Determinación de la distribución de la porosidad en rocas mediante resistividad eléctrica. / Determination of rock porosity distribution througn electric resistivic.

Goldmann, Gastón A. (2018) Determinación de la distribución de la porosidad en rocas mediante resistividad eléctrica. / Determination of rock porosity distribution througn electric resistivic. Trabajo Final (CEATEN), Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

El estudio de la porosidad constituye un aspecto de importancia fundamental en disciplinas tan diversas como la Geología, la Ingeniería y las Ciencias Ambientales. En este aspecto los métodos geofísicos son ampliamente utilizados para determinar de manera indirecta las propiedades de un material. En particular, los métodos resistivos constituyen una potente herramienta para apoyar tareas de campo tanto por su portabilidad como por sus reducidos costos. En el presente trabajo se emplea una técnica de este tipo basada en la medición de la resistividad para deducir la porosidad de una serie de probetas de rocas volcánicas. En estos ensayos se usó un telurímetro comercial para medir la resistencia de las muestras secas a lo largo de líneas longitudinales y transversales trazadas sobre la superficie de los testigos. Posteriormente tras una semana de inmersión en agua corriente se repitieron las mediciones para cada una de las muestras parcialmente saturadas. Conocidas las dimensiones de cada probeta es posible obtener la resistividad de la muestra evaluada. A partir de dicha información usando datos tabulados de resistividad intrínseca para las matrices en estudió se estimó la porosidad en las líneas longitudinales. La respuesta eléctrica registrada por el instrumento permitió en primer lugar la identificación de zonas de diferente porosidad para luego definir la extensión de las mismas hacia el interior de cada probeta de manera cualitativa a partir de la distribución de resistividad en planta. Asimismo fueron llevados a cabo estimaciones de la conectividad de la red poral en las rocas parcialmente saturadas las cuales fueron contrastadas con otros ensayos previos realizados mediante otras técnicas. En su conjunto las propiedades caracterizadas resultan invaluables para reconstruir la estructura interna del material estableciendo de este modo una relación directa de estos aspectos con los fenómenos geológicos que han tenido lugar desde la cristalización de la roca.

Resumen en inglés

Adequate porosity characterization is a key area of inquire for a variety of disciplines such as Geology, Engineering and Environmental Sciences. Geophysical methods are broadly used to determine material properties in an indirect approach. Particularly, resistive techniques represent a powerful tool being employed routinely by different researchers around the world during field work chiefly because of their low cost coupled with enhanced portability. In the present thesis a similar technique based on the measurement of resistivity is employed to obtain porosity quantitatively for a series of volcanic rocks cores. During these experiments a commercial tellurometer was used to measure resistance for dry samples along axial and radial lines traced over the cores surface. In a second experience after a week of core moisturization with fresh water measurements were carried out for each of the partially saturated samples. With prior knowledge of the specimen dimensions it is possible to calculate the resistivity of a particular core. The porosity across the axial lines of these samples was further evaluated using tabulated data of intrinsic resistivity in a basaltic rock matrix. Furthermore, the electric signal registered by the instrument for each core allowed identifying areas of different porosity and finally modeling qualitatively the porosity variation at the interior of samples. At the same time connectivity of pore canals were calculated for partially saturated cores and compared with previous studies on the same materials with different techniques. Accurate estimations of porosity and connectivity played a fundamental role so as to gain further insight on the internal structure of volcanic rocks while linking these properties to the geological processes that took place during rock formation.

