Optomecánica y optoelectrónica en microrresonadores basados en espejos de Bragg. / Optomechanics and optoelectronics in distributed Bragg reflector - based micro resonators.

Anguiano, Sebastián (2019) Optomecánica y optoelectrónica en microrresonadores basados en espejos de Bragg. / Optomechanics and optoelectronics in distributed Bragg reflector - based micro resonators. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
41Mb

Resumen en español

En este trabajo estudiamos un sistema propuesto algunos años atrás como un posible candidato para la demostración de efectos optomecánicos en el rango de las decenas y cientos de GHz, con la ventaja de ser fácilmente integrable en circuitos optoelectró- nicos. El mismo consiste en una cavidad formada por un espaciador de GaAs ubicado entre dos espejos de Bragg (DBRs), crecidos epitaxialmente. Dos muestras basadas en la misma estructura fueron estudiadas: por un lado, una muestra tal como fue crecida, es decir, plana; por otro, una muestra idéntica a la anterior, pero a la cual se le grabaron pilares de distinto tamaño lateral mediante litografía por haces iónicos reactivos (ICP-RIE). Este sistema con un espaciador de GaAs es el más simple de su tipo, por lo que sirve como base para una amplia variedad de posibilidades, ya que durante el mismo proceso de crecimiento epitaxial es posible agregar pozos y/o puntos cuánticos donde se lo desee, permitiendo hacer ingeniería de las interacciones y del acoplamiento con distintos grados de libertad. Entenderlo es, entonces, de gran importancia. Para ello se realizó una serie de experimentos, en los cuales se buscó entender el sistema y los mecanismos que gobiernan las interacciones entre fotones, electrones y fonones. Asimismo, se buscó demostrar la existencia de efectos optomecánicos debidos al acoplamiento entre los modos acústicos y ópticos de cavidad. En primer lugar se estudió el efecto del confinamiento lateral sobre los modos ópticos de las estructuras. Para ello se llevaron a cabo experimentos de microscopía de fotoluminiscencia con resolución espacial (campo cercano) y angular (campo lejano), mediante un sistema de microscopía desarrollado durante el presente trabajo. Para caracterizar los modos acústicos en este tipo de estructuras se llevaron a cabo mediciones de dispersión Raman resonante. Utilizando un arreglo que permite obtener espectros de ultra-alta resolución se obtuvieron los primeros espectros de los modos acústicos propios de estas estructuras. En este tipo de experimentos se observa la presencia tanto de los modos acústicos de cavidad como de modos acústicos extendidos (de centro de zona de Brillouin). Si bien la amplitud de las tensiones debida a estos últimos es despreciable comparada con la correspondiente a los modos de cavidad, debido a la simetría de su distribución espacial y a la existencia de un acoplamiento no nulo en los espejos, la intensidad de la dispersión observada es aproximadamente del mismo orden. A pesar de utilizar un equipo de ultra-alta resolución, los anchos espectrales de los modos de cavidad no pudieron ser resueltos, debido a su gran factor de calidad Qm (larga vida media). La existencia de significativa luz espuria impidió realizar mediciones de este tipo en pilares de diámetro menor a 60 μm. Por otro lado, si bien la dispersión Raman aporta información valiosa respecto de efectos optomecánicos estacionarios, la dinámica temporal de los procesos involucrados no es accesible. Incluso la vida media de los modos acústicos de cavidad, reflejada en el ancho espectral de los modos acústicos, es demasiado larga hasta para la máxima resolución posible experimentalmente, por lo que tampoco puede estimarse a partir de este tipo de mediciones. Para sortear estos problemas se investigaron, mediante la técnica de reflectometría diferencial ultra-rápida (bombeo-sondeo), los modos acústicos de cavidad, su dinámica temporal y el acoplamiento optomecánico. Utilizando el arreglo de microscopía multiprop ósito desarrollado, se estudió la dependencia con el tamaño lateral (L) de la amplitud de las vibraciones generadas y detectadas (relacionada con el factor de acoplamiento optomecánico g0), la frecuencia de las mismas (ω_0) y su vida media (Ƭ ). Los resultados muestran un aumento en la amplitud de las vibraciones mecánicas (α1=L) y una disminución de su vida media (α L=ω_0), al disminuir el tamaño de los pilares. Esta caída de la vida media debida a la micro-estructuración conlleva una diferencia importante en el factor de calidad mecánico ջm de los resonadores de menor tamaño. Para el modo de ~19 GHz, por ejemplo, esto se traduce en pasar de un valor nominal de ~37000 (si se consideran sólo las pérdidas debidas al escape de fonones al substrato) a valores reales por debajo de ~1100 para pilares de tamaño lateral menor a 7 μm. Por otro lado, debido al confinamiento lateral generado por la micro-estructuración, se observó un aumento en la frecuencia de los modos mecánicos. Este cambio es diferente para los distintos modos, siendo en aproximación inversamente proporcional al área de confinamiento y a la frecuencia de los mismos (α1=ω_0L"2). Estos resultados se explican mediante una serie de modelos que tienen en cuenta el efecto del confinamiento lateral, así como la influencia creciente de la imperfecciones superficiales, a medida que se reduce el tamaño lateral. Además de la respuesta mecánica, se analizó, en función del tamaño