Optomecánica de cavidades en resonadores semiconductores híbridos. / Cavity optomechanic with hybrid semiconductors resonators.

Villafañe, Viviana D. (2019) Optomecánica de cavidades en resonadores semiconductores híbridos. / Cavity optomechanic with hybrid semiconductors resonators. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
18Mb

Resumen en español

La optomecánica de cavidades es el campo de estudio que explora la interacción entre la luz y el movimiento mecánico en medios confinados. El origen de esta interacción es simple, pero fundamental: la luz ejerce fuerza sobre la materia y las consecuencias de esta fuerza, el movimiento, afectan a su vez al campo electromagnético mediante un mecanismo de retroacción. Uno de los fenómenos clave en esta área de investigación es el logro de diversas técnicas de enfriamiento óptico. El enfriamiento por láser se aplica ampliamente a sistemas que van desde iones e átomos neutros a nanoestructuras, partículas dieléctricas y muestras biológicas. La técnica se utiliza tanto para investigar los aspectos fundamentales de la física cuántica como en aplicaciones prácticas entre las que se encuentran la espectroscopía de alta resolución, los relojes atómicos y el desarrollo de sensores ultrasensibles. Los desarrollos tecnológicos vinculados con el enfriamiento por láser abarcan desde la implementación de protocolos cuánticos hasta avances teóricos fundamentales. El principal resultado de esta tesis es la demostración experimental de un nuevo esquema de enfriamiento óptico que utiliza polaritones. Las microcavidades ópticas semiconductoras basadas en refrectores distribuidos de Bragg (DBR) son resonadores físicos híbridos que han sido y continúan siendo objeto de intensas investigaciones debido a muchos fenómenos físicos fundamentales y aplicaciones en dispositivos, incluida la fascinante y rica física de los polaritones de cavidad. Estas microcavidades tienen la capacidad de confinar en el mismo lugar del espacio luz infrarroja y fonones acústicos GHz-THz, con la peculiaridad de que ambos poseen la misma longitud de onda dando lugar a una superposición perfecta de los campos optoacústicos. Estos fonones son modos de respiración de la estructura que modulan fuertemente el modo de cavidad óptica, mejorando así fuertemente los procesos de acoplamiento fotón-fonón. En esta tesis estudiamos las propiedades optomecánicas de un resonador de este tipo con pozos cuánticos embebidos en el espaciador central. Comenzamos por investigar las interacciones de los campos fonónicos y fotónicos lentos y sus perspectivas para aplicaciones optomecánicas. Posteriormente, estudiamos un resonador con pozos cuánticos embebidos que emulan átomos artificiales. Identificamos que la fuerza óptica principal en estos dispositivos impulsados por láseres pulsados es la fuerza optoelectrónica que incluye excitación real de portadores. Luego, realizamos espectroscopía Raman con un láser continuo y demostramos que al diseñar los campos optoacústicos podemos acoplar el campo eléctrico con modos mecánicos ultraltos de manera selectiva y eciente hasta el rango de 200 GHz. Este experimento también nos fue útil para medir los parámetros optomecánicos relevantes de nuestro sistema, como el tiempo de vida media de los fonones y las constantes de acoplamiento optomecánicas. Finalmente, mediante una técnica de bombeo y sondeo atípica en el área de optomec ánica, demostramos la existencia de un mecanismo de alta eficiencia para el enfriamiento óptico en resonadores híbridos semiconductores. El mecanismo involucra la absorción de fonones entre una población de polaritones fuera de equilibrio y un estado óptico excitado. En nuestro esquema, aprovechamos la componente excitónica del polaritón para extraer eficientemente fonones GHz coherentes del resonador y transferir su energía al campo fotónico frío. Al medir la amplitud de los fonones como función del tiempo, obtenemos una reducción de un factor cincuenta en la vida media de los fonones a medida que nos acercamos a la energía del gap del semiconductor.

