Potenciales extracelulares como descriptores del comportamiento en el lóbulo temporal. / Local field potentials as behabioural descriptors in the temporal lobe.

Maidana Capitán, Melisa B. (2019) Potenciales extracelulares como descriptores del comportamiento en el lóbulo temporal. / Local field potentials as behabioural descriptors in the temporal lobe. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
9Mb

Resumen en español

El potencial eléctrico del medio extracelular que rodea a las neuronas del sistema nervioso fluctua constantemente. Estas oscilaciones resultan de sumar las perturbaciones producidas por los potenciales de acción y los potenciales sin apáticos de las neuronas ubicadas en un entorno del electrodo de medición, y su amplitud es tanto mas grande cuanto mayor sea la sincronización entre neuronas. Se han identificado diversos ritmos colectivos cuyas características están correlacionadas con variables comportamentales. Por ejemplo, se sabe que en roedores, el ritmo theta (6-12 Hz) coordina los cómputos involucrados en orientación y navegación en el espacio. En humanos, el ritmo beta (16-31 Hz) crece durante el procesamiento consciente de la información. Sin embargo, hasta el momento se desconoce el papel que juegan los ritmos lentos en este tipo de tareas, aun cuando la amplitud de las oscilaciones lentas es comparable a la de otras bandas de frecuencia. En esta tesis, analizamos la relevancia de las oscilaciones lentas en tareas de navegación espacial en roedores, y en procesamiento de información en pacientes epilépticos humanos. En ambos casos, estudiamos los registros obtenidos por nuestros colaboradores con electrodos que fueron implantados con fines académicos (en el caso de roedores) o médicos (en seres humanos). En el caso de roedores, observamos que tanto la amplitud de las ondas lentas como su grado de acoplamiento con otras bandas de frecuencia están modulados por aspectos cinemáticos de la trayectoria recorrida por el animal, tales como la velocidad o la aceleración. Observamos también que los ritmos lentos organizan los disparos de neuronas individuales en el lóbulo temporal, de forma que la información cinemática codificada por dichas neuronas depende de la fase del ritmo en la cual se ubican los potenciales de acción. En el caso de los pacientes epilépticos, encontramos que las oscilaciones lentas fluctúan marcadamente tanto dentro como fuera de las crisis, dificultando la detección automática de los períodos ictales, y el grado de pérdida de conciencia. Proponemos un mecanismo de normalización que permite neutralizar estas fluctuaciones, y en consecuencia, detectar las crisis con un algoritmo sencillo, factible de ser implementado online. Analizando la señal normalizada, es posible identificar un rasgo siológico asociado a las crisis que conllevan un alto grado de perdida de conciencia: el cambio en la distribución de probabilidad asociada a la potencia en diferentes bandas, unas pocas decenas de milisegundos después del inicio de la crisis. Concluimos por ende que, a diferencia de lo que se creía hasta el momento, un adecuado procesamiento de las componentes lentas del potencial extracelular permite una mejor interpretación del procesamiento de información en roedores y en humanos.

