Dinámica vibracional de nanoestructuras semiconductoras bidimensionales: superredes y dicalcogenuros de metales de transición. / Vibrational dynamics of two-dimensional semiconductor nanoestructures: superlattices and transition metal dichalcogenides.

Soubelet, Pedro I. (2019) Dinámica vibracional de nanoestructuras semiconductoras bidimensionales: superredes y dicalcogenuros de metales de transición. / Vibrational dynamics of two-dimensional semiconductor nanoestructures: superlattices and transition metal dichalcogenides. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
11Mb

Resumen en español

Las propiedades vibracionales tienen una participación fundamental en la determinaci ón de las propiedades físicas de los materiales en general. En particular, en materiales semiconductores, los fonones (cuantos de vibración) son los principales portadores de calor y su interacción con los portadores de carga define gran parte de sus propiedades, como por ejemplo la conductividad térmica y eléctrica. Por esta razón, el estudio de los modos vibracionales y su interacción con los portadores de carga en estructuras fabricadas con estos materiales tiene un gran interés, no sólo desde el punto de vista de su física fundamental, sino también desde el punto de vista tecnológico. A lo largo de este trabajo de tesis se estudió exhaustivamente la dinámica vibracional de dos tipos diferentes de sistemas semiconductores, los cuales permiten, bajo determinadas circunstancias, ejercer control sobre sus diferentes excitaciones elementales como ser excitones y fonones, y la interacción de estos con fotones. Estos sistemas son, por un lado, las superredes semiconductoras del tipo III-V y, por otro, los semiconductores de multicapas moleculares. El primer caso analizado corresponde al de heteroestructuras de GaAs/AlAs crecidas epitaxialmente, en las cuales se ven fuertemente modificadas las densidades de estados electrónica y vibracional. En esta clase de estructuras se basan una gran cantidad de dispositivos optoelectrónicos actuales (diodos emisores, láseres de estados sólido, etc.). El segundo sistema semiconductor lo constituyen los dicalcogenuros de metales de transición. Esta novedosa clase de materiales está formada por capas moleculares bidimensionales y, mediante exfoliación, es posible aislar monocapas de dimensiones atómicas, cuyas propiedades mecánico-estructurales, ópticas y electrónicas han despertado un interés sin precedentes en la comunidad científica y tecnológica. Su utilización en combinación con otros calcogenuros ha impulsado nuevas escalas de miniaturización de diferentes dispositivos multifuncionales. En este trabajo nos hemos centrado en el estudio de un dicalcogenuro en particular, el diseleniuro de molibdeno (MoSe2). Ambos sistemas se estudiaron por medio de la técnica de espectroscopía Raman, una técnica que ha demostrado, a lo largo de las últimas cinco décadas, ser muy adecuada para acceder a la información espectral de los modos acústicos presentes en estas estructuras. Para el caso de las superredes, mediante esta técnica, se propuso la utilizaci ón de esquemas de dispersión novedosos y diferentes a los usuales. Se propuso una estructura de guía de onda híbrida, acústica y óptica a la vez, en la cual los modos vibracionales que se generan poseen un vector de onda en el plano de la superred y se encuentran guiados a través de la misma. Estas geometrías de dispersión permiten tener acceso a modos acústicos transversales que están prohibidos bajo geometrías de dispersión usuales. En los semiconductores multicapa la espectroscopía Raman permitió la caracterizaci ón exhaustiva de los modos vibracionales de muestras de MoSe2, en función del número de capas moleculares (desde una única monocapa hasta el caso masivo), hall ándose características espectrales no informadas hasta la fecha en la literatura. Finalmente, se hicieron experimentos de espectroscopía Raman resonante con los distintos estados electrónicos del material permitiendo, de este modo, el estudio del acoplamiento fotón-excitón. La dinámica de estos fonones, directamente en el espacio temporal, fue estudiada por medio de la técnica de espectroscopía ultrarrápida. El método utilizado fue el de "bombeo y sondeo" (comúnmente denominado pump-probe), donde se estudia la evolución de fonones acústicos, generados coherentemente por medio de una excitación impulsiva de la muestra provista por pulsos láser ultracortos. En el caso de las superredes, estos experimentos permitieron poner a prueba la estructura de guía de onda acústica. Por otro lado, al realizar experimentos sintonizando la energía del láser de excitación en torno a la energía de los estados electrónicos confinados, fue posible evaluar y estudiar directamente en el espacio temporal el acoplamiento entre los estados electrónicos y vibracionales, así como los efectos de generación resonante de fonones acústicos coherentes. Para el caso de los semiconductores multicapa, la técnica de pump-probe permitió realizar un estudio detallado de la vida media de uno de los modos vibracionales propios de esta clase de sistemas, el modo de "respiración intercapa" (breathing mode). Finalmente, analizando este modo particular que evidencia directamente el acoplamiento intercapa, se estudiaron los efectos de adhesión de estas muestras al substrato. Al ser sometidos a la condición de contorno del substrato, se observaron cambios muy signifi- cativos respecto a las muestras suspendidas, no sólo en la parte fonónica sino, también, sobre sus estados excitónicos. Si bien el trabajo tiene su foco principalmente en el área de la física experimental, presentamos diversos modelos teóricos fenomenológicos que explican conceptualmente gran parte de las observaciones realizadas.

Resumen en inglés

The vibrational properties have a fundamental role in the determination of the physical properties of materials in general. In particular, in semiconductor materials, phonons (quanta of vibration) are the main heat carriers, and their interaction with charge carriers defines a large part of their properties, such as thermal and electrical conductivity. For this reason, the study of vibrational modes and their interaction with charge carriers in structures made of these materials is of great interest, not only from the point of view of their fundamental physics, but also from a technological perspective. In this thesis we thoroughly study the vibrational dynamics of two different types of semiconductor systems, which enable, under certain conditions, the control of their different elementary excitations such as excitons and phonons, and their interaction with light (photons). These systems are, on the one hand, semiconductor superlattices of type III-V and, on the other hand, multilayered molecular semiconductors. The first analyzed case corresponds to epitaxially grown GaAs/AlAs heterostructures, in which the densities of electronic and vibrational states are strongly modified. A large number of optoelectronic