Resumen en inglés

Cavity optomechanics is the field exploring the interaction between light and mechanical motion in confined media. The origin of this interaction is simple, yet fundamental: Light exerts force on matter and the consequences of this force, movement, affect in turn the light field providing a backaction mechanism. One of the key phenomena in this area of research is the achievement of diverse optical cooling techniques. Laser cooling is applied widely to systems ranging from neutral atoms and ions to nanostructures, dielectric particles and biological specimens. The technique is used to investigate both fundamental aspects of quantum physics and applications such as high resolution spectroscopy, atomic clocks, and sensing. Research activities involving laser cooling span the range from technical instrumentation to fundamental theoretical advances. The main result of this thesis is the demonstration of an optical cooling scheme using exciton-polaritons and pulsed lasers. Semiconductor optical microcavities based on distributed Bragg reflectors (DBRs) are hybrid physical resonators that have been and continue to be the subject of intense research due to many fundamental phenomena and device applications, including the fascinating and rich physics of cavity polaritons. These microcavities confine in the same place of space near infrared light and GHz-THz acoustic phonons of the same wavelength, with perfect field overlap. These phonons are nanooptomechanical breathing modes that strongly modulate the optical cavity mode, thus strongly enhancing the photon-phonon coupling processes. In this thesis we study the optomechanical properties of such a resonator with embedded quantum wells and displaying strongly-coupled excitons and light. We start by investigating the interactions of slowed-down phononic and photonic fields and their prospects for optomechanical applications. Subsequently, we study a resonator with embedded quantum wells as artificial atoms. We identify that the main optical force in this devices driven by pulsed lasers are optoelectronic forces including real carrier excitation. Then, we perform Raman spectroscopy with a continuous wave laser and prove that by engineering the optoacoustic fields we can specifically and eficiently couple to ultra-high mechanical modes up to the 200-GHz range. This experiment is also useful to attain the relevant optomechanical parameters of our system, such as intrinsic phonon lifetimes and optomechanical coupling constants. Finally, we performed pump-probe experiments and demonstrate the existence of optical cooling in semiconductor hybrid resonators when approaching the excitons energy. The mechanism involves absorbing phonons from an initial polariton population to a blueshifted optically-excited state. In our scheme, we take advantage of the excitonic component of the polariton to eficiently extract coherent GHz-phonons from the resonator into the cold photonic field. By measuring the phonons amplitude as a function of time, we obtain an optically-induced reduction of fifty times in the phononic lifetimes as we approach the semiconductor bandgap.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Cavities; Cavidades; Polaritons; Polaritones; [Optomechanics; Optomecánica; Optical cooling; Enfriamiento óptico ]
Referencias:[1] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, -An atomic clock with 10-18 instability,- Science, vol. 341, no. 6151, pp. 1215-1218, 2013. 1, 2 [2] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, Adams, et al., - Gw150914: The advanced ligo detectors in the era of rst discoveries,- Phys. Rev. Lett., vol. 116, p. 131103, Mar 2016. 1, 2 [3] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, -Quantum dynamics of single trapped ions,- Reviews of Modern Physics, vol. 75, no. 1, p. 281, 2003. 1, 2 [4] J. C. Brandt and R. D. Chapman, Introduction to comets. Cambridge University Press, 2004. 2 [5] J. Kepler, De cometis libelli tres ... De cometis libelli tres, Typis Andreæ Apergeri, sumptibus Sebastiani Mylii bibliopolæ Augustani, 1619. 2, 12 [6] W. Bowen and G. J. Milburn, Quantum optomechanics. CRC Press, 2015. 2, 17, 25, 26 [7] J. Maxwell, -On physical lines of force,- Philosophical Magazine, vol. 90, no. sup1, pp. 11-23, 2010. 2, 12 [8] P. Lebedew, -Untersuchungen über die druckkräfte des lichtes,- Annalen der Physik, vol. 311, no. 11, pp. 433-458, 1901. 2 [9] E. F. Nichols and G. F. Hull, -A preliminary communication on the pressure of heat and light radiation,- Phys. Rev. (Series I), vol. 13, pp. 307-320, Nov 1901. 