Resumen en inglés

The electric potential of the extracellular medium surrounding neurons fluctuates constantly. These oscillations result from the summation of perturbations produced by the action potentials and the synaptic potentials of neurons located in the vicinity of the measuring electrode, and their amplitude grows as the synchronization between neurons increases. Several collective rhythms have been shown to be correlated with behavioral variables. For example, in rodents, the theta rhythm (6-12 Hz) coordinates the computations involved in spatial orientation and navigation. In humans, the beta rhythm (16-31 Hz) grows during conscious information processing. Yet, the role played by slow rhythms in this type of tasks remains so far unknown, even though the amplitude of the slow components is typically comparable to that of other frequency bands. In this thesis, we analyze the behaviour of slow oscillations in spatial navigation tasks in rodents, and in information processing in human epileptic patients. In both cases, we study the signals obtained with electrodes that were implanted into the brain of the studied subjects for academic reasons (in rodents), and for medical purposes (in humans). In the case of rodents, we observed that both the amplitude of the waves and their degree of coupling with other frequency bands are modulated by kinematic features, such as the running speed or acceleration of the animal. We also found that the slow rhythms organize the ring patterns of individual neurons, so that some kinematic features of the trajectory are correlated with the phase of the slow rhythms at the time in which neurons spike. In the case of epileptic patients, we showed that the slow oscillations fluctuate markedly both inside and outside the seizure, forestalling the automatic detection of ictal periods, and the search for physiological correlates of the degree of loss of consciousness. Here we propose a mechanism that allows us to neutralize these fluctuations, and consequently, to also develop a simple algorithm, feasible to be implemented online, with which the crisis can be identied. By analyzing the normalized signal, we were able to determine a physiological marker of the degree of loss of consciousness: changes in the shape of the power spectrum of the signal, a few tens of milliseconds after the onset of the crisis. We conclude that, unlike the prevalent belief thus far, a proper processing of the slow components of the extracellular potential allows a better interpretation of the way information is processed by rodents and humans.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Epilepsy; Epilepsia; Hippocampus; Hipocampo; [Local field potential; Potencia de campo local; Neural code; Código neuronal]
Referencias:[1] Smith, K. Cognitive psychology: Mind and brain. New Jersey: Prentice Hall., 21, 194-199, 2017. [2] Zhang, X.-M., Zhu1, J. Kainic acid-induced neurotoxicity: Targeting glial responses and glia-derived cytokines. Current Neuropharmacololy, 9, 388-398, 2011. [3] Rolls, E., Treves, A. Neural networks and brain function, 01 1998. [4] E.T., R., A., T. Neural networks in the brain involved in memory and recall. Proceedings of 1993 International Joint Conference on Neural Networks, 1993. [5] Rolls, E. T. A computational theory of episodic memory formation in the hippocampus. Behavioural Brain Research, 215 (2), 180 - 196, 2010. URL http:// www.sciencedirect.com/science/article/pii/S0166432810002135, special issue on episodic memory. [6] Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., et al. Integrating time from experience in the lateral entorhinal cortex. Nature, 57, 2018. [7] O'Keefe, J., Dostrovsky, J. The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34 (1), 171-175, 1971. [8] Colgin, L. L., Moser, E. I., Moser, M.-B. Understanding memory through hippocampal remapping. Trends in Neurosciences, 31 (9), 469 - 477, 2008. URL http://www.sciencedirect.com/science/article/pii/S0166223608001677. [9] Fyhn, M., Molden, S., Witter, M. P., Moser, E., Moser, M.