devices are based on this class of structures (emitting diodes, solid state lasers, etc.) The second system consists of semiconductor transition metal dichalcogenides. These novel class of materials is made up of two-dimensional molecular layers and, by exfoliation, it is possible to isolate monolayers of atomic dimensions, whose mechanostructural, optical, and electronic properties have aroused unprecedented interest in the scientific and technological communities. Its use, in combination with other chalcogenides with different characteristics, has promoted new scales of miniaturization of different multifunctional devices. In this work we have focus on the study of a particular dichalcogenide: molybdenum diselenide (MoSe2). Both systems were studied using Raman spectroscopy, a technique that has proven over the last five decades to be very suitable for accessing the spectral information of acoustic modes present in these structures. A key point of this technique is the experimental geometry, which dictates the selection rules for sensing the mechanical motion. In the case of superlattices, we proposed novel dispersion schemes. These dispersion geometries allow access to transverse acoustic modes that are forbidden under usual dispersion geometries. In this context, we proposed a hybrid, acoustic and optical waveguide structure, in which the vibrational modes that are generated have a wave vector in the superlattice plane and are guided through it. In multilayered semiconductors, Raman spectroscopy enabled an exhaustive characterization of the vibrational modes of MoSe2 samples as a function of the number of molecular layers (from a single monolayer to bulk), finding spectral features that were not yet reported in the literature. Finally, resonant Raman spectroscopy experiments were made with different electronic states of the material, allowing the study of the photon-exciton coupling. The temporal dynamics of phonons was studied by means of ultrafast optical spectroscopy. The method used was the "pump-probe", where the excitation of coherent acoustic phonons in the structures was investigated by means of the impulsive absorption of ultra-short laser pulses. In the case of the superlattices these experiments enabled to test the acoustic waveguide structure. On the other hand, when performing experiments tuning the energy of the excitation laser around the energy of the confined electronic states, it was possible to evaluate and study directly in the time domain the coupling between electronic and vibrational states, as well as the effects of resonant generation of coherent acoustic phonons. In the case of multilayered semiconductors, the pump-probe technique allowed a detailed study of the lifetime of one of the characteristic vibrational mode of this class of systems, the "breathing mode", which demonstrates the interlayer coupling. Finally, analyzing this mode, the adhesion effects of these samples to the substrate were studied. Very significant changes were observed, when comparing a substrate boundary condition to suspended samples, not only on the phonons, but also on their excitonic states. Although this thesis is mainly focused on the experimental results, we present several phenomenological models that conceptually explain most of the observed underlying physics we observed.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Raman Spectroscopy; Espectroscopía Raman; Superlattices; Superestructuras; [Vibrational dynamics; Dinámica vibracional; Untra-fast spectroscopy; Espectroscopía ultrarrápida]
Referencias:[1] Maldovan, M. Sound and heat revolutions in phononics. Nature, 503, 209, 2013. xi, xi, xi, xii, xii, xiv, xiv [2] Kushwaha, M. S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett., 71, 2022-2025, Sep 1993. xi [3] Sigalas, M., Economou, E. Band structure of elastic waves in two dimensional systems. Solid State Communications, 86 (3), 141 - 143, 1993. xi [4] Safavi-Naeini, A. H., Thourhout, D. V., Baets, R., Laer, R. V. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 6 (2), 213-232, Feb 2019. xi, xi, xii, xii, 70 [5] Cahill, D. G., Braun, P. V., Chen, G., Clarke, D. R., Fan, S., Goodson, K. E., et al. Nanoscale thermal transport. ii. 2003-2012. Applied Physics Reviews, 1 (1), 011305, 2014. xii, xii, xii, xiv, xiv [6] Volz, S., Ordonez-Miranda, J., Shchepetov, A., Prunnila, M., Ahopelto, J., Pezeril, T., et al. Nanophononics: state of the art and perspectives. The European Physical Journal B, 89 (1), 15, Jan 2016. xi, xii, xii, xii, xii, xii [7] Yu, P., Cardona, M. Fundamental Semiconductors. Physics and Material Properties. Springler, 1996. xi, xi, xiii, xiii, 2, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 27, 39, 41, 42, 43, 45, 49, 52, 53, 57, 58, 59, 78, 97 [8] Rocke, C., Zimmermann, S., Wixforth, A., Kotthaus, J. P., Böhm, G., Weimann, G. Acoustically driven storage of light in a quantum well. Phys. Rev. Lett., 78, 4099-4102, May 1997. xii [9] Lin, K.-H., Chern, G.-W., Huang, Y.-K., Sun, C.-K. Terahertz electron distribution modulation in piezoelectric InxGa1-xNGaN multiple quantum wells using coherent acoustic nanowaves. Phys. Rev. B, 70, 073307, Aug 2004. [10] Wang, Q. H., Kalantar-Zadeh, K., Kis, J. N., Andras Coleman, Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699, Nov 2012. xiii, 4, 5, 102, 104, 106 [11] Wang, Q., Ge, S., Li, X., Qiu, J., Ji, Y., Feng, J., et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. ACS Nano, 7 (12), 11087-11093, 2013. xii, 101 [12] Chen, W., Maris, H. J., Wasilewski, Z. R., Tamura, S.-I. Attenuation and velocity of 56 GHz longitudinal phonons in gallium arsenide from 50 to 300 K. Philosophical Magazine B, 70 (3), 687-698, 1994. xii [13] Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K., Katzer, D. S. Thermal-conductivity measurements of GaAs=AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B, 59, 8105-8113, Mar 1999. [14] Daly, B. C., Maris, H. J., Imamura, K., Tamura, S. Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. B, 66, 024301, Jun 2002. [15] Peng, B., Zhang, H., Shao, H., Xu, Y., Zhang, X., Zhu, H. Thermal conductivity of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv., 6, 5767-5773, 2016. xii, xiv, 4, 144, 148, 153 [16] Nanophononics: Phonon engineering in nanostructures and nanodevices. Journal of Nanoscience and Nanotechnology, 5 (7), 2005. xii, xii, xii [17] Fainstein, A., Jusserand, B. Novel materials and techniques. En: M. Cardona, R. Merlin (eds.) Topics in Applied Physics. Light Scattering in Solids IX, tomo 108, 1a edón. Berlin Heidelberg New York: Springler-Verlag, 2007. xii, xii, xiii, xiv, 2, 16, 39 [18] Poulton, C. G., Pant, R., Eggleton, B. J. Acoustic confinement and stimulated brillouin scattering in integrated optical waveguides. J. Opt. Soc. Am. B, 30 (10), 2657-2664, Oct 2013. xii [19] Harman, T., Taylor, P., Walsh, M., LaForge, B. Quantum dot superlattice thermoelectric materials and devices. science, 297 (5590), 2229-2232, 2002. xii [20] B. Li, L. W., Casati, G. Thermal diode: Rectification of heat flux. Phys. Rev. Lett., 93, 184301, 2004. xii [21] Liang, B., Guo, X., Tu, J., Zhang, D., Cheng, J. An acoustic rectifier. Nature materials, 9 (12), 989, 2010. xii [22] Li, B. Acoustics: Now you hear me, now you don't. Nature materials, 9 (12), 962, 2010. xii [23] Ben-Abdallah, P., Biehs, S.