iron, Phys. Rev. B. 81 (2010) 134425. 186 [161] D. C. Johnston, R. J. McQueeney, B. Lake, A. Honecker, M. E. Zhitomirsky, R. Nath, Y. Furukawa, V. P. Antropov, Y. Sing, Magnetic exchange interactions in BaMn2As2, a case study of the J1, J2, Jc Heisenberg model, Phys. Rev. B. 84 (2011) 094445. 186, 187 [162] R. Nath, K. M. Ranjith, B. Roy, D. C. Johnston, Y. Furukawa, A. A. Tsirlin, Magnetic transitions in the spin 2.5 frustrated magnet BiMn2PO6 and strong lattice softening in BiMn2PO6 and BiZn2PO6 below 200K, Phys. Rev. B. 90 (2014) 024431. 187 [163] J. S. Smart, Effective els theories of magnetism, W.B. Saunders Company, 1966. 195 [164] J. A. Blanco, D. Gignoux, D. Schmitt, Specic heat in some Gadolinium compounds. II Theoretical model, Phys. Rev. B 43 (1991) 13145. 195 [165] J. I. Facio, V. Vildosola, Private conversation. 203 |
Materias: | Física > Materia condensada |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Bajas temperaturas |
Código ID: | 800 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 26 Feb 2021 11:07 |
Última Modificación: | 26 Feb 2021 11:07 |
Personal del repositorio solamente: página de control del documento