lateral, la evolución del sistema electrónico luego de una excitación láser ultra-rápida, y su relación con la dinámica del modo óptico y la eficiencia de generación y detección de fonones coherentes. Al ser los electrones los mediadores entre los campos electromagnéticos y las vibraciones, la comprensión de su dinámica temporal es importante para interpretar la generación y detección de fonones coherentes en los experimentos de reflectometría ultra-rápida. Para profundizar la comprensión de esta dinámica, y su influencia sobre la respuesta óptica de las muestras, se diseño y se puso en práctica una nueva técnica compuesta, la cual aprovecha las ventaja del equipo de reflectometría ultra-rápida y del de espectroscopía. Gracias a la misma, es posible estudiar la respuesta espectral del modo óptico durante los instantes que dura la excitación óptica, así como durante la recuperación posterior. Durante la excitación, se presenta una dinámica compleja, donde se observa emisión de luz desplazada en energía debido al cambio rápido en las propiedades ópticas generado por el pulso de excitación (conversión de frecuencias). Por otro lado, los resultados experimentales muestran una caída en el tiempo característico de recuperación del modo óptico para pilares por debajo de ~10 μm de lado. Mediante la comparación con un modelo teórico, se demuestra que la recuperación luego de la excitación esta dominada por la difusión lateral de los portadores foto-excitados y su eventual recombinación en la superficie. Mediante una ligera modificación del esquema experimental, es posible ralentizar o incluso bloquear la recuperación del modo óptico, por medio de la excitación de portadores con un láser de emisión continua, evidenciando fenómenos de biestabilidad óptica. Finalmente, se estudió un fenómeno que surge al excitar una cavidad óptica mediante un láser de energía mayor a la del gap electrónico del GaAs, con una potencia elevada y en un área reducida. El mismo se manifiesta por la aparición de picos de emisión de fotoluminiscencia a energías por debajo del modo óptico fundamental. Mediante la caracterización espacial y angular de esta emisión, y por medio de un modelo teórico, se demuestra que esto se debe a la formación de una zona localizada de mayor índice de refracción, que funciona como un pozo de potencial óptico 3D. Lo que esto significa es que se forman nuevos estados ópticos permitidos, análogos a los observados en los pilares, y confinados dentro del área excitada. Para determinar el origen de este fenómeno, se llevaron a cabo mediciones modulando el haz de excitación mediante un modulador de frecuencia y ciclo de trabajo sintonizables. Los resultados obtenidos confirman que el origen del cambio en el índice de refracción es térmico. Durante la realización de esta tesis, se logró una profunda comprensión del sistema de interés, allanando el camino para el diseño y estudio de muestras de mayor complejidad, así como para la demostración de efectos de retroacción dinámica en estos dispositivos. Asimismo, se desarrollaron nuevos métodos experimentales y de procesamiento de datos que asientan las bases para la realización de nuevos e interesantes experimentos en el ámbito de la optoelectrónica y optomecánica en cavidades basadas en espejos de Bragg.

Resumen en inglés

In this paper we study a system proposed a few years ago as a possible candidate for the demonstration of optomechanical effects at frequencies up to of hundreds of GHz, with the advantage of being easily integrated in optoelectronic circuits. It consists of a cavity formed by a GaAs spacer located between two Bragg mirrors (DBRs), grown epitaxially. Two samples based on the same structure were studied: on the one hand, an as-grown sample, that is, plane; on the other hand, a sample identical to the previous one, but to which pillars of different lateral size were engraved by reactive ion etching lithography (ICP-RIE). This system with a bulk GaAs spacer is the simplest of its kind, so it serves as a basis for a wide variety of possibilities, since during the process of epitaxial growth it is possible to add quantum wells and/or quantum dots where desired, allowing the engineering of the interactions and coupling to different degrees of freedom. Understanding this system is, then, of great importance. To this end, a series of experiments were performed, in which the aim was to understand the mechanisms that govern the interactions between photons, electrons and phonons in this system. Moreover, it was sought to demonstrate the existence of optomechanical effects due to the coupling between the acoustic and optical cavity modes. First, we studied the effect of lateral conffinement on the optical modes of the structures. To do this, photoluminescence microscopy experiments with spatial (near field) and angular (far field) resolution were carried out using a microscopy system developed during the present work. Furthermore, to characterize the acoustic modes in these structures, resonant Raman scattering measurements were performed. By means of an ultra-high resolution spectroscopy technique, the first spectra of the acoustic modes of these structures were obtained. In these experiments, the presence of both acoustic cavity modes and extended acoustic modes (Brillouin zone center) are observed. Although the amplitude of the stress field due to the latter is negligible compared to that of the cavity modes, due