-B. Spatial representation in the entorhinal cortex. Science, 305 (5688), 1258-1264, 2004. [10] Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801806. [11] Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., Moser, E. I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature, 446 (9), 469 - 477, 2007. [12] Jacobs, J. Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1635), 2014. URL http://rstb.royalsocietypublishing.org/content/369/1635/20130304. [13] Buzski, G. Theta oscillations in the hippocampus. Neuron, 33 (3), 325 - 340, 2002. URL http://www.sciencedirect.com/science/article/pii/ S089662730200586X. [14] Buzsaki, G., Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16, 130-138, 2013. [15] O'Keefe, J. Hippocampues, theta, and spatial memory. Current Opinion in Neurobiology, 6 (3), 917-924, 1993. [16] Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.-B., Moser, E. I. Hippocampusindependent phase precession in entorhinal grid cells. Nature, 453, 2008. [17] Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B., Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science, 322 (5909), 1865-1868, 2008. [18] Muller, R. U., Bostock, E., Taube, J. S., Kubie, J. L. On the directional ring properties of hippocampal place cells. Annual Review of Neuroscience, 14 (12), 7235-7251, 1994. [19] Battaglia, F. P., Sutherland, G. R., McNaughton, B. L. Local sensory cues and place cell directionality: Additional evidence of prospective coding in the hippocampus. The Journal of Neuroscience, 24 (19), 45414550, 2004. [20] Kropff, E., Carmichael, J. E., Moser, M.-B., Moser, E. I. Speed cells in the medial entorhinal cortex. Nature, 523 (7561), 419-424, 2015. [21] McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., Moser, M.-B. Path integration and the neural basis of the cognitive map. Nature Review Artivle, 7, 2008. [22] Moser, E. I., Kropff, E., Moser, M.-B. Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31 (1), 69-89, 2008. PMID: 18284371. [23] Clark, B., Taube, J. Vestibular and attractor network basis of the head direction cell signal in subcortical circuits. Frontiers in Neural Circuits, 6, 7, 2012. URL https://www.frontiersin.org/article/10.3389/fncir.2012.00007. [24] Scheffer, I. E., French, J., Hirsch, E., Jain, S., Mathern, G. W., Mosh, S. L., et al. Classication of the epilepsies: New concepts for discussion and debatespecial report of the ilae classication task force of the commission for classication and terminology. Epilepsia Open, 1 (1-2), 37-44, 2016. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/epi4.5. [25] HeinzGregor, W. Mesial temporal lobe epilepsy with hippocampal sclerosis epilepsia. Commission on Neurosurgery of Epilepsy, 45, 695-714, 2004. [26] Kuzniecky, R. I., Bilir, E., Gilliam, F., Faught, E., Palmer, C., Morawetz, R., et al. Multimodality mri in mesial temporal sclerosis: Relative sensitivity and specicity. Neurology, 49 (3), 774-778, 1997. URL http://n.neurology.org/ content/49/3/774. [27] D, C., M, K., S, O., R, R., S., K. Alteraciones extrahipocámpicas en epilepsia temporal mesial con esclerosis del hipocampo. 4, 53-58, 2012. [28] Bonilha, L., Kobayashi, E., Rorden, C., Cendes, F., Li, L. M. Medial temporal lobe atrophy in patients with refractory temporal lobe epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 74 (12), 1627-1630, 2003. URL https://jnnp.bmj.com/content/74/12/1627. [29] Bernasconi, N., Bernasconi, A., Caramanos, Z., Antel, S., Andermann, F., Arnold, D. Mesial temporal damage in temporal lobe epilepsy: A volumetric mri study of the hippocampus, amygdala and parahippocampal region. Brain : a journal of neurology., 126, 462-469, 2003. [30] Bartolomei, F., McGonigal, A., Naccache, L. Alteration of consciousness in focal epilepsy: The global workspace alteration theory. Epilepsy Behavior, 30, 17 - 23, 2014. URL http://www.sciencedirect.com/science/article/pii/ S1525505013004782, alterations of Consciousness in Epilepsy. [31] Nani, A., Cavanna, A. E. The