Lampugnani, Leandro G. (2019) Inestabilidades magnetohidrodinámicas y relajación en tokamaks esféricos con columnas central de plasma. / Magnetohydrodynamic instabilities and relaxation in spherical tokamaks with a plasma center column. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 14Mb |
Resumen en español
Los tokamaks esféricos (STs, por sus siglas en inglés) presentan muchas ventajas para ser utilizados como un reactor de fusión. Una mejora adicional sugiere reemplazar el conductor central por una columna de plasma (PCC). En este caso, se pueden utilizar electrodos para generar una corriente a través del PCC y producir el campo magnético toroidal. Más aun, la inyección de helicidad magnética (HI) por el PCC puede ser usada para formar y sostener la configuración mediante la relajación magnética. Se estudiaron los equilibrios, la estabilidad y la dinámica de los tokamaks esféricos con una columna central de plasma (ST-PCC) y/o un cañón coaxial (ST-PCC-CG/STCG) en reemplazo del conductor central. Inicialmente, se resolvió de manera numérica la ecuación de Grad-Shafranov para calcular los equilibrios MHD ideales con cero y diferentes distribuciones de flujos magnéticos externos. Se han considerado casos con estados relajados, λ (λ = J • B=B"2) uniforme, y no relajados, λ no uniforme. Los resultados mostraron la posibilidad de producir configuraciones magnéticas interesantes, con elevada amplificación de flujo poloidal y factor de seguridad (q) similar al alcanzado en un tokamak. La estabilidad de este equilibrio fue estudiada calculando su contenido de energía magnética y mediante la realización de simulaciones no lineales, MHD resistivas. En las simulaciones dependiente del tiempo, los equilibrios fueron usados como condiciones iniciales y perturbados con los modos correspondientes al \tilt" y al\kink". La información obtenida de los cálculos numéricos y analíticos fue utilizada para producir mapas de estabilidad y así mostrar regiones de operación estable como función de la elongación, los flujos magnéticos externos, la distribución de corriente y el factor de amplicación. Ademas, se ha demostrado la formación y el sostenimiento de conguraciones STPCC con una elevada corriente toroidal y perles de q de relevancia mediante la inyección de helicidad (HI). En el régimen de sostenimiento se observaron elevados niveles de fluctuaciones, producidos por una inestabilidad de kink localizada en el PCC, con incrementos abruptos en la amplitud de los modos no asimétricos. También se estudio el dínamo producido por las fluctuaciones y la amplificación de flujo que este produce. Adicionalmente, se han observado procesos de reconexión magnética y su contribución a la redistribución de la energía. Finalmente, cuando se detuvo la inyección de helicidad las fluctuaciones decayeron, permitiendo la aparición de superficies magnéticas cerradas. De esto surge la posibilidad de utilizar HI para formar ST-PCC junto con una combinación de forzado auxiliar de corriente (haces neutros y/o radiofrecuencias (RF)) con una elevada corriente de \bootstrap" para sostener una configuración libre de fluctuaciones.