2 [10] A. Einstein, -On the development of our views concerning the nature and constitution of radiation,- Phys. Z, vol. 10, p. 817, 1909. 2 [11] J. Stachel, D. C. Cassidy, J. Renn, and R. Schulmann, -The collected papers of Albert Einstein. Volume 2. the Swiss years: Writings, 1900-1909,- p. 391, 1989. 2 [12] A. Ashkin, -Acceleration and trapping of particles by radiation pressure,- Phys. Rev. Lett., vol. 24, pp. 156-159, Jan 1970. 2 [13] D. J. Wineland and W. M. Itano, -Laser cooling of atoms,- Phys. Rev. A, vol. 20, pp. 1521-1540, Oct 1979. 2 [14] J. M. Raimond, M. Brune, and S. Haroche, -Manipulating quantum entanglement with atoms and photons in a cavity,- Rev. Mod. Phys., vol. 73, pp. 565-582, Aug 2001. 2 [15] C. N. Cohen-Tannoudji, -Nobel lecture: Manipulating atoms with photons,- Reviews of Modern Physics, vol. 70, no. 3, p. 707, 1998. 2 [16] P. Meystre, -A short walk through quantum optomechanics,-Annalen der Physik, vol. 525, no. 3, pp. 215-233, 2013. 3 [17] C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, and S. Reynaud, -Quantum-noise reduction using a cavity with a movable mirror,- Phys. Rev. A, vol. 49, pp. 1337-1343, Feb 1994. 3 [18] S. Mancini and P. Tombesi, -Quantum noise reduction by radiation pressure,- Phys. Rev. A, vol. 49, pp. 4055-4065, May 1994. 3 [19] S. Bose, K. Jacobs, and P. L. Knight, -Preparation of nonclassical states in cavities with a moving mirror,- Phys. Rev. A, vol. 56, pp. 4175-4186, Nov 1997. 3 [20] S. Mancini, V. I. Man'ko, and P. Tombesi, -Ponderomotive control of quantum macroscopic coherence,- Phys. Rev. A, vol. 55, pp. 3042-3050, Apr 1997. 3 [21] P. F. Cohadon, A. Heidmann, and M. Pinard, -Cooling of a mirror by radiation pressure,- Phys. Rev. Lett., vol. 83, pp. 3174-3177, Oct 1999. 3 [22] T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, -Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,- Phys. Rev. Lett., vol. 94, p. 223902, Jun 2005. 3 [23] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, -Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,- Phys. Rev. Lett., vol. 95, p. 033901, Jul 2005. 3 [24] J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. Harris, -Strong dispersive coupling of a high--nesse cavity to a micromechanical membrane, - Nature, vol. 452, no. 7183, p. 72, 2008. 3 [25] M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, -A picogramand nanometre-scale photonic-crystal optomechanical cavity,- Nature, vol. 459, no. 7246, p. 550, 2009. 3 [26] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, -Cavity optomechanics with a bose-einstein condensate,- Science, vol. 322, no. 5899, pp. 235-238, 2008. 3 [27] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, -A highresolution microchip optomechanical accelerometer,- Nature Photonics, vol. 6, no. 11, p. 768, 2012. 3 [28] S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, -Cavity optomechanical magnetometer,- Phys. Rev. Lett., vol. 108, p. 120801, Mar 2012. 3 [29] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, -Cavity optomechanics,- Reviews of Modern Physics, vol. 86, no. 4, p. 1391, 2014. 3, 17, 19, 23, 25, 27, 80, 88, 104, 108 [30] B. Pepper, E. Jefrey, R. Ghobadi, C. Simon, and D. Bouwmeester, -Macroscopic superpositions via nested interferometry: finite temperature and decoherence considerations,- New Journal of Physics, vol. 14, no. 11, p. 115025, 2012. 3 [31] D. Kleckner, I. Pikovski, E. Jefrey, L. Ament, E. Eliel, J. Van Den Brink, and D. Bouwmeester, -Creating and verifying a quantum superposition in a microoptomechanical system,- New Journal of Physics, vol. 10, no. 9, p. 095020, 2008. 3 [32] A. Bassi, E. Ippoliti, and S. L. Adler, -Towards quantum superpositions of a mirror: An exact open systems analysis,- Phys. Rev. Lett., vol. 94, p. 030401, Jan 2005. 3 [33] K. Usami, A. Naesby, T. Bagci, B. M. Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, -Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,- Nature Physics, vol. 8, no. 2, p. 168, 2012. 4, 75, 76, 84 [34] S. Klembt, E. Durupt, S. Datta, T. Klein, A. Baas, Y. Léger, C. Kruse, D. Hommel, A. Minguzzi, and M. Richard, -Exciton-polariton gas as a nonequilibrium coolant,- Physical review letters, vol. 114, no. 18, p. 186403, 2015. 4, 108, 119 [35] A. Tredicucci, Y. Chen, V. Pellegrini, M. Börger, L. Sorba, F. Beltram, and F. Bassani, -Controlled exciton-photon interaction in semiconductor bulk microcavities, -Physical review letters, vol. 75, no. 21, p. 3906, 1995. 4, 47 [36] A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light, -Physical review letters, vol. 110, no. 3, p. 037403, 2013. 