quantitative measurement of consciousness during epileptic seizures. Epilepsy Behavior, 30, 2 - 5, 2014. URL http: //www.sciencedirect.com/science/article/pii/S152550501300468X, alterations of Consciousness in Epilepsy. [32] Blumenfeld, H. Chapter 16 - epilepsy and consciousness. En: S. Laureys, O. Gosseries, G. Tononi (eds.) The Neurology of Conciousness (Second Edition), second edition ed., pags. 255 - 270. San Diego: Academic Press, 2016. URL http: //www.sciencedirect.com/science/article/pii/B9780128009482000169. [33] Arthuis, M., Valton, L., Rgis, J., Chauvel, P., Wendling, F., Naccache, L., et al. Impaired consciousness during temporal lobe seizures is related to increased longdistance corticalsubcortical synchronization. Brain, 132 (8), 2091-2101, 2009. URL http://dx.doi.org/10.1093/brain/awp086. [34] Bartolomei, F. Coherent neural activity and brain synchronization during. Archives italiennes de biologie: A journal of neuroscience, 150, 2012. [35] Skaggs, W. E., McNaughton, B. L., Gothard, K. M., Markus, E. J. An information-theoretic approach to deciphering the hippocampal code, cap. 5, pags. 1030{1037. Morgan Kaufmann Pub., 1993. [36] Dayan, P., Abbott, L. F. Theoretical Neuroscience. Cambridge, Massachusetts: The MIT Press, 2001. [37] Souza, B. C., Pavo, R., Belchior, H., Tort, A. B. L. On information metrics for spatial coding. Neuroscience, 375, 62-73, 2018. [38] Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W. Spikes: Exploring the Neural Code. Cambridge, Massachusetts: The MIT Press, 1999. [39] Hubel, D. H. David h. hubel's nobel lecture. evolution of ideas on the primary visual cortex, 1955-1978: A biased historical account. En: T. Frangsmyr, J. Lindsten (eds.) Nobel Lectures, Physiology or Medicine: 1981-1990, cap. 1981, pags. 24-56. Singapore: World Scientic Publishing Co., 1993. [40] Gross, C. G., Rocha-Miranda, C. E., Bender, D. B. Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology, 35 (7199), 96,111, 1972. [41] O'Keefe, J. John o'keefe - nobel lecture: Spatial cells in the hippocampal formation. http://www.nobelprize.org/nobel_prizes/medicine/laureates/ 2014/okeefe-lecture.html, 2014. Last checked: 2018-05-22. [42] Chichilnisky, E. J. A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12 (2), 199-213, 2006. [43] Samengo, I., Gollisch, T. Spike-triggered covariance revisited: Geometric proof, symmetry properties and extension beyond gaussian stimuli. Journal of Computational Neuroscience, 34 (1), 137-61, 2013. [44] Rust, N. C., Schwartz, O., Movshon, J. A., Simoncelli, E. P. Spatiotemporal elements of macaque v1 receptive elds. Neuron, 46 (9), 945956, 2005. [45] Estebanez, L., Bertherat, J., Shulz, D. E., Bourdieu, L., Leger, J. F. A radial map of multi-whisker correlation selectivity in the rat barrel cortex. Nature Communications, 17, 13528, 2016. [46] Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., Bialek, W. Entropy and information in neural spike train. Physical Review Letters, 80 (1), 197-200, 1998. [47] Hardcastle, K., Maheswaranathan, N., Ganguli, S., Giocomo, L. M. A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortexs. Neuron, 94 (2), 375-387, 2017. [48] Diehl, G. W., Hon, O. J., Leutgeb, S., Leutgeb, J. K. Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. Neuron, 94 (1), 83-92, 2017. [49] Fisher, N. I. Statistical Analysis of Circular Data. New York: Cambridge University Press, 1996. [50] Shannon, C. E. A mathematical theory of communication. Bell Systems Technical Journal, 27, 623-656, 1948. [51] Cover, T. M., Thomas, J. A. Elements of Information Theory. Wiley-Interscience, 2006. [52] Ecker, A. S., Berens, P., Tolias, A. S., Bethge, M. The effect of noise correlations in populations of diversely tuned neurons. Journal of Neuroscience, 31 (40), 14272-14283, 2011. [53] Mathis, A., Herz, A. V. M., Stemmler, M. B. Multiscale codes in the nervous system: The problem of noise correlations and the ambiguity of periodic scales. Physical Review E, 88, 022713, 2013. [54] Butts, D. A., Goldman, M. S. Tuning