Resumen en inglés
Spherical tokamaks (STs) have many advantages from the perspective of a fusion reactor. A further improvement would be to replace the center post by a plasma center column (PCC). In this case, biased electrodes could be used to drive current along the PCC and produce the toroidal magnetic field. Moreover, the magnetic helicity injected (HI) by the PCC can be used to form and sustain the conguration via magnetic relaxation. The equilibrium, stability and dynamics of Spherical Tokamaks with a Plasma Central Column (ST-PCC) and/or a Coaxial Gun (ST-PCC-CG / ST-CG) replacing the standard Central Post were studied. First, the Grad-Shafranov equation was solved numerically to calculate zero ideal MHD equilibria with different external flux distributions. Both relaxed, uniform λ (λ = J • B=B"2), and non relaxed, non uniform λ , cases were considered. The results showed the possibility of producing interesting magnetic congurations, with high poloidal flux amplication and tokamak like safety factor proles (q). The stability of these equilibria was studied by calculating their magnetic energy content and by performing non linear, resistive MHD simulations. In the time dependent simulations, the equilibria were used as initial conditions and perturbations corresponding to the "tilt" and "kink" modes were applied. The information obtained from the analytical and numerical calculations was employed to produce stability maps showing the stable regions of operation as a function of the elongation, the external flux, the current distributions and the amplication factor. The formation and sustainment of ST-PCC congurations with high toroidal current and relevant q proles via helicity injection (HI) was also demonstrated. In the sustainment regime a high level of fluctuations was observed, with abrupt increases in the amplitude of non axsymmetric modes produced by a kink instability localized in the PCC. The dynamo produced by the fluctuations, and the flux amplication it produces, were also studied. In addition, magnetic reconnection processes, and their contribution to the energy redistribution were observed. Finally, when helicity injection was switched off, the fluctuations decayed and nested, closed magnetic surfaces appeared. This opens the possibility of using HI to form the ST-PCC and a combination of auxiliary current drive (neutral beams and/or radio-frequency (RF)) and high bootstrap current to sustain a fluctuation free configuration.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Magnetohydrodynamics; Magnetohidrodinámica; Magnetic confinement; Confinamiento magnético; [Tokamak; Auto organization; Auto organización] |
Referencias: | [1] Miley, G. H., Towner, H., Ivich, N. Fusion cross sections and reactivities. Inf. tec., Illinois Univ., Urbana (USA), 1974. URL http://www.osti.gov/scitech/biblio/4014032. [2] Priest, E., Forbes, T. (eds.) Magnetic reconnection : MHD theory and applications. 2000. [3] Garcia-Martinez, P. L. Procesos de relajación y auto-organización en plasmas de fusión. Tesis Doctoral, Instituto Balseiro, UNCuyo, 2010. [4] Peng, Y.-K. M. The physics of spherical torus plasmas. Physics of Plasmas, 7 (5), 1681-1692, 2000. URL https://doi.org/10.1063/1.874048. [5] Ono, M., Kaita, R. Recent progress on spherical torus research. Physics of Plasmas, 22 (4), 040501, 2015. URL https://doi.org/10.1063/1.4915073. [6] Taylor, J. B. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett., 33, 1139-1141, Nov 1974. URL https://link.aps.org/doi/10.1103/PhysRevLett.33.1139. [7] Rosenbluth, M. N., Bussac, M. N. MHD stability of Spheromak. Nuclear Fusión, 19, 489-498, abr. 1979. [8] Nogi, Y., Ogura, H., Osanai, Y., Saito, K., Shiina, S., Yoshimura, H. Spheromak formation by theta pinch. Journal of the Physical Society of Japan, 49 (2), 710-716, 1980. URL https://doi.org/10.1143/JPSJ.49.710. [9] Jarboe, T. R., Henins, I., Hoida, H. W., Linford, R. K., Marshall, J., Platts, D. A., et al. Motion of a compact toroid inside a cylindrical flux conserver. Phys. Rev. Lett., 45, 1264-1267, Oct 