1, 4, 14, 33, 34, 36, 42, 47, 50, 53, 74, 76, 78, 88 [37] S. Anguiano, A. Bruchhausen, B. Jusserand, I. Favero, F. Lamberti, L. Lanco, I. Sagnes, A. Lemaître, N. Lanzillotti-Kimura, P. Senellart, et al., Micropillar resonators for optomechanics in the extremely high 19-95-ghz frequency range,- Physical review letters, vol. 118, no. 26, p. 263901, 2017. 1, 4, 78, 84 [38] A. Fainstein, B. Jusserand, P. Senellart, J. Bloch, V. Thierry-Mieg, and R. Planel, -Center-of-mass quantized exciton polariton states in bulk-gaas microcavities,- Physical Review B, vol. 62, no. 12, p. 8199, 2000. 4, 47 [39] P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, -Giant enhancement of stimulated brillouin scattering in the subwavelength limit,- Physical Review X, vol. 2, no. 1, p. 011008, 2012. 4, 74 [40] P. T. Rakich, P. Davids, and Z. Wang, -Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,- Optics express, vol. 18, no. 14, pp. 14439-14453, 2010. 4, 13, 74, 88 [41] V. Villafañe, P. Sesin, P. Soubelet, S. Anguiano, A. Bruchhausen, G. Rozas, C. G. Carbonell, A. Lemaître, and A. Fainstein, -Optoelectronic forces with quantum wells for cavity optomechanics in gaas/alas semiconductor microcavities,- Physical Review B, vol. 97, no. 19, p. 195306, 2018. 4, 17, 83 [42] C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, -Photoelastic coupling in gallium arsenide optomechanical disk resonators,- Optics express, vol. 22, no. 12, pp. 14072-14086, 2014. 1, 4, 13, 74, 75, 83, 84, 88, 96 [43] B. Jusserand, A. Poddubny, A. Poshakinskiy, A. Fainstein, and A. Lemaitre, -Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells,- Physical review letters, vol. 115, no. 26, p. 267402, 2015. 1, 4, 14, 83, 84, 96, 100, 117 [44] G. Rozas, A. E. Bruchhausen, A. Fainstein, B. Jusserand, and A. Lemaître, -olariton path to fully resonant dispersive coupling in optomechanical resonators,- Physical Review B, vol. 90, no. 20, p. 201302, 2014. 1, 4, 14, 74, 88, 108, 109, 117 [45] J. Restrepo, C. Ciuti, and I. Favero, -Single-polariton optomechanics,- Phys. Rev. Lett., vol. 112, p. 013601, Jan 2014. 1, 4 [46] O. Kyriienko, T. C. H. Liew, and I. A. Shelykh, -Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability,- Phys. Rev. Lett., vol. 112, p. 076402, Feb 2014. 1, 4 [47] J. Sipe and M. Steel, -A hamiltonian treatment of stimulated Brillouin scattering in nanoscale integrated waveguides,-New Journal of Physics, vol. 18, no. 4, p. 045004, 2016. 11 [48] P. Rakich and F. Marquardt, -Quantum theory of continuum optomechanics,- New Journal of Physics, vol. 20, no. 4, p. 045005, 2018. 11 [49] B. Guha, Surface-enhanced optomechanical disk resonators and force sensing. PhD thesis, Université Paris Diderot, 2017. 12, 14, 16, 17, 23, 27, 28, 83 [50] J. Jackson, Classical Electrodynamics. Wiley, 2012. 12, 95 [51] R. W. Boyd, Nonlinear optics. Elsevier, 2003. 13 [52] A. Ashkin, -Acceleration and trapping of particles by radiation pressure,- Physical review letters, vol. 24, no. 4, p. 156, 1970. 13 [53] A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, -Observation of a singlebeam gradient force optical trap for dielectric particles,- Optics letters, vol. 11, no. 5, pp. 288-290, 1986. 13 [54] Iofle Institute, -Optical properties of gallium arsenide (GaAs).- http://www. ioffe.ru/SVA/NSM/Semicond/GaAs/optic.html. Accessed: 2018-09-19. 13 [55] A. Maradudin and E. Burstein, -Relation between photoelasticity, electrostriction, and first-order Raman effect in crystals of the diamond structure,- Physical Review, vol. 164, no. 3, p. 1081, 1967. 13 [56] A. Feldman, -Relations between electrostriction and the stress-optical effect,- Physical Review B, vol. 11, no. 12, p. 5112, 1975. 13 [57] A. Feldman and D. Horowitz, -Dispersion of the piezobirefringence of GaAs,- Journal of Applied Physics, vol. 39, no. 12, pp. 5597-5599, 1968. 14 [58] P. Renosi and J. Sapriel, -Near-resonance acousto-optical interactions in GaAs and InP,- Applied physics letters, vol. 64, no. 21, pp. 2794-2796, 1994. 14 [59] P. Etchegoin, J. Kircher, M. Cardona, C. Grein, and E. Bustarret, -Piezo-optics of GaAs,- Physical Review B, vol. 46, no. 23, p. 15139, 1992. 14 [60] B. Jusserand, -Selective resonant interaction between confined excitons and folded acoustic phonons in GaAs/AlAs multi-quantum wells,- Applied Physics Letters, vol. 103, no. 9, p. 093112, 2013. 14 [61] J. Restrepo, J. Gabelli, C. Ciuti, and I. Favero, -Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator,- Comptes Rendus Physique, vol. 12, no. 9-10, pp. 860-870, 2011. 15, 75, 84 [62] C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, -Self-induced oscillations in an optomechanical system driven by bolometric backaction,- Physical review letters, vol. 101, no. 13, p. 133903, 2008. 