-A. Near-field thermal transistor. Phys. Rev. Lett., 112, 044301, Jan 2014. xii [24] Wang, L., Li, B. Thermal logic gates: Computation with phonons. Phys. Rev. Lett., 99, 177208, Oct 2007. xii [25] Lin, K.-H., Lai, C.-M., Pan, C.-C., Chyi, J.-I., Shi, J.-W., Sun, S.-Z., et al. Spatial manipulation of nanoacoustic waves with nanoscale spot sizes. Nature Nanotechnology, 2, 704, 2007. xii [26] Lin, K.-H., Yu, C.-T., Sun, S.-Z., Chen, H.-P., Pan, C.-C., Chyi, J.-I., et al. Two-dimensional nanoultrasonic imaging by using acoustic nanowaves. Applied Physics Letters, 89 (4), 043106, 2006. xii [27] Akimov, A. V., Scherbakov, A. V., Yakovlev, D. R., Foxon, C. T., Bayer, M. Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures. Phys. Rev. Lett., 97, 037401, Jul 2006. xii [28] Rocke, C., Zimmermann, S., Wixforth, A., Kotthaus, J., Böhm, G., Weimann, G. Acoustically driven storage of light in a quantum well. Physical Review Letters, 78 (21), 4099, 1997. xii, xii [29] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong opticalmechanical coupling in a vertical gaas/alas microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett., 110, 037403, Jan 2013. 39 [30] Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B., Thierry-Mieg, V. Con- nement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett., 89, 227402, Nov 2002. xii, 3 [31] Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-vi dichalcogenides. Phys. Rev. Lett., 108, 196802, May 2012. xiii, xiii, xiv, 5, 106 [32] Xu, X., Yao, W., Xiao, D., Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Phys. Rev. Lett., 10, April 2014. xiii, xiii, xiv, 5, 106 [33] Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., Cho, A. Y. Quantum cascade laser. Science, 264 (5158), 553-556, 1994. xiii, xiii, xiii, 3 [34] Jusserand, B., Cardona, M. Superlattices and other microstructures. En: M. Cardona, G. Güntherodt (eds.) Topics in Applied Physics. Light Scattering in Solids V, tomo 5, 1a edón. Berlin Heidelberg New York: Springer-Verlag, 1989. xiii, xiv, 2, 6, 16, 18, 39, 49, 52, 55, 56, 57, 59, 62 [35] G. Björk, Y. Y., Heitmann, H. Sponteneus emission control in semiconductor microcavities. 1a edón. New York and London: Plenum Press, 1995. xiii, 2 [36] Lanzillotti-Kimura, N. D., Fainstein, A., Balseiro, C. A., Jusserand, B. Phonon engineering with acoustic nanocavities: Theoretical considerations on phonon molecules, band structures, and acoustic bloch oscillations. Phys. Rev. B, 75, 024301, Jan 2007. xiii, 3 [37] Trigo, M., Eckhause, T. A., Reason, M., Goldman, R. S., Merlin, R. Observation of surface-avoiding waves: A new class of extended states in periodic media. Phys. Rev. Lett., 97, 124301, Sep 2006. xiii, 3 [38] Lochmann, A., Stock, E., Schulz, O., Hopfer, F., Bimberg, D., Haisler, V. A., et al. Electrically driven single quantum dot polarised single photon emitter. Electronics Letters, 42 (13), 774-775, June 2006. xiii, 3 [39] Koblmüller, G., Mayer, B., Stettner, T., Abstreiter, G., Finley, J. J. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review. Semiconductor Science and Technology, 32 (5), 053001, apr 2017. xiii, 3 [40] Iga, K. Vertical-cavity surface-emitting laser: Its conception and evolution. Japanese Journal of Applied Physics, 47 (1), 1-10, jan 2008. xiii, 3 [41] Slusher, R., Weisbuch, C. Optical microcavities in condensed matter systems. Solid State Communications, 92 (1), 149 - 158, 1994. [42] Skolnick, M. S., Fisher, T. A., Whittaker, D. M. TOPICAL REVIEW: Strong coupling phenomena in quantum microcavity structures. Semiconductor Science Technology, 13, 645-669, jul. 1998. xiii, 3 [43] Williams, B. S. Terahertz quantum-cascade lasers. Nature Photonics, 1, 517, 2007. xiii, xiv, xiv, 3 [44] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. Electric field effect in atomically thin carbon films. Science, 306 (5696), 666-669, 2004. xiii [45] Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805, Sep 2010. xiii, 4, 5, 102, 104 [46] Wang, G., Chernikov, A., Glazov, M. M., Heinz, T. F., Marie, X., Amand, T., et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 90, 021001, Apr 2018. 10 [47] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 10 (4), 1271-1275, 2010. 5, 104 [48] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology, 6, 147, 2011. xiv, 5 [49] Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., et al. Single-layer MoS2 phototransistors. ACS Nano, 6 (1), 74-80, 2012. xiii, 5 [50] Larentis, S., Fallahazad, B., Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Applied Physics Letters, 101 (22), 223104, 2012. 5 [51] Huang, M., Li, S., Zhang, Z., Xiong, X., Li, X., Wu, Y. Multifunctional highperformance van der Waals heterostructures. Nature Nanotechnology, 12, September 2017. xiv, 5 [52] Sun, L., Wang, C.-Y., Krasnok, A., Choi, J., Shi, J., Gomez-Diaz, J. S., et al. Separation of valley excitons in a mos 2 monolayer using a subwavelength asymmetric groove array. Nature Photonics, pág. 1, 2019. xiv, 5 [53] Ghosh, S., Bao, W., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., et al. Dimensional crossover of thermal transport in few-layer graphene. Nature Materials, 9, 555-558, May 2010. xiv, 4, 141, 143 [54] Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., Geim, A. K. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 4 (4), 1889-1892, 2010. xiv, 4 [55] Ayari, A., Cobas, E., Ogundadegbe, O., Fuhrer, M. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. Journal of Applied Physics, 101 (1), 014507, 2007. xiv, 4 [56] Nam, H., Oh, B.-R., Chen, P., Chen, M., Wi, S., Wan, W., et al. Multiple MoS2 transistors for sensing molecule interaction kinetics. Scientific Reports, 5 (10546), 2015. xiv, 4 [57] Bruchhausen, A., Lloyd-Hughes, J., Hettich, M., Gebs, R., Grossmann, M., Ristow, O., et al. Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy. Journal of Applied Physics, 112 (3), 033517, 2012. xiv, xiv, xv, 3, 24 [58] Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M., Imamo§lu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett., 120, 037401, Jan 2018. 139 [59] Morell, N., Reserbat-Plantey, A., Tsioutsios, I., Schädler, K. G., Dubin, F., Koppens, F. H. L., et al. High quality factor mechanical resonators based on WSe2 monolayers. Nano Letters, 16 (8), 5102-5108, 2016. 103 [60] Güttinger, J., Noury, A., Weber, P., Eriksson, A. M., Lagoin, C., Moser, J., et al. Energy-dependent path of dissipation in nanomechanical resonators. Nature Nanotechnology, 12, 631, 15th May 2017. xiv, 103, 139 [61] Molina-Sánchez, A., Hummer, K., Wirtz, L. Vibrational and optical properties of MoS2: From monolayer to bulk. Surface Science Reports, 70 (4), 554 - 586, 2015. xiv, 113 [62] Lu, X., Luo, X., Zhang, J., Quek, S. Y., Xiong, Q. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Research, 9 (12), 3559-3597, Dec 2016. 103, 104, 113 [63] Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T. S., Li, J., et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 12 (11), 5576-5580, 2012. xiv, 101, 104, 110 [64] Tonndorf, P., Schmidt, R., Böttger, P., Zhang, X., Börner, J., Liebig, A., et al. Photoluminescence emission and raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express, 21 (4), 4908-4916, Feb 2013. xiv, 101, 110 [65] Lin, M.-F., Kochat, V., Krishnamoorthy, A., Bassman, L., Weninger, C., Zheng, Q., et al. Ultrafast non-radiative dynamics of atomically thin MoSe2. Nature Communications, 8 (1), 1745, 2017. xiv, 101, 139 [66] Colvard, C., Merlin, R., Klein, M. V., Gossard, A. C. Observation of folded acoustic phonons in a semiconductor superlattice. Phys. Rev. Lett., 45, 298-301, Jul 1980. xiv, 39, 49, 53, 55 [67] Schorer, R., Abstreiter, G., de Gironcoli, S., Molinari, E., Kibbel, H., Presting, H. In-plane Raman scattering of (001)-Si/Ge superlattices: Theory and experiment. Phys. Rev. B, 49, 5406-5414, Feb 1994. xiv, 39, 49 [68] Fainstein, A., Etchegoin, P., Chamberlain, M. P., Cardona, M., Tötemeyer, K., Eberl, K. Selection rules and dispersion of gaas/alas multiple-quantum-well optical phonons studied by raman scattering in right-angle, forward, and backscattering in-plane geometries. Phys. Rev. B, 51, 14448-14452, 1995. xiv, xiv, 17, 18, 39, 59, 68, 174 [69] Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 4 (5), 2695-2700, 2010. PMID: 20392077. xiv [70] Large, N., Huntzinger, J.-R., Aizpurua, J., Jusserand, B., Mlayah, A. Ramanbrillouin electronic density in short-period superlattices. Phys. Rev. B, 82, 075310, Aug 2010. xiv, 16, 18, 85, 86 [71] Jusserand, B. Selective resonant interaction between confined excitons and folded acoustic phonons in gaas/alas multi-quantum wells. Applied Physics Letters, 103 (9), 093112, 2013. xiv, 16, 18 [72] Goªasa, K., Grzeszczyk, M., Leszczy«ski, P., Faugeras, C., Nicolet, A. A. L., Wysmoªek, A., et al. Multiphonon resonant Raman scattering in MoS2. Applied Physics Letters, 104 (9), 092106, 2014. xiv, 110, 121 [73] del Corro, E., Terrones, H., Elias, A., Fantini, C., Feng, S., Nguyen, M. A., et al. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano, 8 (9), 9629-9635, 2014. [74] Carvalho, B. R., Malard, L. M., Alves, J. M., Fantini, C., Pimenta, M. A. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett., 114, 136403, Apr 2015. 119, 182 [75] Scheuschner, N., Gillen, R., Staiger, M., Maultzsch, J. Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B, 91, 235409, Jun 2015. xiv, 106, 107, 109, 111, 112, 120 [76] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong opticalmechanical coupling in a vertical GaAs=AlAs microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett., 110, 037403, Jan 2013. xv, 3 [77] Horzum, S., Sahin, H., Cahangirov, S., Cudazzo, P., Rubio, A., Serin, T., et al. Phonon softening and direct to indirect band gap crossover in strained single layer MoSe2. Phys. Rev. B, 87, 125415, Mar 2013. xv, 107, 108, 110, 121, 130 [78] Matsuda, O., Tachizaki, T., Fukui, T., Baumberg, J. J., Wright, O. B. Acoustic phonon generation and detection in GaAsAl0;3Ga0;7As quantum wells with picosecond laser pulses. Phys. Rev. B, 71, 115330, Mar 2005. xv, 24, 25, 26, 27, 28, 33, 72, 76, 125 [79] Matsuda, O., Wright, O. B. Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation. J. Opt. Soc. Am. B, 19 (12), 3028-3041, Dec 2002. 25, 27, 34, 36, 97 [80] Pascual-Winter, M. F., Fainstein, A., Jusserand, B., Perrin, B., Lemaître, A. Spectral responses of phonon optical generation and detection in superlattices. Phys. Rev. B, 85, 235443, Jun 2012. 22, 26, 69, 73, 132 [81] Thomsen, C., Strait, J., Vardeny, Z., Maris, H. J., Tauc, J., Hauser, J. J. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett., 53, 989-992, Sep 1984. 19, 24, 25, 27, 69, 97, 135, 137 [82] Maznev, A. A., Hofmann, F., Jandl, A., Esfarjani, K., Bulsara, M. T., Fitzgerald, E. A., et al. Lifetime of sub-thz coherent acoustic phonons in a gaas-alas superlattice. Applied Physics Letters, 102 (4), 041901, 2013. xv [83] Bruchhausen, A., Gebs, R., Hudert, F., Issenmann, D., Klatt, G., Bartels, A., et al. Subharmonic resonant optical excitation of confined acoustic modes in a free-standing semiconductor membrane at ghz frequencies with a high-repetitionrate femtosecond laser. Phys. Rev. Lett., 106, 077401, Feb 2011. xv, 25, 72, 125, 139 [84] Cufie, J., Ristow, O., Chávez, E., Shchepetov, A., Chapuis, P.-O., Alzina, F., et al. Lifetimes of confined acoustic phonons in ultrathin silicon membranes. Phys. Rev. Lett., 110, 095503, Feb 2013. 141, 142, 146, 148, 152 [85] Maris, H. J. Interaction of sound waves with thermal phonons in dielectric crystals. En: W. P. Mason, R. N. Thurston (eds.) Physical Acoustics: Principles and Methods, tomo 8, 1a edón., cap. 6, págs. 279-336. New York and London: Academic Press, 1971. xv, 139, 143, 144, 145, 146, 147, 154 [86] Boschetto, D., Malard, L., Lui, C. H., Mak, K. F., Li, Z., Yan, H., et al. Realtime observation of interlayer vibrations in bilayer and few-layer graphene. Nano Letters, 13 (10), 4620-4623, 2013. xv, 101 [87] Ge, S., Liu, X., Qiao, X., Wang, Q., Xu, Z., Qiu, J., et al. Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Scientific Reports, 4, 5722, 7 2014. 24, 124, 132, 154, 162 [88] Jeong, T. Y., Jin, B. M., Rhim, S. H., Debbichi, L., Park, J., Jang, Y. D., et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano, 10 (5), 5560-5566, 2016. xv, 24, 101, 124, 132, 154 [89] Madelung, O. Semiconductor Data Handbook. Springler, 2004. 2, 40, 46, 50, 55, 58, 61, 70, 80, 89, 93 [90] Bruchhausen, A., Fainstein, A., Soukiassian, A., Schlom, D. G., Xi, X. X., Bernhagen, M., et al. Ferroelectricity-induced coupling between light and terahertzfrequency acoustic phonons in BaTiO3=SrTiO3 superlattices. Phys. Rev. Lett., 101, 197402, Nov 2008. 2 [91] Tenne, D. A., Bruchhausen, A., Lanzillotti-Kimura, N. D., Fainstein, A., Katiyar, R. S., Cantarero, A., et al. Probing nanoscale ferroelectricity by ultraviolet raman spectroscopy. Science, 313 (5793), 1614-1616, 2006. 2 [92] Winter, M. F. P. Tesis de doctorado en física. En: Generación y detección óptica de fonones coherentes en nanoestructuras. Instituto Balseiro, Comisión Nacional de Energía Atómica, 2009. 2, 22, 72, 73 [93] Kimura, N. D. Tesis de doctorado en física. En: Dinámica de fonones acústicos en multicapas nanométricas. Instituto Balseiro, Comisión Nacional de Energía Atómica, 2009. [94] Bruchhausen, A. E. Tesis de doctorado en física. En: Ampliación de la dispersión Raman en sistemas nanoestructurados. Instituto Balseiro, Comisión Nacional de Energía Atómica, 2008. 2 [95] Lacharmoise, P., Fainstein, A., Jusserand, B., Thierry-Mieg, V. Optical cavity enhancement of lightfisound interaction in acoustic phonon cavities. Applied Physics Letters, 84 (17), 3274-3276, 2004. 