to the symmetry of its spatial distribution and the existence of a non-zero coupling in the mirrors, the observed intensity of the dispersion is approximately of the same order. Despite using an ultra-high resolution equipment, the spectral widths of the cavity modes could not be resolved, due to their high quality factor Qm (long mean life). The existence of significant spurious light prevented measurements of this kind for pillars with a diameter below 60 μm. On the other hand, although the Raman dispersion provides valuable information regarding stationary optomechanical effects, the temporal dynamics of the processes involved is not accessible. Even the mean life of the acoustic cavity modes, reffected in the spectral width of the acoustic modes, is too long even for the maximum resolution possible experimentally, so it can not be estimated from these measurements either. To solve these problems, the acoustic cavity modes, their temporal dynamics and the optomechanical coupling were investigated by ultra-fast differential reffectometry (pump-probe technique). Using the developed multi-purpose microscopy arrangement, we studied the dependence of the amplitude of the generated and detected vibrations (related to the optomechanical coupling factor g_0), their frequency (ω_0) and their mean life (Ƭ) with lateral size (L). The results show an increase in the amplitude of the mechanical vibrations (α 1=L) and a decrease in their mean life (α L=ω_0), when reducing the size of the pillars. This decrease in the mean life due to micro-structuring leads to an important difference in the mechanical quality factor ջm of the pillars. For the ~19 GHz mode, for example, it translates to a fall from a nominal value of ~37000 (if only the losses due to the escape of phonons toward the substrate are considered) to real values below ~1100 for pillars with lateral size shorter than 7μm. On the other hand, due to the lateral confinement generated by the micro-structuring, an increase in the frequency of the mechanical modes was observed. This change is different for each mode, being in approximation inversely proportional to the conffnement area and their frequency (α1=ω_0L"2). These results are explained by a series of models that take into account the effect of lateral conffnement, as well as the increasing influence of surface imperfections, as the lateral size is reduced. In addition to the mechanical response, we analyzed, as a function of the lateral size, the evolution of the electronic system after an ultra-fast laser excitation, and its relation with the dynamics of the optical mode and the coherent phonon generation and detection eficiencies. Since electrons are the mediators between electromagnetic fields and vibrations, the understanding of their temporal dynamics is important to interpret the generation and detection of coherent phonons in pump-probe experiments. To deepen the understanding of this temporal dynamics, as well as its influence on the optical response of the samples, a new composite technique was designed and implemented, which takes advantage of the ultra-fast refflectometry and the spectroscopy equipments. With it, it is possible to study the spectral response of the optical mode during the moments that lasts the optical excitation, as well as during the subsequent recovery. During excitation, a complex dynamic is observed, with emission of light shifted in energy is present due to the rapid change in the optical properties generated by the pump pulse (wavelength conversion). On the other hand, the experimental results show a rapid decrease in the characteristic recovery time of the optical mode for pillars of lateral size below ~10 μm. Comparing with a theoretical model, it is demonstrated that the recovery after excitation is dominated by the lateral diffusion of the photoexcited carriers and their recombination on the surface. With a slight modification of the experimental setup, it is possible to slow down or even block the recovery of the optical mode, by excitation of carriers with a continuous wave laser, evidencing optical bistability fenomena at play. Finally, a phenomenon was studied, which arises when an optical cavity is excited by a laser of energy greater than the GaAs electronic bandgap, with high power and in a reduced area. It manifests itself through the appearance of photoluminescence emission peaks at energies below the fundamental optical mode. By means of the spatial and angular characterization of this emission, as well as a theoretical model, it is shown that this is due to the formation of a localized area with a higher refractive index, which functions as a 3D optical potential well. This means that new permitted optical states are formed, analogous to those observed in the pillars, and conffined within the excited area. To determine the origin of this phenomenon, measurements were carried out modulating the excitation beam with a modulator of tunable frequency and duty cycle. The results obtained confirm that the origin of the change in the refractive index is thermal. During the realization of this thesis, a deep understanding of the system of interest was achieved, paving the way for the design and study of samples of greater complexity, as well as the demonstration of dynamic backaction in these devices. Also, new experimental and data processing methods were developed, which lay the foundations for the realization of new and interesting experiments in the field of optoelectronics and optomechanics in Bragg-mirror-based cavities.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Optics; Óptica; Acoustics; Acústica; [Optomechanics; Optomecánica; Optoelectronics; Optoelectrónica]