15, 75, 84 [63] C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, -Optical self cooling of a deformable fabry-perot cavity in the classical limit,- Physical Review B, vol. 78, no. 3, p. 035309, 2008. 15, 17, 19, 20, 23, 75, 84 [64] C. H. Metzger and K. Karrai, -Cavity cooling of a microlever,- Nature, vol. 432, no. 7020, p. 1002, 2004. 15 [65] J. Mertz, O. Marti, and J. Mlynek, -Regulation of a microcantilever response by force feedback,- Applied Physics Letters, vol. 62, no. 19, pp. 2344-2346, 1993. 15 [66] P. Ruello and V. E. Gusev, -Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,- Ultrasonics, vol. 56, pp. 21-35, 2015. 15, 60, 75, 84 [67] H. Okamoto, D. Ito, K. Onomitsu, T. Sogawa, and H. Yamaguchi, -Controlling quality factor in micromechanical resonators by carrier excitation,- Applied Physics Express, vol. 2, no. 3, p. 035001, 2009. 15 [68] H. Okamoto, D. Ito, K. Onomitsu, H. Sanada, H. Gotoh, T. Sogawa, and H. Yamaguchi, Vibration amplification, damping, and self-oscillations in micromechanical resonators induced by optomechanical coupling through carrier excitation,- Physical review letters, vol. 106, no. 3, p. 036801, 2011. 15 [69] H. Okamoto, T. Watanabe, R. Ohta, K. Onomitsu, H. Gotoh, T. Sogawa, and H. Yamaguchi, -Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures,- Nature communications, vol. 6, p. 8478, 2015. 15 [70] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, -Surface generation and detection of phonons by picosecond light pulses,- Physical Review B, vol. 34, no. 6, p. 4129, 1986. 15 [71] S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, -Perturbation theory for Maxwell's equations with shifting material boundaries, -Physical review E, vol. 65, no. 6, p. 066611, 2002. 16 [72] V. B. Braginskii and A. B. Manukin, -Measurement of weak forces in physics experiments,- Chicago, University of Chicago Press, 1977. 161 p. Translation., 1977. 17 [73] A. Reynoso et al. To be published. 17, 27, 28, 29, 30 [74] F. Marquardt, J. Harris, and S. M. Girvin, -Dynamical multistability induced by radiation pressure in high--nesse micromechanical optical cavities,- Physical review letters, vol. 96, no. 10, p. 103901, 2006. 21 [75] P.-F. Cohadon, A. Heidmann, and M. Pinard, -Cooling of a mirror by radiation pressure,--Physical Review Letters, vol. 83, no. 16, p. 3174, 1999. 22, 74 [76] P. Kharel, G. I. Harris, E. A. Kittlaus, W. H. Renninger, N. T. Otterstrom, J. G. Harris, and P. T. Rakich, -High-frequency cavity optomechanics using bulk acoustic phonons,- arXiv preprint arXiv:1809.04020, 2018. 26, 90, 100 [77] V. Braginsky, S. Strigin, and S. P. Vyatchanin, -Parametric oscillatory instability in fabry-perot interferometer,- Physics Letters A, vol. 287, no. 5-6, pp. 331-338, 2001. 26 [78] J. M. Dobrindt and T. J. Kippenberg, -Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,- Physical review letters, vol. 104, no. 3, p. 033901, 2010. 26 [79] C. Zhao, Q. Fang, S. Susmithan, H. Miao, L. Ju, Y. Fan, D. Blair, D. J. Hosken, J. Munch, P. J. Veitch, et al., -High-sensitivity three-mode optomechanical transducer,- Physical Review A, vol. 84, no. 6, p. 063836, 2011. 26 [80] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, -Introduction to quantum noise, measurement, and amplification,- Reviews of Modern Physics, vol. 82, no. 2, p. 1155, 2010. 27 [81] A. B. Klimov and S. M. Chumakov, A group-theoretical approach to quantum optics. John Wiley & Sons, 2009. 27 [82] C. Gardiner, P. Zoller, and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, vol. 56. Springer Science & Business Media, 2004. 27 [83] A. L. Schawlow and C. H. Townes, -Infrared and optical masers,- Physical Review, vol. 112, no. 6, p. 1940, 1958. 31 [84] A. Kavokin and G. Malpuech, Cavity polaritons, vol. 32. Elsevier, 2003. 33, 34 [85] C. Ciuti, P. Schwendimann, and A. Quattropani, -Theory of polariton parametric interactions in semiconductor microcavities,- Semiconductor science and technology, vol. 18, no. 10, p. S279, 2003. 33, 34 [86] E.Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, et al., -Spontaneous formation and optical manipulation of extended polariton condensates,- Nature physics, vol. 6, no. 11, p. 860, 2010. 33, 34 [87] A. Dousse, J. Suczy«ski, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, -Ultrabright source of entangled photon pairs,- Nature, vol. 466, no. 7303, p. 217, 2010. 33, 34 [88] N. Somaschi, V. Giesz, L. De Santis, J. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, et al., -Near-optimal singlephoton sources in the solid state,- Nature Photonics, vol. 10, no. 5, p. 340, 2016. 