3 [96] Villafañe, V., Sesin, P., Soubelet, P., Anguiano, S., Bruchhausen, A. E., Rozas, G., et al. Optoelectronic forces with quantum wells for cavity optomechanics in gaas/alas semiconductor microcavities. Phys. Rev. B, 97, 195306, May 2018. 3, 39 [97] Villafañe, V., Soubelet, P., Bruchhausen, A. E., Lanzillotti-Kimura, N. D., Jusserand, B., Lemaître, A., et al. Slow light and slow acoustic phonons in optophononic resonators. Phys. Rev. B, 94, 205308, Nov 2016. 3 [98] Bolcatto, P. G., Proetto, C. R., Reboredo, F. A. Collective excitations in spontaneously spin-polarized phases of semiconductor double-quantum-well systems. Phys. Rev. B, 67, 073304, Feb 2003. 3 [99] Giudici, P., Goñi, A. R., Thomsen, C., Bolcatto, P. G., Proetto, C. R., Eberl, K. Effects of the exchange instability on collective spin and charge excitations of the two-dimensional electron gas. Phys. Rev. B, 70, 235418, Dec 2004. 3 [100] Geim, A. K., Grigorieva, I. V. Van der waals heterostructures. Nature, 499, 419, 2013. 4 [101] Ribeiro-Soares, J., Almeida, R. M., Barros, E. B., Araujo, P. T., Dresselhaus, M. S., Cançado, L. G., et al. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B, 90, 115438, Sep 2014. 4 [102] Tang, Q., Jiang, D.-e. Stabilization and band-gap tuning of the 1t-mos2 monolayer by covalent functionalization. Chemistry of Materials, 27 (10), 3743-3748, 2015. 4 [103] Wilson, J., Yoe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18 (73), 193-335, 1969. 4 [104] Lee, J.-U., Park, J., Son, Y.-W., Cheong, H. Anomalous excitonic resonance Raman effects in few-layered MoS2. Nanoscale, 7, 3229-3236, 2015. 5, 123 [105] Zhang, X., Grajal, J., Vazquez-Roy, J. L., Radhakrishna, U., Wang, X., Chern, W., et al. Two-dimensional MoS2-enabled flexible rectenna for Wi- Fi-band wireless energy harvesting. Nature, pág. 1, 2019. 5 [106] Grifths, D. J. Introduction to electrodynamics. Prentice Hall New Jersey, 1962. 6, 60 [107] Jackson, J. D. Classical Electrodynamics. Wiley and Son, 1999. 6, 7, 83 [108] Cohen-Tannoudji, C., Diu, B., Laloe, F. Quantum Mechanics. Wiley-Vch, 1988. 17, 42 [109] Ashcroft, N. W., Mermin, N. D. Solid State Physics. Harcourt Brace Colleg Publishers, Fort Worth, 1976. 13, 17 [110] Yeh, P., Yariv, A., Hong, C.-S. Electromagnetic propagation in periodic stratied media. i. general theory-. J. Opt. Soc. Am., 67 (4), 423-438, Apr 1977. 7 [111] Saleh, B. E., Teich, M. C., Saleh, B. E. Fundamentals of photonics, tomo 22. Wiley New York, 1991. 9, 11, 95, 96 [112] Cho, K. Excitons. En: K. Cho (ed.) Internal structure of excitons, tomo 14. Berlin Heidelberg: Springer-Verlag, 1979. 10 [113] Woggon, U., Gaponenko, S. V. Excitons in quantum dots. Physica Status Solidi b, 189 (2), 285-343, 1995. [114] Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical Reviews, 110 (11), 6873-6890, 2010. 10 [115] He, K., Kumar, N., Zhao, L., Wang, Z., Mak, K. F., Zhao, H., et al. Tightly bound excitons in monolayer wse2. Phys. Rev. Lett., 113, 026803, Jul 2014. 10 [116] Molas, M. R., Faugeras, C., Slobodeniuk, A. O., Nogajewski, K., Bartos, M., Basko, D. M., et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Materials, 4 (2), 021003, 2017. 101 [117] Dubey, S., Lisi, S., Nayak, G., Herziger, F., Nguyen, V.-D., Le Quang, T., et al. Weakly trapped, charged, and free excitons in single-layer MoS2 in the presence of defects, strain, and charged impurities. ACS Nano, 11 (11), 11206-11216, 2017. 10, 143 [118] Rozas, G. Tesis de doctorado en física. En: Estudio Raman de ultra-alta resoluci ón de la dinámica de fonones acústicos confinados en cavidades. Instituto Balseiro, Comisión Nacional de Energía Atómica, 2011. 12 [119] Raman, C. V. A new radiation. Indian Journal of Physics, 2, 387, 1928. 13 [120] Hayes, W., Loudon, R. Scattering of light by crystals. John Wiley & Son, 1978. 14, 17, 171 [121] Haussühl, S. Physical Properties of Crystals; An Introduction. Wiley-Vch, 2007. 14, 17, 51, 59, 171, 175 [122] Colvard, C., Gant, T. A., Klein, M. V., Merlin, R., Fischer, R., Morkoc, H., et al. Folded acoustic and quantized optic phonons in (gaal)as superlattices. Phys. Rev. B, 31, 2080-2091, Feb 1985. 16, 18 [123] He, J., Djafari-Rouhani, B., Sapriel, J. Theory of light scattering by longitudinalacoustic phonons in superlattices. Phys. Rev. B, 37, 4086-4098, Mar 1988. 16, 39 [124] Martin, R. M., Falicov, L. M. Introductionary concepts. En: M. Cardona (ed.) Topics in Applied Physics. Light Scattering in Solids I, tomo 1, 2a edón. Berlin Heidelberg: Springer-Verlag, 1987. 17, 18 [125] Cantarero, A., Trallero-Giner, C., Cardona, M. Excitons in one-phonon resonant Raman scattering: Fröhlich and interference effects. Phys. Rev. B, 40, 12290- 12295, Dec 1989. 17, 39 [126] Cantarero, A., Trallero-Giner, C., Cardona, M. Excitons in one-phonon resonant Raman scattering: Deformation-potential interaction. Phys. Rev. B, 39, 8388- 8397, Apr 1989. 17, 39 [127] Bir, G. L., Pikus, G. E. Theory of deformation potential for semiconductors with a complex band structure. Soviet Physics - Solid State, 2, 2287, 1961. [128] Cros, A., Cantarero, A., Trallero-Giner, C., Cardona, M. Resonant raman scattering in quantum wells in high magnetic fields: Deformation-potential interaction. Phys. Rev. B, 45, 6106-6117, Mar 1992. 17 [129] Thomsen, C., Grahn, H. T., Maris, H. J., Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B, 34, 4129, 1986. 19, 24, 25, 27, 97, 135 [130] Merlin, R. Generating coherent THz phonons with light pulses. Solid State Communications, 102 (2), 207 - 220, 1997. Highlights in Condensed Matter Physics and Materials Science. 19, 24, 26, 27 [131] Ruello, P., Gusev, V. E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics, 56, 21-35, 2015. 22, 25, 26, 27, 33, 97 [132] Wright, O. B. Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics. Journal of Applied Physics, 71 (4), 1617- 1629, 1992. [133] Gusev, V. E., Wright, O. B. Ultrafast nonequilibrium dynamics of electrons in metals. Phys. Rev. B, 57, 2878-2888, Feb 1998. 25, 27, 97 [134] Hudert, F., Bruchhausen, A., Issenmann, D., Schecker, O., Waitz, R., Erbe, A., et al. Confined longitudinal acoustic phonon modes in free-standing si membranes coherently excited by femtosecond laser pulses. Phys. Rev. B, 79, 201307, May 2009. 25, 72, 125 [135] Bruchhausen, A. E. Heat and carrier dynamics related to acoustic strain generation through impulsive absortion of e.m. energy. - apuntes no publicados, laboratorio de fotónica y optoelectrónica - instituto balseiro. 27, 28 [136] Bruchhausen, A. E. Diffusion equation in one dimension: some simple examples. - apuntes no publicados, laboratorio de fotónica y optoelectrónica - instituto balseiro. 28 [137] Pezeril, T., Ruello, P., Gougeon, S., Chigarev, N., Mounier, D., Breteau, J.-M., et al. Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory. Phys. Rev. B, 75, 174307, May 2007. 33, 34 [138] Bruchhausen, A. E. Detection process in time-resolved pum-probe spectroscopy. - apuntes no publicados, laboratorio de fotónica y optoelectrónica - instituto balseiro. 