curves, neuronal variability and sensory coding. PLoS Biology, 4 (4), 2006. [55] Treves, A., Panzeri, S. The upward bias in measures of information derived from limited data samples. Neural Computation, 7 (2), 399-407, 1995. [56] Samengo, I. Estimating probabilities from experimental frequencies. Physical Review E, 65 (4), 046124, 2002. [57] Paninski, L. Estimation of entropy and mutual information. Neural Computation, 15 (6), 11911253, 2003. [58] Panzeri, S., Senatore, R., Montemurro, M. A., Petersen, R. S. Correcting for the sampling bias problem in spike train information measures. Journal of Neurophysiology, 98 (3), 1064-1072, 2007. [59] Brenner, N., Strong, S. P., Koberle, R., Bialek, W., de Ruyter van Steveninck, R. R. Synergy in a neural code. Neural Computation, 12 (7), 1531-1552, 2000. [60] Schneidman, E., Berry II, M. J., Segev, R., Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 2006. [61] Gawne, T. J., Richmond, B. J. How independent are the messages carried by adjacent inferior temporal cortical neurons? The Journal of Neuroscience, 13 (7), 2758-2771, 1993. [62] Schneidman, E., Bialek, W., Berry, M. J. Synergy, redundancy, and independence in population codes. The Journal of Neuroscience, 23 (37), 11539-11553, 2003. [63] Montemurro, M. A., Rasch, M. J., Murayama, Y., Logothetis, N. K., Panzeri, S. Phase-of-ring coding of natural visual stimuli in primary visual cortex. Current Biology, 18 (5), 375-380, 2008. [64] Kayser, C., Montemurro, M. A., Logothetis, N., Panzeri, S. Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61 (4), 597-608, 2009. [65] Samengo, I. The information loss in an optimal maximum likelihood decoding. Neural Computation, 14 (4), 771-779, 2002. [66] Elijah, D., Samengo, I., Montemurro, M. A. Thalamic neurons encode stimulus information by burst-size modulation. Frontiers in Computational Neuroscience, 2017. [67] Constantinou, M., Gonzalo Cogno, S., Elijah, D. A., Kropff, E., Gigg, J., Samengo, I., et al. Bursting neurons in the hippocampal formation encode features of lfp rhythms. Frontiers in Computational Neuroscience, 2016. [68] Buzsaki, G., Buhl, D. L., Harris, K. D., Csicsvari, J., Czffeh, B., Morozov, A. Tuning curves, neuronal variability and sensory coding. Neuroscience, 116 (1), 201-211, 2003. [69] Bieri, K. W., Bobbitt, K. N., Colgin, L. L. Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron, 82 (3), 670 - 681, 2014. URL http://www.sciencedirect.com/science/article/ pii/S0896627314002414. [70] Fries, P. Rhythms for cognition: Communication through coherence. Neuron, 88 (1), 220 - 235, 2015. URL http://www.sciencedirect.com/science/ article/pii/S0896627315008235. [71] Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2 (229), 2001. [72] von Stein A., J., S. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Journal of Psychophysiology, 38 (3), 2000. [73] Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., Buzsaki, G. Crossfrequency phase-phase coupling between theta and gamma oscillations in the hippocampus. Journal of Neuroscience, 32 (2), 423-435, 2012. URL http: //www.jneurosci.org/content/32/2/423. [74] Fell, J., Axmacher, N. The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12 (105), 423-435, 2011. URL http: //www.jneurosci.org/content/32/2/423. [75] Jensen, O., Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 11 (7), 267 -269, 2007. URL http: //www.sciencedirect.com/science/article/pii/S1364661307001271. [76] Colgin, L. L. Oscillations and hippocampalprefrontal synchrony. Current Opinion in Neurobiology, 21 (3), 467 - 474, 2011. URL http://www.sciencedirect.com/ science/article/pii/S095943881100064X, behavioural and cognitive neuroscience. [77] Ahmed, O. J., Mehta, M. R. Running speed alters the frequency of hippocampal gamma oscillations. Journal of Neuroscience, 32 (21), 7373-7383, 2012. URL http://www.jneurosci.org/content/32/21/7373. [78] Zheng, C., Bieri, K. W., Trettel, S. G., Colgin, L. L. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus, 25 (8), 924-938. URL https: //onlinelibrary.wiley.com/doi/abs/10.1002/hipo.22415. [79] Zheng, C., Bieri, K. W., Hwaun, E., Colgin, L. L. Fast gamma rhythms in the hippocampus promote encoding of novel object{place pairings. Neuron, 3 (2), 2016. URL http://www.eneuro.org/content/3/2/ENEURO.0001-16.2016. [80] Chen, Z., Resnik, E., McFarland, J. M., Sakmann, B., Mehta, M. R. Speed controls the amplitude and timing of the hippocampal gamma rhythm. PLOS ONE, 6 (6), 1-9, 06 2011. URL https://doi.org/10.1371/journal.pone. 0021408. [81] Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., et al. Dynamic cross-frequency couplings of local eld potential oscillations in rat striatum and hippocampus during performance of a tmaze task. Proceedings of the National Academy of Sciences, 2008. URL http://www.pnas.org/content/early/2008/12/12/0810524105. [82] Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., Eichenbaum, H. Theta{gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences, 106 (49), 20942-20947, 2009. URL http://www.pnas.org/content/106/49/20942. [83] Fujisawa, S., Buzski, G. A 4 hz oscillation adaptively synchronizes prefrontal, vta, and hippocampal activities. Neuron, 72 (1), 153 - 165, 2011. URL http: //www.sciencedirect.com/science/article/pii/S0896627311007392. [84] Roy, A., Svensson, F. P., Mazeh, A., Kocsis, B. Prefrontal-hippocampal coupling by theta rhythm and by 2-5 hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Structure and Function, 222 (6), 2819- 2830, Aug 2017. URL https://doi.org/10.1007/s00429-017-1374-6. [85] Miller, E. K., Cohen, J. D. An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24 (1), 167-202, 2001. URL https://doi.org/ 10.1146/annurev.neuro.24.1.167, pMID: 11283309. [86] Nacher, V., Ledberg, A., Deco, G., Romo, R. Coherent delta-band oscillations between cortical areas correlate with decision making. Proceedings of the National Academy of Sciences, 110 (37), 15085-15090, 2013. URL http://www.pnas.org/ content/110/37/15085. [87] Harmony, T. The functional signicance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7, 83, 2013. URL https: //www.frontiersin.org/article/10.3389/fnint.2013.00083. [88] Ito, H. T., Zhang, S.-J., Witter, M.-B., Menno P. Moser, Moser, E. I. A prefrontalthalamohippocampal circuit for goal-directed spatial navigation. Nature, 522 (50), 2015. [89] W.L., M. F., H., T., K., H. E. Relationship between hippocampal theta activity and running speed in the rat. En: Relationship between hippocampal theta activity and running speed in the rat, tomo 0, pag. 3. University of Maryland, 1974. [90] Bender, F., Gorbati, M., Cadavieco, M. C., Denisova, N., Gao, X., Holman, C., et al. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nature Communications, 6 (8521), 2015. URL https: //www.nature.com/articles/ncomms9521#supplementary-information. [91] Sheremet, A., Burke, S., Maurer, A. Movement enhances the nonlinearity of hippocampal theta. 36, 4218-4230, 04 2016. [92] Colgin, L. L. Thetagamma coupling in the entorhinalhippocampal system. Current Opinion in Neurobiology, 31, 45 - 50, 2015. URL http://www.sciencedirect.com/science/article/pii/S0959438814001639, sI: Brain rhythms and dynamic coordination. [93] Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., et al. Vector-based navigation using grid-like representations in articial agents. Nature, 557, 2018. URL http://www.sciencedirect.com/science/article/pii/ S095943881100064X. [94] Shimamoto, S. A., Ryapolova-Webb, E. S., Ostrem, J. L., Galianakis, N. B., Miller, K. J., Starr, P. A. Subthalamic nucleus neurons are synchronized to primary motor cortex local eld potentials in parkinson's disease. Journal of Neuroscience, 33 (17), 7220-7233, 2013. URL http://www.jneurosci.org/content/33/ 17/7220. [95] Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., et al. Untangling cross-frequency coupling in neuroscience. Current Opinion in Neurobiology, 31, 51 - 61, 2015. URL http://www.sciencedirect.com/science/article/pii/ S0959438814001640, sI: Brain rhythms and dynamic