Referencias:[1] Anguiano, S., Sesin, P., Bruchhausen, A. E., Lamberti, F. R., Favero, I., Esmann, M., et al. Scaling rules in optomechanical semiconductor micropillars. Phys. Rev. A, 98, 063810, Dec 2018. [2] Conard, N. J., Malina, M., Münzel, S. C. New flutes document the earliest musical tradition in southwestern germany. Nature, Jun 2009. [3] Yang, J. En: An Introduction to the Theory of Piezoelectricity. Springer Science & Bussiness Media, Boston, 2005. [4] Bottom, V. E. A history of the quartz crystal industry in the usa. En: Thirty Fifth Annual Frequency Control Symposium, págs. 3-12. 1981. [5] Thompson Jr, R. The development of the quartz crystal oscillator industry of world war ii. 52, 694-697, 06 2005. [6] Hennessy, J. L., Patterson, D. A. En: Computer Architecture, A Quantitative Aproach. Morgan Kaufmann Publishers, San Francisco, 2007. [7] Lucek, J., Smith, K., Blow, K. Ultrafast all-optical information processing. En: IEE Colloquium on Ultra-Short Optical Pulses, págs. 9/1-9/4. 1993. [8] Preble, S. F., Xu, Q., Schmidt, B. S., Lipson, M. Ultrafast all-optical modulation on a silicon chip. Opt. Lett., 30 (21), 2891-2893, Nov 2005. [9] Deleglise, S., Capelle, T., xu chen, Jacqmin, T., Braive, R., Robert-Philipp, I., et al. Hybrid optomechanical systems as transducers for quantum information. En: Quantum Information and Measurement (QIM) 2017, pág. QF3C.3. Optical Society of America, 2017. [10] Biolatti, E., D'Amico, I., Ionicioiu, R., Zanardi, P., Rossi, F. Ultrafast quantum information processing in nanostructured semiconductors. 31, 107-116, 02 2002. [11] Marquardt, F., Girvin, S. Optomechanics. Physics, 2, May 2009. [12] Favero, I., Karrai, K. Optomechanics of deformable optical cavities. Nature Photonics, 3 (4), 201-205, Apr 2009. [13] Kippenberg, T. J., Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science, 321 (5893), 1172-1176, Aug 2008. [14] Razavi, B. Design of high-speed circuits for optical communication systems. En: Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169), págs. 315-322. 2001. [15] Imade, Y., Ulbricht, R., Tomoda, M., Matsuda, O., Seniutinas, G., Juodkazis, S., et al. Gigahertz optomechanical modulation by split-ring-resonator nanophotonic meta-atom arrays. Nano Letters, 17 (11), 6684-6689, Oct 2017. [16] Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., Painter, O. Optomechanical crystals. Nature, 462 (7269), 78-82, Oct 2009. [17] Regal, C. A., Teufel, J. D., Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Physics, 4 (7), 555-560, May 2008. [18] Safavi-Naeini, A. H., Alegre, T. P. M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., et al. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472 (7341), 69-73, Mar 2011. [19] Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., et al. Optomechanically induced transparency. Science, 330 (6010), 1520-1523, 2010. [20] Gröblacher, S., Hammerer, K., Vanner, M. R., Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 460 (7256), 724-727, Aug 2009. [21] Teufel, J. D., Li, D., Allman, M. S., Cicak, K., Sirois, A. J., Whittaker, J. D., et al. Circuit cavity electromechanics in the strong-coupling regime. Nature, 471 (7337), 204-208, Mar 2011. [22] Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M., Harris, J. G. E. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452 (7183), 72-75, Mar 2008. [23] Anetsberger, G., Arcizet, O., Unterreithmeier, Q. P., Rivière, R., Schliesser, A., Weig, E. M., et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Physics, 5 (12), 909-914, Oct 2009. [24] O'Connell, A. D., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lenander, M., Lucero, E., et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464 (7289), 697-703, Mar 2010. [25] Usami, K., Naesby, A., Bagci, T., Melholt Nielsen, B., Liu, J., Stobbe, S., et al. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Physics, 8 (2), 168-172, Jan 2012. [26] Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475 (7356), 359-363, Jul 2011. [27] Tilstra, L. G., Arts, A. F. M., de Wijn, H. W. Optically excited ruby as a saser: Experiment and theory. Phys. Rev. B, 76, 024302, Jul 2007. [28] Metzger, C., Ludwig, M., Neuenhahn, C., Ortlieb, A., Favero, I., Karrai, K., et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett., 101, 133903, Sep 2008. [29] Lin, Q., Rosenberg, J., Chang, D., Camacho, R., Eichenfield, M., Vahala, K. J., et al. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nature Photonics, 4 (4), 236-242, Feb 2010. [30] Aspelmeyer, M., Kippenberg, T. J., Marquardt, F. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452, Dec 2014. [31] Metzger, C., Favero, I., Ortlieb, A., Karrai, K. Optical self cooling of a deformable fabry-perot cavity in the classical limit. Phys. Rev. B, 78, 035309, Jul 2008. [32] Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159, Jan 1970. [33] Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693-1708, Apr 1981. [34] Dorsel, A., McCullen, J. D., Meystre, P., Vignes, E., Walther, H. Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett., 51, 1550-1553, Oct 1983. [35] Sheard, B. S., Gray, M. B., Mow-Lowry, C. M., McClelland, D. E., Whitcomb, S. E. Observation and characterization of an optical spring. Phys. Rev. A, 69, 051801, May 2004. [36] Chiao, R. Y., Townes, C. H., Stoicheff, B. P. Stimulated brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett., 12, 592-595, May 1964. [37] Van Laer, R., Baets, R., Van Thourhout, D. Unifying brillouin scattering and cavity optomechanics. Phys. Rev. A, 93, 053828, May 2016. [38] Bahl, G., Kim, K. H., Lee, W., Liu, J., Fan, X., Carmon, T. Brillouin cavity optomechanics with microfluidic devices. Nature Communications, 4, Jun 2013. [39] Bahl, G., Zehnpfennig, J., Tomes, M., Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Communications, 2, 403, Jul 2011. [40] Rakich, P. T., Reinke, C., Camacho, R., Davids, P., Wang, Z. Giant enhancement of stimulated brillouin scattering in the subwavelength limit. Phys. Rev. X, 2, 011008, Jan 2012. [41] Baker, C., Hease, W., Nguyen, D.-T., Andronico, A., Ducci, S., Leo, G., et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt. Express, 22 (12), 14072-14086, Jun 2014. [42] Metzger, C. H., Karrai, K. Cavity cooling of a microlever. Nature, 432 (7020), 1002-1005, Dec 2004. [43] Villafañe, V., Sesin, P., Soubelet, P., Anguiano, S., Bruchhausen, A. E., Rozas, G., et al. Optoelectronic forces with quantum wells for cavity optomechanics in gaas/alas semiconductor microcavities. Phys. Rev. B, 97, 195306, May 2018. [44] Barg, A., Midolo, L., Kirsanske, G., Tighineanu, P., Pregnolato, T., Imamoglu, A., et al. Carrier-mediated optomechanical forces in semiconductor nanomembranes with coupled quantum wells. arxiv:1708.05885v2, Oct 2017. [45] Ding, L., Baker, C., Senellart, P., Lemaitre, A., Ducci, S., Leo, G., et al. High frequency gaas nano-optomechanical disk resonator. Phys. Rev. Lett., 105, 263903, Dec 2010. [46] Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., Painter, O. Optomechanical crystals. Nature, 462 (7269), 78-82, Oct 2009. [47] Sun, X., Zhang, X., Tang, H. X. High-q silicon optomechanical microdisk resonators at gigahertz frequencies. Applied Physics Letters, 100 (17), 173116, 2012 [48] Van Laer, R., Kuyken, B., Van Thourhout, D., Baets, R. Interaction between light and highly confuned hypersound in a silicon photonic nanowire. Nature Photonics, 9 (3), 199-203, Feb 2015. [49] Tomes, M., Carmon, T. Photonic micro-electromechanical systems vibrating at x-band (11-ghz) rates. Phys. Rev. Lett., 102, 113601, Mar 2009. [50] Navarro-Urrios, D., Gomis-Bresco, J., El-Jallal, S., Oudich, M., Pitanti, A., Capuj, N., et al. Dynamical back-action at 5.5 ghz in a corrugated optomechanical beam. AIP Advances, 4 (12), 124601, 2014. [51] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong Optical- Mechanical Coupling in a Vertical GaAs/AlAs Microcavity for Subterahertz Phonons and Near-Infrared Light. Physical Review Letters, 110, 037403, 2013. [52] Villafañe, V., Anguiano, S., Bruchhausen, A. E., Rozas, G., Bloch, J., Carbonell, C. G., et al. Quantum well photoelastic comb for ultra-high frequency cavity optomechanics. Quantum Science and Technology, 4 (1), 014011, dec 2018. [53] Rozas, G. En: Estudio Raman de Ultra-alta resolución de la dinámica de fonones acústicos confinados en cavidades, Tesis de Doctorado en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche. 2011. [54] Iga, K. Vertical-Cavity Surface-Emitting Laser: Its conception and evolution. Japanese Journal of Applied Physics, 47, 1, 2008. [55] Lanzilloti-Kimura, N. D. En: Dispositivos para hipersonido y cavidades acústicas acopladas, Trabajo especial de Ingeniería Nuclear, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche. 2005. [56] Mali, V. I., Bataev, I. A., Golovin, E., Bataev, A. A., Burov, V., Smirnov, A., et al. Structure and fatigue crack resistance of multilayer materials produced by explosive welding. Advanced Materials Research, 287, 108-111, 2011. [57] Cardona, M., Güntherodt, G. En: Light Scattering in Solids V: Superlattices and Other Microstructures, tomo 66 de Topics in Applied Physics. Springer-Verlag, Berlin, 1989. [58] Hecht, E., Zajac, A. En: Optics. Addison-Wesley, Berlin, 1974. [59] Rozas, G. En: Dispositivos de fonones acústicos en nanoestructuras semiconductoras piezoeléctricas, Tesis de Maestría en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche. 2005. [60] Rytov, S. M. Acoustical properties of a thinly laminated medium. Soviet Physics: Acoustics 2, 2, 68, 1956 [Akust. Zh. 2, 71 (1956)]. [61] Ashcroft, N. W., Mermin, N. D. En: Solid State Physics. Harcourt Brace College Publishers, Fort Worth, 1976. [62] Svelto, O. En: Principles of Lasers. Plenum Press, New York, 1976. [63] Stanley, R. P., Houdré, R., Oesterle, U., Ilegems, M., Weisbuch, C. Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities. Phys. Rev. A, 48, 2246-2250, Sep 1993. [64] Yu, P. Y., Cardona, M. En: Fundamentals of Semiconductors: Physics and Materials Properties, 3ra ed. Springer, Berlin, 2001. [65] Kastler, A. Atomes à i'lntérieur d'un interféromètre Perot-Fabry. Applied Optics, 1, 17, 1962. [66] Born, M., Wolf, E. En: Principles of Optics: Electromagnetic Theory of Propagation, 5ta ed. Pergamon Press, Oxford, 1975. [67] Saleh, B. E. A., Teich, M. C. En: Fundamentals of Photonics. John Wiley & Sons, New York, 1991. [68] García Calderón, G., Rubio, A., Romo, R. Decay widths for double-barrier resonant tunneling. Journal of Applied Physics, 69, 3612, 1991. [69] Gérard, J. M., Barrier, D., Marzin, J. Y., Kuszelewicz, R., Manin, L., Costard, E., et al. Quantum boxes as active probes for photonic microstructures: The pillar microcavity case. Applied Physics Letters, 69, 449, 1996. [70] Gayral, B., Gérard, J.