34 [139] Economou, E. N. Time-independent green's functions. En: P. Fulde (ed.) Green's Functions in Quantum Physics, tomo 7 de Springer Series in Solid-State Science, 2a edón. Berlin Heidelberg: Springer-Verlag, 1983. 36 [140] Velasco, V. R., Garcia-Moliner, F., Miglio, L., Colombo, L. Phonon calculations in superperiodic structures: The surface green-function matching approach. Phys. Rev. B, 38, 3172-3179, Aug 1988. 39 [141] Trallero-Giner, C., García-Moliner, F., Velasco, V. R., Cardona, M. Analysis of the phenomenological models for long-wavelength polar optical modes in semiconductor layered systems. Phys. Rev. B, 45, 11944-11948, May 1992. [142] Chamberlain, M. P., Cardona, M., Ridley, B. K. Optical modes in gaas/alas superlattices. Phys. Rev. B, 48, 14356-14364, Nov 1993. [143] Bruchhausen, A., Fainstein, A., Jusserand, B., André, R. Resonant raman scattering by CdTe quantum-well-confined optical phonons in a semiconductor microcavity. Phys. Rev. B, 73, 085305, Feb 2006. [144] Sood, A. K., Menéndez, J., Cardona, M., Ploog, K. Resonance raman scattering by confined lo and to phonons in GaAs - AlAs superlattices. Phys. Rev. Lett., 54, 2111-2114, May 1985. [145] Spencer, G. S., Menéndez, J., Pfeifer, L. N.,West, K. W. Optical-phonon ramanscattering study of short-period GaAs - AlAs superlattices: An examination of interface disorder. Phys. Rev. B, 52, 8205-8218, Sep 1995. [146] Shields, A. J., Cardona, M., Eberl, K. Resonant raman line shape of optic phonons in GaAs=AlAs multiple quantum wells. Phys. Rev. Lett., 72, 412-415, Jan 1994. 39 [147] Calle, F., Cardona, M., Richter, E., Strauch, D. Frequency gaps for folded acoustic phonons in superlattices. Solid State Communications, 72 (12), 1153 - 1158, 1989. 39, 49 [148] Ruf, T., Belitsky, V. I., Spitzer, J., Sapega, V. F., Cardona, M., Ploog, K. Raman scattering from folded phonon dispersion gaps. Phys. Rev. Lett., 71, 3035-3038, Nov 1993. [149] Belitsky, V. I., Ruf, T., Spitzer, J., Cardona, M. Theory of disorder-induced acoustic-phonon raman scattering in quantum wells and superlattices. Phys. Rev. B, 49, 8263-8272, Mar 1994. [150] Claps, R., Dimitropoulos, D., Jalali, B., Jusserand, B. Raman scattering from acoustic modes in Si/Ge superlattice waveguides. Superlattices and Microstructures, 39 (6), 501 - 516, 2006. 39, 50 [151] Rytov, S. M., Zhurnal, A. Acoustic properties of stratifed media. Soviet Physics Acoustics, 2, 68, 1956. 39, 49, 53, 55 [152] Jusserand, B., Alexandre, F. M. C., Dubard, J., Paquet, D. Raman scattering study of acoustical zone-center gaps in GaAs/AlAs superlattices. Phys. Rev. B, 33, 2897-2899, Feb 1986. 49 [153] Santos, P. V., Ley, L., Mebert, J., Koblinger, O. Frequency gaps for acoustic phonons in a-Si:H/a-SiNx:H superlattices. Phys. Rev. B, 36, 4858-4867, Sep 1987. 39, 49, 53, 55 [154] Scamarcio, G., Haines, M., Abstreiter, G., Molinari, E., Baroni, S., Fischer, A., et al. Micro-raman scattering in ultrathin-layer superlattices: Evidence of zonecenter anisotropy of optical phonons. Phys. Rev. B, 47, 1483-1488, Jan 1993. 39 [155] Hessmer, R., Huber, A., Egeler, T., Haines, M., Tränkle, G., Weimann, G., et al. Interface-phonon dispersion and confined-optical-mode selection rules of gaas/alas superlattices studied by micro-raman spectroscopy. Phys. Rev. B, 46, 4071-4076, Aug 1992. [156] Richter, E., Strauch, D. Lattice dynamics of GaAs/AlAs superlattices. Solid State Communications, 64 (6), 867 - 870, 1987. 39, 49 [157] Manuel, P., Sai-Halasz, G. A., Chang, L. L., Chang, C.-A., Esaki, L. Resonant raman scattering in a semiconductor superlattice. Phys. Rev. Lett., 37, 1701- 1704, Dec 1976. 40 [158] Schorer, R., Abstreiter, G., Kibbel, H., Presting, H. Resonant-raman-scattering study on short-period si/ge superlattices. Phys. Rev. B, 50, 18211-18218, Dec 1994. 40 [159] Large, N., Huntzinger, J. R., Aizpurua, J., Jusserand, B., Mlayah, A. Ramanbrillouin electronic density in short-period superlattices. Physical Review B, 82, 075310, 2010. 40, 58, 70, 76 [160] Jusserand, B. Selective resonant interaction between confined excitons and folded acoustic phonons in gaas/alas multi-quantum wells. Applied Physics Letters, 103 (9), 093112, 2013. [161] Jusserand, B., Fainstein, A., Ferreira, R., Majrab, S., Lemaitre, A. Dispersion and damping of multiple quantum-well polaritons from resonant brillouin scattering by folded acoustic modes. Phys. Rev. B, 85, 041302, Jan 2012. 40 [162] URL www.ioffe.ru/SVA/NSM/Semicond/, pagina web del instituto Fisico- Tecnico Ioffe. 40, 58, 80, 89, 93 [163] Bastard, G. Wave Mechanics applied to Semiconductor Heterostructures. Les éditions de Physique, 1988. 41, 42, 43, 45, 87 [164] Huang, M. Z., Ching, W. A minimal basis semi-ab initio approach to the band structures of semiconductors. Journal of Physics and Chemistry of Solids, 46, 977, 1985. 41 [165] Chelikowsky, J. R., Cohen, M. L. Nonlocal pseudopotential calculation for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B, 14, 556, 1976. 41 [166] Etchegoin, P., Fainstein, A., Sirenko, A. A., Koopmans, B., Richards, B., Santos, P. V., et al. Optics of multiple quantum wells uniaxially stresed along the growth axis. Phys. Rev. B, 53, 13663, 1996. 47, 60 [167] Sirenko, A. A., Etchegoin, P., Fainstein, A., Eberl, K., Cardona, M. Birefringence in the transparency region of GaAs=AlAs multiple quantum wells. Phys. Rev. B, 60, 8253-8261, 1999. 47, 60 [168] Damen, T. C., Porto, S. P. S., Tell, B. Raman effect in zinc oxide. Phys. Rev., 142, 570-574, Feb 1966. 47 [169] Giannozzi, P., de Gironcoli, S., Pavone, P., Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 43, 7231, 1991. 49, 50 [170] Fedorov, F. I. Theory of Elastic Waves in Crystals. 1a edón. Springer US, 1968. 50, 51, 53 [171] Jaeken, J. W., Cottenier, S. Solving the Christofiel equation: Phase and group velocities. Computer Physics Communications, 207, 445 - 451, 2016. 50, 51, 53 [172] Powell, R. Symmetry, group theory, and physical properties of crystals. Springler, 2010. 51, 59, 171, 175 [173] Burenkov, Y. A. Temperature dependences of the elastic constants of GaAs. Sov. Phys. Solid State, 15 (6), 1175-1177, 1973. 55 [174] Sadao, A. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications. Journal of Applied Physics, 58 (3), R1-R29, 1985. 55 [175] Jusserand, B., Paquet, D., Mollot, F., Alexandre, F., Roux, G. L. Influence of the supercell structure on the folded acoustic raman line intensities in superlattices. Phys. Rev. B, 35, 2808, 1987. 62 [176] Daly, B. C., Kang, K., Wang, Y., Cahill, D. G. Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in silicon. Phys. Rev. B, 80, 174112, Nov 2009. 69, 76, 139, 145 [177] Duquesne, J.-Y., Perrin, B. Ultrasonic attenuation in a quasicrystal studied by picosecond acoustics as a function of temperature and frequency. Phys. Rev. B, 68, 134205, Oct 2003. 69, 76, 144, 145, 146 [178] Seyler, J., Wybourne, M. N. Acoustic waveguide modes observed in electrically heated metal wires. Phys. Rev. Lett., 69, 1427-1430, Aug 1992. 