33, 34 [89] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, -Room temperature lasing at blue wavelengths in gallium nitride microcavities,- Science, vol. 285, no. 5435, pp. 1905-1906, 1999. 33, 34 [90] A. Fainstein, B. Jusserand, and V. Thierry-Mieg, -Raman scattering enhancement by optical confinement in a semiconductor planar microcavity, -Physical review letters, vol. 75, no. 20, p. 3764, 1995. 33, 34, 51, 90, 92, 96 [91] A. Fainstein, B. Jusserand, and V. Thierry-Mieg, -Cavity-polariton mediated resonant raman scattering,- Phys. Rev. Lett., vol. 78, pp. 1576-1579, Feb 1997. 33, 34 [92] A. Fainstein, B. Jusserand, and V. Thierry-Mieg, -Raman eficiency in a planar microcavity,- Phys. Rev. B, vol. 53, pp. R13287-R13290, May 1996. 33, 34, 51 [93] A. Fainstein and B. Jusserand, -Performance of semiconductor planar microcavities for raman-scattering enhancement,- Phys. Rev. B, vol. 57, pp. 2402-2406, Jan 1998. 33, 34, 51 [94] P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lema ître, N. D. Lanzillotti-Kimura, and A. Fainstein, -Dynamical optical tuning of the coherent phonon detection sensitivity in dbr-based gaas optomechanical resonators,- Phys. Rev. B, vol. 92, p. 075307, Aug 2015. 33, 34, 47, 66, 114 [95] M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, -Confinement of acoustical vibrations in a semiconductor planar phonon cavity,- Phys. Rev. Lett., vol. 89, p. 227402, Nov 2002. 33, 34, 51 [96] S. Anguiano, G. Rozas, A. E. Bruchhausen, A. Fainstein, B. Jusserand, P. Senellart, and A. Lemaître, -Spectra of mechanical cavity modes in distributed bragg reector based vertical gaas resonators,- Phys. Rev. B, vol. 90, p. 045314, Jul 2014. 33, 34 [97] B. Jusserand and M. Cardona, -Light scattering in solids V,- Topics in Applied Physics, vol. 66, pp. 49-152, 1989. 34, 38, 40, 96 [98] S. Rytov, -Acoustic properties of stratified media,- Akusticheskii Zhurnal, vol. 2, no. 71, 1956. 36 [99] C. Kittel et al., Introduction to solid state physics, vol. 8. Wiley New York, 1976. 38 [100] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, -Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,-Physical Review Letters, vol. 87, no. 25, p. 253902, 2001. 39, 49 [101] A. Figotin and I. Vitebskiy, -Frozen light in photonic crystals with degenerate band edge,- Physical Review E, vol. 74, no. 6, p. 066613, 2006. 39 [102] Y. Chen, J. R. de Lasson, N. Gregersen, and J. Mørk, -Impact of slow-light enhancement on optical propagation in active semiconductor photonic-crystal waveguides,- Physical Review A, vol. 92, no. 5, p. 053839, 2015. 39 [103] M. Trigo, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, -Finite-size effects on acoustic phonons in gaas/alas superlattices,- Phys. Rev. B, vol. 66, p. 125311, Sep 2002. 40, 67 [104] R. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, -Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,- Physical Review A, vol. 48, no. 3, p. 2246, 1993. 42 [105] V. Loo, L. Lanco, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, -Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-q micropillar,- Applied Physics Letters, vol. 97, no. 24, p. 241110, 2010. 42 [106] O. Deparis, S. Mouchet, and B.-L. Su, -Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?,- Physical Chemistry Chemical Physics, vol. 17, no. 45, pp. 30525-30532, 2015. 46 [107] P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, -Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,- Nature, vol. 430, no. 7000, p. 654, 2004. 46 [108] A. Balakin, V. Bushuev, B. Mantsyzov, I. Ozheredov, E. Petrov, A. Shkurinov, P. Masselin, and G. Mouret, -Enhancement of sum frequency generation near the photonic band gap edge under the quasiphase matching conditions,- Physical Review E, vol. 63, no. 4, p. 046609, 2001. 46 [109] Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, -Phase-matched frequency doubling at photonic band edges: eff- ciency scaling as the fifth power of the length,- Physical review letters, vol. 89, no. 4, p. 043901, 2002. 46 [110] M. Solja£i¢, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, -Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,- JOSA B, vol. 19, no. 9, pp. 2052-2059, 2002. 46 [111] M. A. Othman, F. Yazdi, A. Figotin, and F. Capolino, -Giant gain enhancement in photonic crystals with a degenerate band edge,- Physical Review B, vol. 93, no. 2, p. 024301, 2016. 46 [112] S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, -Resonant optical interactions with molecules confined in photonic band-gap -bers,- Physical review letters, vol. 94, no. 9, p. 093902, 2005. 