-M., Legrand, B., Costard, E., Thierry-Mieg, V. Optical study of gaas/alas pillar microcavities with elliptical cross section. Applied Physics Letters, 72, 1421-1423, 03 1998. [71] Reithmaier, J. P., Röhner, M., Zull, H., Schäfer, F., Forchel, A., Knipp, P. A., et al. Size dependence of Confined Optical Modes in Photonic Quantum Dots. Physical Review Letters, 78, 378, 1997. [72] Gutbrod, T., Forchel, A., Knipp, P. A., Reinecke, T. L., Tartakovskii, A., Kulacovskii, V. D., et al. Angle dependence of the spontaneous emission from confined optical modes in photonic dots. Physical Review B, 59, 2223-2229, 1999. [73] Reinhardt, C., Brückner, R., Sudzius, M., Hintschich, S. I. Mode discretization in an organic microcavity including a perforated silver layer. Applied Physics Letters, 100, 103306, 2012. [74] Anguiano, S., Bruchhausen, A. E., Jusserand, B., Favero, I., Lamberti, F. R., Lanco, L., et al. Micropillar resonators for optomechanics in the extremely high 1995-ghz frequency range. Phys. Rev. Lett., 118, 263901, Jun 2017. [75] Lamberti, F. R., Yao, Q., Lanco, L., Nguyen, D. T., Esmann, M., Fainstein, A., et al. Optomechanical properties of gaas/alas micropillar resonators operating in the 18 ghz range. Opt. Express, 25 (20), 24437-24447, Oct 2017. [76] Hassan, M. T., Luu, T. T., Moulet, A., Raskazovskaya, O., Zhokhov, P., Garg, M., et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 350, 66-70, 2016. [77] He, J., Djafari-Rouhani, B., Sapriel, J. Theory of light scattering by longitudinalacoustic phonons in superlattices. Phys. Rev. B, 37, 4086-4098, Mar 1988. [78] Bruchhausen, A. E. En: Amplificación de la dispersión Raman en sistemas nanoestructurados, Tesis de Doctorado en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche. 2008. [79] Potton, R. J. Reciprocity in optics. Reports on Progress in Physics, 67, 717, 2004. [80] Fainstein, A., Jusserand, B., Thierry-Mieg, V. Raman scattering enhancement by optical confinement in a semiconductor planar microcavity. Phys. Rev. Lett., 75, 3764-3767, Nov 1995. [81] Fainstein, A., Trigo, M., Oliva, D., Jusserand, B., Freixanet, T., Thierry-Mieg, V. Standing optical phonons in finite semiconductor superlattices studied by resonant raman scattering in a double microcavity. Phys. Rev. Lett., 86, 3411- 3414, Apr 2001. [82] Rozas, G., Winter, M. F. P., Jusserand, B., Fainstein, A., Perrin, B., Semenova, E., et al. Lifetime of thz acoustic nanocavity modes. Phys. Rev. Lett., 102, 015502, Jan 2009. [83] Fainstein, A., Jusserand, B. Raman scattering in resonant cavities. En: Light Scattering in Solids IX: Novel Materials and Techniques, editado por M. Cardona y R. Merlin, tomo 108 de Topics in Applied Physics. Springer-Verlag, Berlin, 2007. [84] Güttinger, J., Noury, A., Weber, P., Eriksson, A. M., Lagoin, C., Moser, J., et al. Energy-dependent path of dissipation in nanomechanical resonators. Nature Nanotechnology, 12 (7), 631-636, May 2017. [85] Ares, N., Pei, T., Mavalankar, A., Mergenthaler, M., Warner, J. H., Briggs, G. A. D., et al. Resonant optomechanics with a vibrating carbon nanotube and a radio-frequency cavity. Phys. Rev. Lett., 117, 170801, Oct 2016. [86] Weber, P., Güttinger, J., Noury, A., Vergara-Cruz, J., Bachtold, A. Force sensitivity of multilayer graphene optomechanical devices. Nature Communications, 7, 12496, Aug 2016. [87] Kleckner, D., Pepper, B., Jeffrey, E., Sonin, P., Thon, S. M., Bouwmeester, D. Optomechanical trampoline resonators. Opt. Express, 19 (20), 19708-19716, Sep 2011. [88] Dahan, R., Martin, L. L., Carmon, T. Droplet optomechanics. Optica, 3 (2), 175-178, Feb 2016. [89] Huynh, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B., Fainstein, A., Pascual-Winter, M. F., et al. Subterahertz phonon dynamics in acoustic nanocavities. Phys. Rev. Lett., 97, 115502, Sep 2006. [90] Lanzillotti-Kimura, N. D., Fainstein, A., Huynh, A., Perrin, B., Jusserand, B., Miard, A., et al. Coherent generation of acoustic phonons in an optical microcavity. Phys. Rev. Lett., 99, 217405, Nov 2007. [91] Lanzillotti-Kimura, N. D., Fainstein, A., Perrin, B., Jusserand, B. Theory of coherent generation and detection of thz acoustic phonons using optical microcavities. Phys. Rev. B, 84, 064307, Aug 2011. [92] Matsuda, O., Larciprete, M. C., Voti, R. L., Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics, 56, 3-20, 2015. [93] Ruello, P., Gusev, V. E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics, 56, 21-35, 2015. [94] Huynh, A., Winter, M. F. P., Perrin, B., Jusserand, B., Lemaître, A., Fainstein, A. Monochromatic high frequency coherent phonons propagation with superlattice transducers. The Journal of the Acoustical Society of America, 123 (5), 3549- 3549, 2008. [95] Lanzillotti-Kimura, N. D., Fainstein, A., Perrin, B., Jusserand, B., Largeau, L., Mauguin, O., et al. Enhanced optical generation and detection of acoustic nanowaves in microcavities. Phys. Rev. B, 83, 201103, May 2011. [96] Sesin, P., Soubelet, P., Villafañe, V., Bruchhausen, A. E., Jusserand, B., Lemaître, A., et al. Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators. Physical Review B, 92, 075307, 2015. [97] Thomsen, C., Grahn, H. T., Maris, H. J., Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Physical Review B, 34, 4129, 1986. [98] Wright, O. B. Thickness and sound velocity measurement in thin transparent lms with laser picosecond acoustics. Journal of Applied Physics, 71, 1617, 1992. [99] Grahn, H. T., Maris, H. J., Tauc, J., Abeles, B. Time-resolved study of vibrations of a-Ge:H/a-Si:H multilayers. Physical Review B, 38, 6066, 1988. [100] Wright, O. B. Ultrafast nonequilibrium stress generation in gold and silver. Physical Review B, 49, 9985, 1994. [101] Akhmanov, S. A., Gusev, V. E. Laser excitation of ultrashort acoustic pulses: New possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics. Soviet Physics Uspekhi, 35, 153, 1992. [102] Thyrrestrup, H., Yüce, E., Ctistis, G., Claudon, J., Vos, W. L., Gérard, J. M. Differential ultrafast all-optical switching of the resonances of a micropillar cavity. Applied Physics letters, 105, 111115, 2014. [103] Babilotte, P., Morozov, E., Ruello, P., Mounier, D., Edely, M., Breteau, J. M., et al. Relaxation between Electrons and the Crystalline Lattice. Journal of Physics: Conference Series, 92, 012019, 2007. [104] Maradudin, A. A., Burstein, E. Relation between photoelasticity, electrostriction, and first-order raman effect in crystals of the diamond structure. Phys. Rev., 164, 1081-1099, Dec 1967. [105] Stevens, T. E., Kuhl, J., Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Physical Review B, 65, 144304, 2002. [106] Economou, E. N. En: Green's functions in quantum mechanics. Springer-Verlag, Berlin, 2006. [107] Simmons, G. F. En: Ecuaciones diferenciales. Con aplicaciones y notas históricas. McGraw-Hill, Madrid, 1993. [108] Pascual Winter, M. F. En: Generación y detección óptica de fonones coherentes en nanoestructuras, Tesis de Doctorado en Ciencias Físicas, Instituto Balseiro, Universidad Nacional de Cuyo & Comisión Nacional de Energía Atómica, S. C. de Bariloche. 2009. [109] Matsuda, O., Wright, O. B. Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation. Journal of the Optical Society of America B, 19, 3028, 2002. [110] Crank, J. En: The Mathematics of Diffusion. Claredon Press, Oxford, 1975. [111] Matsuda, O., Tachizaki, T., Fukui, T., Baumberg, J. J., Wright, O. B. Acoustic phonon generation and detection in GaAs/Al0;3Ga0;7As quantum wells with picosecond laser pulses. Phys. Rev. B, 71, 115330, Mar 2005. [112] Pascual-Winter, M. F., Fainstein, A., Jusserand, B., Perrin, B., Lemaître, A. Spectral responses of phonon optical generation and detection in superlattices. Phys. Rev. B, 85, 235443, Jun 2012. [113] Jusserand, B., Poddubny, A. N., Poshakinskiy, A. V., Fainstein, A., Lemaître, A. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs=AlAs Multiple Quantum Wells. Phys. Rev. Lett., 115, 267402, Dec 2015. [114] Griffiths, D. J. En: Introduction to Electrodynamics, 3rd ed. Pearson Education, Dorling Kindersley, 2007. [115] Pinard, M., Hadjar, Y., Heidmann, A. Effective mass in quantum effects of radiation pressure. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 7 (1), 107-116, 1999. [116] Johnson, S. G., Ibanescu, M., Skorobogatiy, M. A., Weisberg, O., Joannopoulos, J. D., Fink, Y. Perturbation theory for Maxwell's equations with shifting material boundaries. Phys. Rev. E, 65, 066611, Jun 2002. [117] Balram, K. C., Davanço, M., Lim, J. Y., Song, J. D., Srinivasan, K. Moving boundary and photoelastic coupling in gaas optomechanical resonators. Optica, 1 (6), 414-420, Dec 2014. [118] Srivastava, G. P. En: The Physics of Phonons. Adam Hilger, Bristol, Philadelphia and New York, 1990. [119] Ziman, J. M. En: Electrons and Phonons, The Theory of Transport Phenomena in Solids. Wiley, New York, 1960. [120] Miller, A. R., Brown, R. M., Vegh, E. New derivation for the rough-surface reflection coefficient and for the distribution of sea-wave elevations. Microwaves, Optics and Antennas, IEE Proceedings H, 131 (2), 114-116, April 1984. [121] Maznev, A. A. Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit. Phys. Rev. B, 91, 134306, Apr 2015. [122] Gibbs, H. M. En: Optical Bistability: Controlling Light with Light. Academic Press, New York, 1985. [123] Klingshirn, C. En: Semiconductor Optics. Springer-Verlag, Berlin, 2007. [124] Spataru, C. D., Benedict, L. X., Louie, S. G. Ab initio calculation of band-gap renormalization in highly excited gaas. Phys. Rev. B, 69, 205204, May 2004. [125] Blakemore, J. S. Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics, 53 (10), R123-R181, 1982. [126] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D. En: Photonic Crystals: Molding the Flow of Light. Princeton University Press, 2008. [127] Berstermann, T., Scherbakov, A. V., Akimov, A. V., Yakovlev, D. R., Gippius, N. A., Glavin, B. A., et al. Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity. Phys. Rev. B, 80, 075301, Aug 2009. [128] Akimov, A., Scherbakov, A., Yakovlev, D., Bayer, M. Picosecond acoustics in semiconductor optoelectronic nanostructures. Ultrasonics, 56, 122 - 128, 2015. [129] Tanabe, T., Notomi, M., Taniyama, H., Kuramochi, E. Dynamic release of trapped light from an ultrahigh-q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett., 102, 043907, Jan 2009. [130] Pellat, D., Azoulay, R., Leroux, G., Dugrand, L., Rafflé, Y., Kuszelewicz, R., et al. Optical bistability at 980 nm in a strained ingaas/gaas multiple quantum well microcavity with resonant periodic nonlinearity. Applied Physics Letters, 62 (20), 2489-2491, 1993. [131] Gurioli, M., Cavigli, L., Khitrova, G., Gibbs, H. M. Bistable optical response in quantum well semiconductor microcavity. Semiconductor Science and Technology, 19 (4), S345, 2004. [132] Zimmermann, U., Burak, D., Schlaad, K.