70 [179] Wei, Q., Tian, Y., Zuo, S.-Y., Cheng, Y., Liu, X.-J. Experimental demonstration of topologically protected eficient sound propagation in an acoustic waveguide network. Phys. Rev. B, 95, 094305, Mar 2017. [180] Achilleos, V., Richoux, O., Theocharis, G., Frantzeskakis, D. J. Acoustic solitons in waveguides with helmholtz resonators: Transmission line approach. Phys. Rev. E, 91, 023204, Feb 2015. 70 [181] Bartels, A., Dekorsy, T., Kurz, H., Köhler, K. Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: Excitation and detection. Phys. Rev. Lett., 82, 1044-1047, Feb 1999. 72, 76 [182] Sun, C.-K., Liang, J.-C., Yu, X.-Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric felds. Phys. Rev. Lett., 84, 179-182, Jan 2000. 76 [183] Devos, A., Poinsotte, F., Groenen, J., Dehaese, O., Bertru, N., Ponchet, A. Strong generation of coherent acoustic phonons in semiconductor quantum dots. Phys. Rev. Lett., 98, 207402, May 2007. 76 [184] Dávalos, A. L., Zanette, D. Fundamentals of electromagnetism: vacuum electrodynamics, media, and relativity. Springer, 2013. 83 [185] Waldecker, L., Bertoni, R., Ernstorfer, R., Vorberger, J. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys. Rev. X, 6, 021003, Apr 2016. 94 [186] Sekine, T., Izumi, M., Nakashizu, T., Uchinokura, K., Matsuura, E. Raman scattering and infrared refectance in 2H - MoSe2. Journal of the Physical Society of Japan, 49 (3), 1069-1077, 1980. 101 [187] Arora, A., Nogajewski, K., Molas, M., Koperski, M., Potemski, M. Exciton band structure in layered MoSe2: from a monolayer to the bulk limit. Nanoscale, 7, 20769-20775, 2015. 101, 120, 165 [188] Kumar, S., Schwingenschlögl, U. Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chemistry of Materials, 27 (4), 1278-1284, 2015. 101, 108, 110, 144 [189] Shi, H., Yan, R., Bertolazzi, S., Brivio, J., Gao, B., Kis, A., et al. Exciton dynamics in suspended monolayer and few-layer mos2 2d crystals. ACS Nano, 7 (2), 1072-1080, 2013. 101 [190] Mannebach, E. M., Duerloo, K.-A. N., Pellouchoud, L. A., Sher, M.-J., Nah, S., Kuo, Y.-H., et al. Ultrafast electronic and structural response of monolayer mos2 under intense photoexcitation conditions. ACS Nano, 8 (10), 10734-10742, 2014. [191] Czech, K. J., Thompson, B. J., Kain, S., Ding, Q., Shearer, M. J., Hamers, R. J., et al. Measurement of ultrafast excitonic dynamics of few-layer mos2 using state-selective coherent multidimensional spectroscopy. ACS Nano, 9 (12), 12146-12157, 2015. [192] Ceballos, F., Zhao, H. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Advanced Functional Materials, 27 (1604509), 1616-3028, 2017. 101 [193] He, B., Zhang, C., Zhu, W., Li, Y., Liu, S., Zhu, X., et al. Coherent optical phonon oscillation and possible electronic softening in wte2 crystals. Scientific Reports, 6 (30487), 2016. 101 [194] Kim, T., Ding, D., Yim, J.-H., Jho, Y.-D., Minnich, A. J. Elastic and thermal properties of free-standing molybdenum disulfide membranes measured using ultrafast transient grating spectroscopy. APL Materials, 5 (8), 086105, 2017. 101 [195] Greener, J. D. G., Akimov, A. V., Gusev, V. E., Kudrynskyi, Z. R., Beton, P. H., Kovalyuk, Z. D., et al. Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Phys. Rev. B, 98, 075408, Aug 2018. 101 [196] Li, Y., Chernikov, A., Zhang, X., Rigosi, A., Hill, H. M., van der Zande, A. M., et al. Measurement of the optical dielectric function of monolayer transitionmetal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 90, 205422, Nov 2014. 101, 105, 106, 120, 132, 164, 183 [197] Li, S.-L., Miyazaki, H., Song, H., Kuramochi, H., Nakaharai, S., Tsukagoshi, K. Supporting information - quantitative raman spectrum and reliable thickness identification for atomic layers on insulating substrates, 2012. 102, 183 [198] Buscema, M., Steele, G. A., van der Zant, H. S. J., Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of singlelayer MoS2. Nano Research, 7 (4), 561-571, Apr 2014. 103, 130, 154, 164 [199] Luo, X., Zhao, Y., Zhang, J., Toh, M., Kloc, C., Xiong, Q., et al. Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Phys. Rev. B, 88, 195313, Nov 2013. 103, 104, 108, 112 [200] Will, M., Hamer, M., Müller, M., Noury, A., Weber, P., Bachtold, A., et al. High quality factor graphene-based two-dimensional heterostructure mechanical resonator. Nano Letters, 17 (10), 5950-5955, 2017. 103 [201] Kuc, A., Zibouche, N., Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B, 83, 245213, Jun 2011. 104 [202] Lebègue, S., Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B, 79, 115409, Mar 2009. 104 [203] Zhu, Z. Y., Cheng, Y. C., Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B, 84, 153402, Oct 2011. 106 [204] Zhang, X., Han, W. P., Wu, J. B., Milana, S., Lu, Y., Li, Q. Q., et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B, 87, 115413, Mar 2013. 107, 108, 109, 112, 113, 123 [205] Zhao, Y., Luo, X., Li, H., Zhang, J., Araujo, P. T., Gan, C. K., et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Letters, 13 (3), 1007-1015, 2013. 113, 117, 123 [206] Ribeiro-Soares, J., Almeida, R. M., Barros, E. B., Araujo, P. T., Dresselhaus, M. S., Cançado, L. G., et al. Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B, 90, 115438, Sep 2014. 107, 108, 109, 112 [207] Molina-Sánchez, A., Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B, 84, 155413, Oct 2011. 108, 110 [208] Late, D. J., Shirodkar, S. N., Waghmare, U. V., Dravid, V. P., Rao, C. N. R. Thermal expansion, anharmonicity and temperature-dependent raman spectra of single- and few-layer MoSe2 and WSe2. ChemPhysChem, 15 (8), 1592-1598, 2014. 110 [209] Berkdemir, A., Gutiérrez, H. R., Botello-Méndez, A. R., Perea-López, N., Elías, A. L., Chia, C.-I., et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Scientificc Reports, 3 (1755), 2013. 110 [210] Chakraborty, B., Matte, H. S. S. R., Sood, A. K., Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. Journal of Raman Spectroscopy, 44 (1), 92-96, 2013. [211] Goªasa, K., Grzeszczyk, M., Bo»ek, R., Leszczy«ski, P., Wysmoªek, A., Potemski, M., et al. Resonant Raman scattering in MoS2-from bulk to monolayer. Solid State Communications, 197, 53 - 56, 2014. [212] Lee, J.-U., Kim, K., Cheong, H. Resonant raman and photoluminescence spectra of suspended molybdenum disulfide. 2D Materials, 2 (4), 044003, 2015. 110 [213] Li, S.-L., Miyazaki, H., Song, H., Kuramochi, H., Nakaharai, S., Tsukagoshi, K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano, 6 (8), 7381-7388, 2012. 110, 119, 182 [214] Froehlicher, G., Lorchat, E., Fernique, F., Joshi, C., Molina-Sánchez, A., Wirtz, L., et al. Unifed description of the optical phonon modes in N-layer MoTe2. Nano Letters, 15 (10), 6481-6489, 2015. 113, 117, 123 [215] Chen, S.-Y., Zheng, C., Fuhrer, M. S., Yan, J. Helicity-resolved raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano Letters, 15 (4), 2526-2532, 2015. 123 [216] Zhao, Y., Luo, X., Zhang, J., Wu, J., Bai, X., Wang, M., et al. Interlayer vibrational modes in few-quintuple-layer bi2te3 and bi2se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys. Rev. B, 90, 245428, Dec 2014. 