46 [113] G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. Karle, K. Lee, R. Braive, L. Le Gratiet, S. Guilet, et al., -Continuous-wave operation of photonic band-edge laser near 1.55 film on silicon wafer,- Optics express, vol. 15, no. 12, pp. 7551-7556, 2007. 47 [114] W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, -Threshold characteristics of slow-light photonic crystal lasers,- Physical review letters, vol. 116, no. 6, p. 063901, 2016. 47 [115] J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, -Enhanced stimulated raman scattering in slow-light photonic crystal waveguides,- Optics letters, vol. 31, no. 9, pp. 1235-1237, 2006. 47 [116] K. Inoue, H. Oda, A. Yamanaka, N. Ikeda, H. Kawashima, Y. Sugimoto, and K. Asakawa, -Dramatic density-of-state enhancement of raman scattering at the band edge in a one-dimensional photonic-crystal waveguide,- Physical Review A, vol. 78, no. 1, p. 011805, 2008. 47 [117] K. Kondo and T. Baba, -Slow-light-induced doppler shift in photonic-crystal waveguides,- Physical Review A, vol. 93, no. 1, p. 011802, 2016. 47 [118] C. Mechri, P. Ruello, and V. Gusev, -Confined coherent acoustic modes in a tubular nanoporous alumina film probed by picosecond acoustics methods,- New Journal of Physics, vol. 14, no. 2, p. 023048, 2012. 47 [119] T.-X. Ma, Y.-S. Wang, C. Zhang, and X.-X. Su, -Simultaneous guiding of slow elastic and light waves in three-dimensional topology-type phoxonic crystals with a line defect,- Journal of Optics, vol. 16, no. 8, p. 085002, 2014. 47 [120] V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, and Y. Dumeige, - Millisecond photon lifetime in a slow-light microcavity,- Phys. Rev. Lett., vol. 116, p. 133902, Mar 2016. 47, 71 [121] A. Huynh, N. Lanzillotti-Kimura, B. Jusserand, B. Perrin, A. Fainstein, M. Pascual-Winter, E. Peronne, and A. Lemaître, -Subterahertz phonon dynamics in acoustic nanocavities,- Physical review letters, vol. 97, no. 11, p. 115502, 2006. 49 [122] M. Trigo, T. Eckhause, M. Reason, R. Goldman, and R. Merlin, -Observation of surface-avoiding waves: a new class of extended states in periodic media,- Physical review letters, vol. 97, no. 12, p. 124301, 2006. 49 [123] A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, -Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,- Physical Review Letters, vol. 82, no. 5, p. 1044, 1999. 50 [124] K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, -Observation of coherent folded acoustic phonons propagating in a gaas/alas superlattice by two-color pump-probe spectroscopy,- Physical Review B, vol. 60, no. 11, p. 8262, 1999. 50 [125] O. Matsuda and O. Wright, Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation,- JOSA B, vol. 19, no. 12, pp. 3028-3041, 2002. 50, 61, 62 [126] M. P. Winter, G. Rozas, A. Fainstein, B. Jusserand, B. Perrin, A. Huynh, P. Vaccaro, and S. Saravanan, -Selective optical generation of coherent acoustic nanocavity modes,- Physical review letters, vol. 98, no. 26, p. 265501, 2007. 50 [127] Y. Li, Q. Miao, A. Nurmikko, and H. Maris, -Picosecond ultrasonic measurements using an optical cavity,- Journal of Applied Physics, vol. 105, no. 8, p. 083516, 2009. 51 [128] N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and B. Perrin, -Acoustic phonon dynamics in an optical microcavity: Enhanced coherent generation and detection,- AIP Conference Proceedings, vol. 1199, no. 1, pp. 161-162, 2010. 51 [129] N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, and A. Lemaître, -Resonant raman scattering of nanocavity-confined acoustic phonons,- Phys. Rev. B, vol. 79, p. 035404, Jan 2009. 51, 55 [130] V. Villafañe, A. Bruchhausen, B. Jusserand, P. Senellart, A. Lemaître, and A. Fainstein, -Confinement of gigahertz sound and light in tamm plasmon resonators, - Physical Review B, vol. 92, no. 16, p. 165308, 2015. 55 [131] N. D. Lanzillotti-Kimura, A. Fainstein, A. Huynh, B. Perrin, B. Jusserand, A. Miard, and A. Lemaître, -Coherent generation of acoustic phonons in an optical microcavity,- Phys. Rev. Lett., vol. 99, p. 217405, Nov 2007. 55 [132] N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, and B. Jusserand, -Theory of coherent generation and detection of thz acoustic phonons using optical microcavities, - Phys. Rev. B, vol. 84, p. 064307, Aug 2011. 55 [133] N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, L. Largeau, O. Mauguin, and A. Lemaitre, -Enhanced optical generation and detection of acoustic nanowaves in microcavities,- Phys. Rev. B, vol. 83, p. 201103, May 2011. 55 [134] M. Pascual-Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, -Spectral responses of phonon optical generation and detection in superlattices,- Physical Review B, vol. 85, no. 23, p. 235443, 2012. 