coordination. [96] Cheng, N., Li, Q., Xu, X., Zhang, T. A precise annotation of phase-amplitude coupling intensity. PLOS ONE, 11 (10), 1-20, 10 2016. URL https://doi.org/ 10.1371/journal.pone.0163940. [97] Canolty, R. T., Knight, R. T. The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14 (11), 506 - 515, 2010. URL http://www. sciencedirect.com/science/article/pii/S1364661310002068. [98] Tort, A. B. L., Komorowski, R., Eichenbaum, H., Kopell, N. Measuring phaseamplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104 (2), 1195-1210, 2010. URL https://doi.org/10.1152/ jn.00106.2010, pMID: 20463205. [99] Carlton, A. G. On the bias of information estimates. 71, 108{109, 1969. [100] Scheffer-Teixeira, R., Tort, A. B. L. Unveiling fast eld oscillations through comodulation. eNeuro, 4 (4), 2017. URL http://www.eneuro.org/content/4/ 4/ENEURO.0079-17.2017. [101] Renno-Costa, C., Tort, A. B. L. Comodo: a toolbox for analysis. In preparation, 2014. [102] Samiee, S., Baillet, S. Time-resolved phase-amplitude coupling in neural oscillations. NeuroImage, 159, 270 - 279, 2017. URL http://www.sciencedirect. com/science/article/pii/S1053811917306195. [103] Lii, K.-S., Rosenblatt, M. Spectral analysis for harmonizable processes. Annals of Statistics, 30 (1), 258{297, 2002. URL https://www.scopus.com/inward/ record.uri?eid=2-s2.0-0036115516&doi=10.1214%2faos%2f1015362193& partnerID=40&md5=5fe046567a1733f9f3603ef8996ec25b. [104] COHEN, M. X. Analyzing neural time series data: Theory and practice. En: Analyzing neural time series data: Theory and practice, tomo 0, pag. 417. MIT Press, Cambridge, 2014. [105] Bengio, Y., Courville, A., Vincent, P. Representation learning: A review and new perspectives. IEEE, 35 (8), 1798 - 1828, 2013. [106] Frbass, F., Hartmann, M., Perko, H., Skupch, A., Dollfu, P., Gritsch, G., et al. Combining time series and frequency domain analysis for a automatic seizure detection. 2012, 1020-3, 08 2012. [107] Truong, N. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., Faulks, A., Kavehei, O. Supervised learning in automatic channel selection for epileptic seizure detection. Expert Systems with Applications, 86, 199 - 207, 2017. URL http://www.sciencedirect.com/science/article/pii/S0957417417303779. [108] A. T. Tzallas, M. G. T., Fotiadis, D. I. Automatic seizure detection based on timefrequency analysis and articial neural networks. Computational Intelligence and Neuroscience, 2007, 2007. [109] Thodorof, P., Pineau, J., Lim, A. Learning robust features using deep learning for automatic seizure detection. Arxiv, 2016. [110] Blumenfeld, H., Taylor, J. Why do seizures cause loss of consciousness? The Neuroscientist, 9 (5), 301-310, 2003. URL https://doi.org/10.1177/ 1073858403255624, pMID: 14580115. [111] Blumenfeld, H. Impaired consciousness in epilepsy. The Lancet Neurology, 11 (9), 814 - 826, 2012. URL http://www.sciencedirect.com/science/article/ pii/S1474442212701886. [112] Quraishi, I. H., Benjamin, C. F., Spencer, D. D., Blumenfeld, H., Alkawadri, R. Impairment of consciousness induced by bilateral electrical stimulation of the frontal convexity. Epilepsy Behavior Case Reports, 8, 117 - 122, 2017. URL http://www.sciencedirect.com/science/article/pii/S2213323217301111. [113] Mosh, S. L., Galanopoulou, A. S. Searching for the mechanisms of consciousness in epilepsy. The Lancet Neurology, 15 (13), 1298 - 1299, 2016. URL http: //www.sciencedirect.com/science/article/pii/S1474442216302782. [114] Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org. [115] Bartolomei, F., Chauvel, P., Wendling, F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantied study from intracerebral eeg. Brain, 131 (7), 1818-1830, 2008. URL http://dx.doi.org/10.1093/brain/awn111.
Materias:Medicina > Neurociencias
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Física médica
Código ID:811
Depositado Por:Tamara Cárcamo
Depositado En:05 Mar 2021 09:52
Última Modificación:05 Mar 2021 09:52

Personal del repositorio solamente: página de control del documento