113 [217] Ji, J., Dong, S., Zhang, A., Zhang, Q. Low-frequency interlayer vibration modes in two-dimensional layered materials. Physica E: Low-dimensional Systems and Nanostructures, 80 (Supplement C), 130-141, 2016. 113, 114, 115 [218] Liang, L., Zhang, J., Sumpter, B. G., Tan, Q.-H., Tan, P.-H., Meunier, V. Low-frequency shear and layer-breathing modes in raman scattering of twodimensional materials. ACS Nano, 11 (12), 11777-11802, 2017. 113, 116, 134 [219] Liang, L., Puretzky, A. A., Sumpter, B. G., Meunier, V. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale, págs. 15340-15355, 2017. 114, 115, 116 [220] Roy, A., Movva, H. C. P., Satpati, B., Kim, K., Dey, R., Rai, A., et al. Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Applied Materials & Interfaces, 8 (11), 7396-7402, 2016. 114, 117 [221] Coehoorn, R., Haas, C., Dijkstra, J., Flipse, C. J. F., de Groot, R. A., Wold, A. Electronic structure of MoSe2, MoS2, and WSe2. i. band-structure calculations and photoelectron spectroscopy. Phys. Rev. B, 35, 6195-6202, Apr 1987. 114, 117 [222] Renucci, J. B., Tyte, R. N., Cardona, M. Resonant Raman scattering in silicon. Phys. Rev. B, 11, 3885-3895, May 1975. 119, 181 [223] Yoon, D., Moon, H., Son, Y.-W., Choi, J. S., Park, B. H., Cha, Y. H., et al. Interference effect on Raman spectrum of graphene on SiO2=Si. Phys. Rev. B, 80, 125422, Sep 2009. 119, 182 [224] Terrones, H., Del Corro, E., Feng, S., Poumirol, J. M., Rhodes, D., Smirnov, N. R. L. Z., D.and Pradhan, et al. New first order Raman-active modes in few layered transition metal dichalcogenides. Scientific Reports, 4, 4215, 2014. 120 [225] Qiu, D. Y., da Jornada, F. H., Louie, S. G. Optical spectrum of MoS2: Manybody effects and diversity of exciton states. Phys. Rev. Lett., 111, 216805, Nov 2013. 120 [226] Bradley, A. J., M. Ugeda, M., da Jornada, F. H., Qiu, D. Y., Ruan, W., Zhang, Y., et al. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer mose2 nanostructures. Nano Letters, 15 (4), 25942599, 2015. 120 [227] Arora, A., Koperski, M., Nogajewski, K., Marcus, J., Faugeras, C., Potemski, M. Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale, 7, 10421-10429, 2015. 120 [228] Carvalho, B. R., Malard, L. M., Alves, J. M., Fantini, C., Pimenta, M. A. Symmetry-dependent exciton-phonon coupling in 2d and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett., 114, 136403, Apr 2015. 121 [229] Ugeda, M. M., Bradley, S.-F., Aaron J. andShi, da Jornada, F. H., Zhang, Y., Qiu, D. Y., Ruan, W., et al. Giant bandgap renormalization and excitonic eects in a monolayer transition metal dichalcogenide semiconductor. Nature Materials, 13, 1091, 2014. 121 [230] Wang, G., Robert, C., Suslu, A., Chen, S., Bin Yang, Alamdari, S., Gerber, I. C., et al. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nature Communications, 6, 10110, 2015. 121 [231] MacNeill, D., Heikes, C., Mak, K. F., Anderson, Z., Kormányos, A., Zólyomi, V., et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 114, 037401, Jan 2015. 121 [232] Conley, H. J., Wang, B., Ziegler, J. I., Haglund, R. F., Pantelides, S. T., Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Letters, 13 (8), 3626-3630, 2013. 130, 164, 165 [233] Daly, B. C., Norris, T. B., Chen, J., Khurgin, J. B. Picosecond acoustic phonon pulse propagation in silicon. Phys. Rev. B, 70, 214307, Dec 2004. 139 [234] Mannebach, E. M., Nyby, C., Ernst, F., Zhou, Y., Tolsma, J., Li, Y., et al. Dynamic optical tuning of interlayer interactions in the transition metal dichalcogenides. Nano Letters, 17 (12), 7761-7766, 2017. 139 [235] Scuri, G., Zhou, Y., High, A. A., Wild, D. S., Shu, C., De Greve, K., et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett., 120, 037402, Jan 2018. 139 [236] Srivastava, G. P. The Physics of Phonons. 1a edón. NY: Adam Hilger, 1990. 140, 141, 143, 144, 146, 147, 148, 152, 153 [237] Ziman, J. M. Electrons and Phonons, The Theory of Transport Phenomena in Solids. 1a edón. Oxford: Oxford University Press, 1960. 141, 154 [238] Maznev, A. A. Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit. Phys. Rev. B, 91, 134306, Apr 2015. 141 [239] Shafqat, A., Iqbal, T., Majid, A. A DFT study of intrinsic point defects in monolayer MoSe2. AIP Advances, 7 (10), 105306, 2017. 143 [240] Al-Otaibi, J., Srivastava, G. P. Three-phonon scattering processes and thermal conductivity in iv-chalocogenides. Journal of Physics: Condens. Matter, 27 (10), 335801, 2015. 143 [241] Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev., 113, 1046-1051, Feb 1959. 146 [242] Chen, Z., Wei, Z., Chen, Y., Dames, C. Anisotropic debye model for the thermal boundary conductance. Phys. Rev. B, 87, 125426, Mar 2013. 147, 148, 150 [243] Brugger, K. Generalized Grüneisen parameters in the anisotropic debye model. Phys. Rev., 137, A1826-A1827, Mar 1965. 148 [244] Beardsley, R., Akimov, A. V., Greener, J. D. G., Mudd, G. W., Sandeep, S., Kudrynskyi, Z. R., et al. Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire. Scientific Reports, 6 (26979), 2016. 154, 162 [245] Hettich, M., Jacob, K., Ristow, O., Schubert, M., Bruchhausen, A., Gusev, V., et al. Viscoelastic properties and eficient acoustic damping in confined polymer nano-layers at GHz frequencies. Scientific Reports, 6 (33471), 2016. 154, 157, 158 [246] Pezeril, T., Chigarev, N., Mounier, D., Gougeon, S., Ruello, P., Breteau, J.-M., et al. Lumped oscillations of a nanofilm at adhesion bond. The European Physical Journal, 153, 207, May 2008. 157, 159 [247] Grossmann, M., Schubert, M., He, C., Brick, D., Scheer, E., Hettich, M., et al. Characterization of thin-film adhesion and phonon lifetimes in Al=Si membranes by picosecond ultrasonics. New Journal of Physics, 19 (5), 053019, 2017. 158 [248] Tas, G., Loomis, J. J., Maris, H. J., Bailes, A. A., Seiberling, L. E. Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation. Applied Physics Letters, 72 (18), 2235-2237, 1998. 154, 157, 159 [249] Soubelet, P., Bruchhausen, A. E., Fainstein, A., Nogajewski, K., Faugeras, C. Resonance effects in the Raman scattering of monolayer and few-layer MoSe2. Phys. Rev. B, 93, 155407, Apr 2016. 165 [250] Soubelet, P., Reynoso, A. A., Fainstein, A., Nogajewski, K., Potemski, M., Faugeras, C., et al. The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes. Nanoscale, 11, 10446-10453, 2019. 166 [251] Delhaye, J. A. M. B. M., Barbillat, J., Silva, E. D. Raman Microscopy, Development and Applications. San Diego: Academic Press, 1996. 182 [252] Palik, E. Handbook of Optical Constants of Solids, tomo 3. San Diego: Academic Press, 1998. 183 [253] Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am., 55 (10), 1205-1209, 1965. 183
Materias:Física > Fotónica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica
Código ID:812
Depositado Por:Tamara Cárcamo
Depositado En:01 Mar 2021 12:55
Última Modificación:01 Mar 2021 12:55

Personal del repositorio solamente: página de control del documento