-H., Klingshirn, C. Thermally induced absorptive optical bistability in gaas/(al,ga)as multiple quantum wells. Semiconductor Science and Technology, 8 (7), 1399, 1993. [133] Navarro-Urrios, D., Capuj, N. E., Colombano, M. F., García, P. D., Sledzinska, M., Alzina, F., et al. Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications, 8, 14965, Apr 2017. [134] Almeida, V. R., Barrios, C. A., Panepucci, R. R., Lipson, M. All-optical control of light on a silicon chip. Nature, 431 (7012), 1081-1084, Oct 2004. [135] Purcell, E. M. Proceedings of the american physical society. Phys. Rev., 69, 674-674, Jun 1946. [136] Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett., 47, 233-236, Jul 1981. [137] Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 20592062, May 1987. [138] Deng, H., Weihs, G., Santori, C., Bloch, J., Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science, 298 (5591), 199-202, 2002. [139] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., et al. Bose-einstein condensation of exciton polaritons. Nature, 443 (7110), 409-414, Sep 2006. [140] Akahane, Y., Asano, T., Song, B.-S., Noda, S. Erratum: High-q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425 (6961), 944-947, Oct 2003. [141] Kuznetsov, A. S., Helgers, P. L. J., Biermann, K., Santos, P. V. Quantum con- finement of exciton-polaritons in a structured (al,ga)as microcavity. Phys. Rev. B, 97, 195309, May 2018. [142] Laaroussi, Y., Almuneau, G., Sanchez, D., Cerutti, L. Efficient lateral confinement by an oxide aperture in a mid-infrared gasb-based vertical light-emitting source. Journal of Physics D: Applied Physics, 44 (14), 142001, 2011. [143] Lee, E., Gibbs, H., Khitrova, G. Optical properties of a laterally conffined semiconductor microcavity containing a single quantum well. Science and Technology of Advanced Materials, 4 (1), 13-17, 2003. [144] McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J., Logan, R. A. Whispering-gallery mode microdisk lasers. Applied Physics Letters, 60 (3), 289- 291, 1992. [145] Amo, A., Pigeon, S., Adrados, C., Houdré, R., Giacobino, E., Ciuti, C., et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B, 82, 081301, Aug 2010. [146] Wertz, E., Ferrier, L., Solnyshkov, D. D., Johne, R., Sanvitto, D., Lemaître, A., et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Physics, 6 (11), 860-864, Aug 2010. [147] Hammack, A. T., Griswold, M., Butov, L. V., Smallwood, L. E., Ivanov, A. L., Gossard, A. C. Trapping of cold excitons in quantum well structures with laser light. Phys. Rev. Lett., 96, 227402, Jun 2006. [148] Roumpos, G., Nitsche, W. H., Höffiing, S., Forchel, A., Yamamoto, Y. Gaininduced trapping of microcavity exciton polariton condensates. Phys. Rev. Lett., 104, 126403, Mar 2010. [149] Houdré, R., Weisbuch, C., Stanley, R. P., Oesterle, U., Pellandini, P., Ilegems, M. Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments. Phys. Rev. Lett., 73, 2043-2046, Oct 1994. [150] Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica, 34 (1), 149 -154, 1967. [151] Panish, M. B., Casey, H. C. Temperature dependence of the energy gap in gaas and gap. Journal of Applied Physics, 40 (1), 163-167, 1969. [152] Manoogian, A., Woolley, J. C. Temperature dependence of the energy gap in semiconductors. Canadian Journal of Physics, 62 (3), 285-287, 1984. [153] Cohen-Tannoudji, C., Diu, B., Laloë, F. En: Quantum Mechanics, Vol. I. Oxford University Press, 1973. [154] Nandi, S. The quantum gaussian well. American Journal of Physics, 78 (12), 1341-1345, Dec 2010. [155] Brunner, M., Gulden, K., Hövel, R., Moser, M., Ilegems, M. Thermal lensing effects in small oxide confined vertical-cavity surface-emitting lasers. Applied Physics Letters, 76 (1), 7-9, 2000. [156] Amatya, R., Luerssen, D., Farzaneh, M., Hudgings, J. A. Thermal lensing in oxide-confined, single-mode vcsels. En: 2006 Conference on Lasers and Electro- Optics and 2006 Quantum Electronics and Laser Science Conference, págs. 1-2. 2006. [157] Ghez, R. En: A Primer of Diffusion Problems. John Wiley & Sons, New York, 1988 [158] Carlson, R. O., Slack, G. A., Silverman, S. J. Thermal conductivity of gaas and gaas(1-x)p(x) laser semiconductors. Journal of Applied Physics, 36 (2), 505-507, 1965. [159] Blakemore, J. S. Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics, 53 (10), R123-R181, 1982. [160] Afromowitz, M. A. Thermal conductivity of ga(1-x)al(x)as alloys. Journal of Applied Physics, 44 (3), 1292-1294, 1973. [161] Lichter, B. D., Sommelet, P. Transactions of the Metallurgical Society of AIME, 245, 1021-1027, 1969. [162] Shen, J., Mandelis, A. Thermal-wave resonator cavity. Review of Scientific Instruments, 66 (10), 4999-5005, 1995. [163] Wang, C., Mandelis, A. Measurement of thermal difiusivity of air using photopyroelectric interferometry. Review of Scientic Instruments, 70 (5), 2372-2378, 1999. [164] Santos, P., Ley, L., Mebert, J., Koblinger, O. Frequency gaps for acoustic phonons in a-Si:H/a-SiNx:H superlattices. Physical Review B, 36, 4858, 1987.
Materias:Física > Optomecánica en cavidades
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica
Código ID:809
Depositado Por:Tamara Cárcamo
Depositado En:01 Mar 2021 10:59
Última Modificación:01 Mar 2021 10:59

Personal del repositorio solamente: página de control del documento