1980. URL https://link.aps.org/doi/10.1103/PhysRevLett.45.1264. [10] Rusbridge, M. G., Gee, S. J., Browning, P. K., Cunningham, G., Duck, R. C., al-Karkhy, A., et al. The design and operation of the SPHEX spheromak. Plasma Physics and Controlled Fusion, 39, 683-714, mayo 1997. [11] Alladio, F., Costa, P., Mancuso, A., Micozzi, P., Papastergiou, S., Rogier, F. Design of the PROTO-SPHERA experiment and of its rst step (MULTI-PINCH). Nuclear Fusion, 46, 613-+, ago. 2006. [12] Tang, X. Z., Boozer, A. H. Spherical tokamak with a plasma center column. Physics of Plasmas, 13, 42514-42523, Apr 2006. [13] Hsu, S. C., Tang, X. Z. Proposed Experiment to Study Relaxation Formation of a Spherical Tokamak with a Plasma Center Column. Journal of Fusion Energy, 2, 85-90, Jun 2007. [14] Cowling, T. G. The stability of gaseous stars. Monthly Notices of the Royal Astronomical Society, 94, 768-782, jun. 1934. [15] Sovinec, C. R., Finn, J. M., Del-Castillo-Negrete, D. Formation and sustainment of electrostatically driven spheromaks in the resistive magnetohydrodynamic model. Physics of Plasmas, 8, 475-490, feb. 2001. [16] García Martínez, P. L., Farengo, R. Relaxation of spheromak congurations with open flux. Physics of Plasmas, 16, 112508, 2009. [17] García Martínez, P. L., Farengo, R. Spheromak formation and sustainment by tangential boundary flows. Physics of Plasmas, 17, 050701, 2010. [18] García Martínez, P. L., Lampugnani, L. G., Farengo, R. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment. Physics of Plasmas, 21, 122511, 2014. [19] Alladio, F., Mancuso, A., Micozzi, P., Rogier, F. Behavior of perturbed plasma displacement near regular and singular x-points for compressible ideal magnetohydrodynamic stability analysis. Physics of Plasmas, 13 (8), 082505, 2006. URL https://doi.org/10.1063/1.2220008. [20] Bellan, P. M. Spheromaks. London: Imperial College Press, 2000. [21] Sarff, J., Lanier, N., S., P., M., S. Increased connement and by inductive poloidal current drive in the reversed field pinch. Physical Review Letters, 71, ago. 1997. [22] Wesson, j. Tokamaks. Oxford: Clarendon Press, 2004. [23] Freidberg, J. P. Ideal MHD. New York: Cambridge University Press, 2014. [24] White, R. P. The theory of Toroidally conned Plasmas. London: Imperial College Press, 2014. [25] Goldston, R. J. Energy connement scaling in Tokamaks: some implications of recent experiments with Ohmic and strong auxiliary heating. Plasma Physics and Controlled Fusion, 26 (1A), 87-103, 1984. [26] Braginskii, S. I. In Reviews of Plasma Physics, tomo 1. New York: M.A. Leontovich (Consultants Bureau), 1965. [27] Berger, M. A., Field, G. B. The topological properties of magnetic helicity. Journal of Fluid Mechanics, 147, 133-148, 1984. [28] Finn, J. M., Antonsen, T. M. Magnetic helicity: what it is, and what it is good for? Comments Plasma Physics and Controlled Fusion, 33, 1139-+, 1985. [29] Asenjo, F. A., Comisso, L. Relativistic magnetic reconnection in kerr spacetime. Phys. Rev. Lett., 118, 055101, Feb 2017. URL http://link.aps.org/doi/10.1103/PhysRevLett.118.055101. [30] Biskamp, D. Magnetic Reconnection in Plasmas. New York: Cambridge University Press, 2000. [31] Berger, M. A. Magnetic Helicity in Space Physics. En: M. R. Brown, R. C. Canfield, & A. A. Pevtsov (ed.) Measurement Techniques in Space Plasmas Fields, pags. 1-+. 1999. [32] Woltjer, L. A Theorem on Force-Free Magnetic Fields. Proceedings of the National Academy of Science, 44, 489-491, jun. 1958. [33] Brennan, D. P., Browning, P. K., van der Linden, R. A. M. A two-dimensional magnetohydrodynamic stability model for helicity-injected devices with open flux. Physics of Plasmas, 9, 3526-3535, ago. 2002. [34] García Martínez, P. L., Farengo, R. Non-linear dynamics of kink-unstable spheromak equilibria. Physics of Plasmas, 16, 082507, 2009. [35] Yamada, M. Mechanisms of impulsive magnetic reconnection: Global and local aspects. Physics of Plasmas, 18 (11), 111212, 2011. URL https://doi.org/10.1063/1.3658034. [36] Ortolani, S., Schnack, D. D. Magnetohydrodynamics of plasma relaxation. Singapore: World Scientic, 1993. [37] Jarboe, T. R. Review of spheromak research. Plasma Physics and Controlled Fusion, 36, 945-990, jun. 1994. [38] Browning, P. K., Stanier, A., Ashworth, G., McClements, K. G., Lukin, V. S. Selforganization during spherical torus formation by flux rope merging in the mega ampere spherical tokamak. Plasma Physics and Controlled Fusion, 56 (6), 064009, apr 2014. URL https://doi.org/10.1088%2F0741-3335%2F56%2F6%2F064009. [39] Jarboe, T. R. The spheromak connement device. Physics of Plasmas, 12 (5), 058103-+, mayo 2005. [40] Brennan, D., Browning, P. K., van der Linden, R. A. M., Hood, A. W., Woodruff, S. Stability studies and the origin of the n=1 mode in the SPHEX spheromak experiment. Physics of Plasmas, 6, 4248-4259, nov. 1999. [41] Al-Karkhy, A., Browning, P. K., Cunningham, G., Gee, S. J., Rusbridge, M. G. Observations of the magnetohydrodynamic dynamo effect in a spheromak plasma. Physical Review Letters, 70, 1814-1817, mar. 1993. [42] Frisch, U., Pouquet, A., Leorat, J., Mazure, A. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 68, 769-778, abr. 1975. [43] Ting, A. C., Montgomery, D., Matthaeus, W. H. Turbulent relaxation processes in magnetohydrodynamics. Physics of Fluids, 29, 3261-3274, oct. 1986. [44] Mininni, P. D. Scale interactions in magnetohydrodynamic turbulence. Annual Review of Fluid Mechanics, 43 (1), 377-397, 2011. URL https://doi.org/10.1146/annurev-fluid-122109-160748. [45] Finn, J. M., Manheimer, W. M. Spherical tilting instability in cylindrical geometry. Physics of Fluids, 24, 1336-1341, Apr 1981. [46] Bondeson, A., Marklin, G., An, Z. G., Chen, H. H., Lee, Y. C., Liu, C. S. Tilting instability of a cylindrical spheromak. Physics of Fluids, 24, 1682-1688, Sep 1981. [47] Hooper, E. B., Pearlstein, L. D., Bulmer, R. H. MHD equilibria in a spheromak sustained by coaxial helicity injection. Nuclear Fusion, 39, 863-871, jul. 1999. [48] Garcia-Martinez, P. L. Dynamics of magnetic relaxation in spheromaks. En: L. Zheng (ed.) Topics in Magnetohydrodynamics, cap. 4, pags. 85-116. InTech, 2012. [49] García Martínez, P. L., Farengo, R. Selective decay in a helicity-injected spheromak. Journal of Physics Conference Series, 166 (1), 012010, mayo 2009. [50] Jarboe, T. R., Wysocki, F. J., Fernández, J. C., Henins, I., Marklin, G. J. Progress with energy connement time in the CTX spheromak. Physics of Plasmas, 2, mar. 1990. [51] Hudson, B., Wood, R. D., McLean, H. S., Hooper, E. B., Hill, D. N., Jayakumar, J., et al. Energy connement and magnetic eld generation in the sspx spheromak. Physics of Plasmas, 15 (5), 056112, 2008. URL http://dx.doi.org/10.1063/1.2890121. [52] Tang, X. Z., Boozer, A. H. Force-Free Magnetic Relaxation in Driven Plasmas. Physical Review Letters, 94, 225004, Jun 2005. [53] Knox, S. O., Barnes, C. W., Marklin, G. J., Jarboe, T. R., Henins, I., Hoida, H. W., et al. Observations of spheromak equilibria which differ from the minimum-energy state and have internal kink distortions. Physical Review Letters, 56, 842-845, feb. 1986. [54] Shumlak, U., Jarboe, T. R. Stable high beta spheromak equilibria using concave flux conservers. Physics of Plasmas, 7, 2959-2963, jul. 2000. [55] Bussac, M. N., Pellat, R., Edery, D., Soule, J. L. Internal kink modes in toroidal plasmas with circular cross sections. Phys. Rev. Lett., 35, 1638-1641, Dec 1975. URL https://link.aps.org/doi/10.1103/PhysRevLett.35.1638. [56] Wahlberg, C. Aspect ratio dependence of the ideal internal kink mode stability in a toroidal plasma with circular cross section. Physics of Plasmas, 11 (5), 2119-2134, 2004. URL https://doi.org/10.1063/1.1710901. [57] Ryutov, D. D., Cohen, R. H., Pearlstein, L. D. Stability of a nite-length screw pinch revisited. Physics of Plasmas, 11 (10), 4740-4752, 2004. URL http://dx.doi.org/10.1063/1.1781624. [58] Hooper, E. B., Romero-Talamas, C. A., LoDestro, L. L., Wood, R. D., McLean,H. S. Aspect-tario effects in driven, flux-core spheromak. Physics of Plasmas, 16, 052506, mayo 2009. [59] Chandrasekhar, S., Kendall, P. C. On Force-Free Magnetic Fields. Astrophysical