Tipo de objeto:Tesis (Trabajo Final (CEATEN))
Palabras Clave:Basalt; Basalto; Porosity; Porosidad; [Electromagnetic methods; Métodos electromagnéticos; Geophysical characterization; Caracterización geofísica; Volcanic rocks; Roca volcánica; Electrical resistivity; Resistividad eléctrica]
Referencias:[1] Schön, J. Physical properties of rocks: A workbook (handbook of petroleum exploration and production). 2011. [2] Paterson, M. S. The equivalent channel model for permeability and resistivity in fluid-saturated rocka re-appraisal. Mechanics of Materials, 2(4), 345-352.1983. [3] Walsh, J. B., y Brace, W. F. The effect of pressure on porosity and the transport properties of rock. Journal of Geophysical Research: Solid Earth, 89(B11), 9425-9431.1984. [4] Bernabé, y., y Maineult, A. Physics of porous media: fluid flow through porous media. 2015. [5] Torsæter, O., y Abtahi, M. Experimental reservoir engineering laboratory workbook. Norwegian University of Science and Technology. 2003. [6] Zandomeneghi, D., Voltolini, M., Mancini, L., Brun, F., Dreossi, D., y Polacci, M. Quantitative analysis of X-ray microtomography images of geomaterials: Application to volcanic rocks. Geosphere, 6(6), 793-804. 2010. [7] Strobl, M., Manke, I., Kardjilov, N., Hilger, A., Dawson, M., y Banhart, J. Advances in neutron radiography and tomography. Journal of Physics D: Applied Physics, 42(24), 243001.2009. [8] Mineo, S., y Pappalardo, G. The use of infrared thermography for porosity assessment of intact rock. Rock mechanics and rock engineering, 49(8), 3027-3039.2016. [9] Tyburczy, J. A., y Du Frane, W. L. Properties of Rocks and Minerals-The Electrical Conductivity of Rocks, Minerals, and the Earth. In Mineral Physics (pp. 661-672). Elsevier Inc. 2015. [10]Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54-62, 1942. [11]Glover, P. W. J. "Geophysical properties of the near surface Earth: Electrical properties”, 89-137, 2015. [12]Winsauer, W. O., Shearin Jr, H. M., Masson, P. H., y Williams, M. Resistivity of brine-saturated sands in relation to pore geometry. AAPG bulletin, 36(2), 253-277,1952. [13]Goudarzi, B., Mohammadmoradi, P., y Kantzas, A. Direct pore-level examination of hydraulic-electric analogy in unconsolidated porous media. Journal of Petroleum Science and Engineering, 165, 811-820, 2018. [14]Waxman, M. H., y Smits, L. J. M. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8(02), 107-122, 1968. [15]Lichtenecker, K., y Rother, K. Derivation of the logarithmic mixing law for the general case of stationary flow. Physikaliche Zeitschrift, 32(6), 255-260, 1931. [16]Clavier, C., Coates, G., y Dumanoir, J. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. Society of Petroleum Engineers Journal, 24(02), 153-168, 1984. [17]Poupon, A., Loy, M. E., y Tixier, M. P. A contribution to electrical log interpretation in shaly sands. Journal of Petroleum Technology, 6(06), 27-34, 1954. [18]Hossin, A. Calcul des saturations en eau par la methode du ciment argileux (formule d'Archie generalisee). Bull. Assoc. Francaise Tech. Petrol, 140, 31, 1960. [19]Simandoux, P. Dielectric measurements on porous media, application to the measurements of water saturation: study of behavior of argillaceous formations. Revue de l’Institut Francais du Petrol, 18(supplementary issue), 93-215, 1963. [20]Debye, P. J. W. Polar molecules. Chemical Catalog Company, Incorporated. 1929. [21]Cole, K. S., y Cole, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of chemical physics, 9(4), 341-351, 1941. [22]Glover, P. W. J., Ransford, T. J., y Auger, G. A simple method for solving the Bussian equation for electrical conduction in rocks. Solid Earth, 1(1), 85-91, 2010. [23]Leroy, P., y Revil, A. A mechanistic model for the spectral induced polarization of clay materials. Journal of Geophysical Research: Solid Earth, 114(B10), 2009. [24]Marshall, D. J., y Madden, T. R. Induced polarization, a study of its causes. Geophysics, 24(4), 790-816, 1959. [25]Titov, K., Komarov, V., Tarasov, V., y Levitski, A. Theoretical and experimental study of time domain-induced polarization in water-saturated sands. Journal of Applied Geophysics, 50(4), 417-433, 2002. [26]Volkmann, J., y Klitzsch, N. Frequency-dependent electric properties of microscale rock models for frequencies from one millihertz to ten kilohertz. Vadose Zone Journal, 9(4), 858-870, 2010. [27]Jones, P. H., y Buford, T. B. Electric logging applied to ground-water exploration. Geophysics, 16(1), 115-139, 1951. [28]Kelly, W. E. Electrical resistivity for estimating permeability. Journal of the Geotechnical Engineering Division, 103(10), 1165-1169, 1977. [29]Kemna, A. Tomographic inversion of complex resistivity: Theory and application. Osnabrück, Germany: Der Andere Verlag, 2000. [30]Kemna, A., y Binley, A. Complex electrical resistivity tomography for contaminant plume delineation. In Proceedings of the 2nd Meeting on Environmental and Engineering Geophysics (pp. 196-199), 1996. [31]Niwas, S., y Singhal, D. C. Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. Journal of hydrology, 50, 393-399, 1981. [32]Yadav, G. S. A FORTRAN computer program for the automatic interactive method of resistivity sounding interpretation. Acta Geodaetica et Geophysica Hungarica, 30(2-4), 363-377, 1995. [33]Chandra, S., Ahmed, S., Ram, A., y Dewandel, B. Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. Journal of Hydrology, 357(3-4), 218-227, 2008. [34]Schrott, L., y Sass, O. Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology, 93(1-2), 55-73, 2008. [35]Maurer, H., y Hauck, C. Geophysical imaging of alpine rock glaciers. Journal of Glaciology, 53(180), 110-120, 2007. [36]Van Schoor, M. Detection of sinkholes using 2D electrical resistivity imaging. Journal of Applied Geophysics, 50(4), 393-399, 2002. [37]Kemna, A., Binley, A., y Slater, L. Crosshole IP imaging for engineering and environmental applications. Geophysics, 69(1), 97-107, 2004. [38]Shevnin, V., Mousatov, A., Ryjov, A., y Delgado-Rodriquez, O. Estimation of clay content in soil based on resistivity modelling and laboratory measurements. Geophysical Prospecting, 55(2), 265-275, 2007. [39]Eccles, D., Sammonds, P. R., y Clint, O. C. Laboratory studies of electrical potential during rock failure. International Journal of Rock Mechanics and Mining Sciences, 42(7-8), 933-949, 2005. [40]Pawar, S. D., Murugavel, P., y Lal, D. M. Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean. Journal of Geophysical Research: Atmospheres, 114(D2), 2009. [41]Telford, W. M., Telford, W. M., Geldart, L. P., Sheriff, R. E., y Sheriff, R. E. Applied geophysics (Vol. 1). Cambridge university press, 1990. [42]Haller, M. J., Ostera, H. A., Pesce, A. H., Gardini, M., y Folguera, A. Vulcanoestratigrafía reciente y eruptividad del volcán Peteroa. In Congreso Geológico Chileno (No. 7, pp. 319-323), 1994. [43]Espizua, L. E. Holocene glacier chronology of Valenzuela Valley, Mendoza Andes, Argentina. The Holocene, 15(7), 1079-1085, 2005. [44]Naranjo, J. A., Haller, M. J., Ostera, H. A., Pesce, A. H., y Sruoga, P. eologia y peligros del Comple o olcánico Planc n-Peteroa ndes del ur 3 1 Región del Maule, Chile-Provincia de Mendoza, Argentina. Servicio Nacional de Geologia y Mineria, 1999. [45]Tormey, D. R., Frey, F. A., y Lopez-Escobar, L. Geochemistry of the active Azufre—Planchon—Peteroa volcanic complex, Chile (35 15′ S): evidence for multiple sources and processes in a cordilleran arc magmatic system. Journal of Petrology, 36(2), 265-298, 1995. [46]Filipussi, D.A. y Fuentes, N.O. Acoustic Emission Determination of Rock Porosity Distribution. Acts E-GLEA9. 2017 [47]Wyllie, M. R. J., Gregory, A. R., y Gardner, L. W. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1), 41-70, 1956. [48] Fuentes, N.O. y Filipussi, D.A. Determinación mediante emisión acústica de la conectividad entre poros y su distribución en rocas. Acts E-ICES 12. 2018 [49]Corry, C. E. Laccoliths: mechanics of emplacement and growth (Vol. 220). Geological Society of America, 1988. [50]Leveratto, M.A. Geología del oeste de Ullum-Zonda, borde oriental de la Precordillera de San Juan. Revista de la Asociación Geológica Argentina, 23(2): 129-157. Buenos Aires, 1968. [51] Mendoza, N., Weidmann, N., Puigdomenech, H., y Weidmann, R. Geología y metalogenia del complejo volcánico Rio Blanco de Ullum. Provincia de San Juan. Republica Argentina. 2007. [52] Kibria, G., y Hossain, S. Electrical resistivity of compacted clay minerals. Environmental Geotechnics, 1-8. 2017. [53] Mattice, M. D. Geothermal and groundwater exploration on Maui. Hawaii, by applying DC electrical soundings: thesis, Univ. of Hawaii. 1981. [54] Flóvenz, Ó. G., Spangenberg, E., Kulenkampff, J., Árnason, K., Karlsdóttir, R., y Huenges, E. The role of electrical interface conduction in geothermal exploration. In Proceedings of the 2005 World Geothermal Congress (pp. 24-29). 2005.
Materias:Química > Mineralogía
Ingeniería > Ciencia de los materiales
Divisiones:Centro Atómico Constituyentes (CAC) > Departamento ICES (Gerencia desarrollo tecnológico y proyectos especiales)
Código ID:802
Depositado Por:Tamara Cárcamo
Depositado En:28 Oct 2019 12:47
Última Modificación:28 Oct 2019 12:47

Personal del repositorio solamente: página de control del documento