Journal, 126, 457, Jan 1957. [60] Izzo, V. A., Jarboe, T. R. A numerical assessment of the Lundquist number requirement for relaxation current drive. Physics of Plasmas, 10, 2903-2911, jul. 2003. [61] Katayama, K., Katsurai, M. Three-dimensional numerical simulations of the relaxation process in spheromak plasmas. Physics of Fluids, 29, 1939-1947, jun. 1986. [62] Taylor, J. B. Relaxation and magnetic reconnection in plasmas. Reviews of Modern Physics, 58, 741-763, jul. 1986. [63] Lampugnani, L. G., Garcia-Martinez, P. L., Farengo, R. Relevant parameter space and stability of spherical tokamaks with a plasma center column. Physics of Plasmas, 24 (2), 022501, 2017. URL http://dx.doi.org/10.1063/1.4975018. [64] Hastie, R. J. Sawtooth instability in tokamak plasmas. Astrophysics and Space Science, 256 (1), 177-204, Mar 1997. URL https://doi.org/10.1023/A:1001728227899. [65] O'Bryan, J. B., Romero-Talamas, C. A., Woodruff, S. Simulation of multi-pulse coaxial helicity injection in the sustained spheromak physics experiment. Physics of Plasmas, 25 (3), 032503, 2018. URL https://doi.org/10.1063/1.5018319. [66] Jarboe, T. R., Henins, I., Sherwood, A. R., Barnes, C. W., Hoida, H. W. Slow Formation and Sustainment of Spheromaks by a Coaxial Magnetized Plasma Source. Physical Review Letters, 51, 39-42, jul. 1983. [67] Nelson, B. A., Jarboe, T. R., Orvis, D. J., McCullough, L. A., Xie, J., Zhang, C., et al. Formation and sustainment of a 150 kA tokamak by coaxial helicity injection. Physical Review Letters, 72 (23), 3666-3669, jun. 1994. [68] Yamada, M., Yoo, J., Myers, C. E. Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts. Physics of Plasmas, 23 (5), 055402, 2016. URL https://doi.org/10.1063/1.4948721. [69] Bateman, G. MHD instabilities. Cambridge: Cambridge, Mass., MIT Press, 1978. [70] Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., de Zeeuw, D. L. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. Journal of Computational Physics, 154, 284*309, sep. 1999. [71] Roe, P. L., Balsara, D. S. Notes on the Eigensystem of Magnetohydrodynamics. SIAM Journal on Applied Mathematics, 56, 57-67, 1996. [72] Brio, M., Wu, C. C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 75, 400-422, abr. 1988. [73] Leveque, R. J. Numerical methods for conservation laws. Birkhauser Verlag, 1992. [74] Leveque, R. J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002. [75] Godunov, S. K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Math. Sbornik, 47, 271-306, 1959. [76] Courant, R., Friedrichs, K., Lewy, H. Uber die partiellen Differenzengleichungen fider mathematischen Physik. Mathematische Annalen, 100 (1), 32-74, 1928. [77] Roe, P. L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal of Computational Physics, 43, 357-+, oct. 1981. [78] Balsara, D. S. Linearized Formulation of the Riemann Problem for Adiabatic and Isothermal Magnetohydrodynamics. Astrophysical Journal Supplement, 116, 119-+, mayo 1998. [79] Harten, A. On a class of high resolution total variation stable nite difference schemes. SIAM J. Numer. Anal, 21, 1-23, 1984. [80] Sweby, P. K. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal, 21, 995-1011, 1984. [81] Toth, G. The r B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes. Journal of Computational Physics, 161, 605-652, jul. 2000. [82] Brackbill, J. U., Barnes, D. C. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations. Journal of Computational Physics, 35, 426-430, mayo 1980. [83] van der Vorst, H. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput., 13, 631-644, 1992. [84] Forrer, H., Jeltsch, R. A higher-order boundary treatment for cartesian-grid methods. Journal of Computational Physics, 140, 259-277, 1998. |
Materias: | Física |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Interacción de la radiación con la materia > Física nuclear y física de plasmas |
Código ID: | 810 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 01 Mar 2021 07:52 |
Última Modificación: | 01 Mar 2021 07:52 |
Personal del repositorio solamente: página de control del documento