57, 69, 76 [135] Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, -Mechanical oscillation and cooling actuated by the optical gradient force,- Physical review letters, vol. 103, no. 10, p. 103601, 2009. 74 [136] A. Fainstein and B. Jusserand, -Light scattering in solids IX,- Topics in Applied Physics, vol. 108, pp. 17-110, 2007. 89, 90, 96, 109, 110, 112 [137] G. Rozas, Estudio Raman de ultra-alta resolución de la dinámica de fonones acústicos confinados en cavidades. PhD thesis, Instituto Balseiro, Universidad Nacional de Cuyo, 2011. 90, 101, 131 [138] J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, -Laser cooling of a nanomechanical oscillator into its quantum ground state,- Nature, vol. 478, no. 7367, p. 89, 2011. 90 [139] D. Vitali, S. Mancini, and P. Tombesi, -Stationary entanglement between two movable mirrors in a classically driven Fabry-Pérot cavity,- Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 28, p. 8055, 2007. 91 [140] M. Woolley and A. Clerk, -Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir,- Physical Review A, vol. 89, no. 6, p. 063805, 2014. 91 [141] M. J. Weaver, D. Newsom, F. Luna, W. Löfler, and D. Bouwmeester, -Phonon interferometry for measuring quantum decoherence,- Physical Review A, vol. 97, no. 6, p. 063832, 2018. 91 [142] G. Rozas, B. Jusserand, and A. Fainstein, -Fabry-Pérot-multichannel spectrometer tandem for ultra-high resolution raman spectroscopy,- Review of Scientific Instruments, vol. 85, no. 1, p. 013103, 2014. 91, 92, 131, 132, 133 [143] A. Bruchhausen, G. Rozas, and A. Fainstein, -Full model for acoustic phonon Raman spectra in multilayer planar optomechanical resonators.- To be published. 94 [144] A. Bruchhausen et al., -Inelastic scattering of light in planar heterostructures: a green's function approach.- To be published. 95 [145] F. Lamberti, Q. Yao, L. Lanco, D. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, et al., -Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range,-Optics Express, vol. 25, no. 20, pp. 24437-24447, 2017. 96 [146] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and difrraction of light. Elsevier, 2013. 99 [147] D. I. Babic and S. W. Corzine, -Analytic expressions for the refrection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,- IEEE Journal of Quantum Electronics, vol. 28, no. 2, pp. 514-524, 1992. 99, 101 [148] D. F. Walls and G. J. Milburn, Quantum optics. Springer Science & Business Media, 2007. 101 [149] M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, -Quantum-mechanical theory of optomechanical Brillouin cooling,- Physical Review A, vol. 84, no. 6, p. 063806, 2011. 102 [150] J. Restrepo, C. Ciuti, and I. Favero, -Single-polariton optomechanics,- Physical review letters, vol. 112, no. 1, p. 013601, 2014. 108 [151] O. Kyriienko, T. C. H. Liew, and I. A. Shelykh, -Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability,- Physical review letters, vol. 112, no. 7, p. 076402, 2014. 108 [152] R. Houdré, R. P. Stanley, and M. Ilegems, -Vacuum-field rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system,- Phys. Rev. A, vol. 53, pp. 2711-2715, Apr 1996. 109 [153] G. Bongiovanni, A. Mura, F. Quochi, S. Gürtler, J. L. Staehli, F. Tassone, R. P. Stanley, U. Oesterle, and R. Houdré, -Coherent exciton-photon dynamics in semiconductor microcavities:the influence of inhomogeneous broadening,- Phys. Rev. B, vol. 55, pp. 7084-7090, Mar 1997. 109 [154] B. Sermage, S. Long, I. Abram, J. Y. Marzin, J. Bloch, R. Planel, and V. Thierry- Mieg, -Time-resolved spontaneous emission of excitons in a microcavity: Behavior of the individual exciton-photon mixed states,- Phys. Rev. B, vol. 53, pp. 16516- 16523, Jun 1996. 109 [155] D. M. Whittaker, P. Kinsler, T. A. Fisher, M. S. Skolnick, A. Armitage, A. M. Afshar, M. D. Sturge, and J. S. Roberts, -Motional narrowing in semiconductor microcavities,- Phys. Rev. Lett., vol. 77, pp. 4792-4795, Dec 1996. 109 [156] E. Burstein and C. Weisbuch, Confined electrons and photons: New physics and applications, vol. 340. Springer Science & Business Media, 2012. 109, 120 [157] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, -Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,- Phys. Rev. Lett., vol. 69, pp. 3314-3317, Dec 1992. 109 [158] M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, -Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates, - Phys. Rev. B, vol. 92, p. 245435, Dec 2015. 110 [159] J. J. Hopfield, -Theory of the contribution of excitons to the complex dielectric constant of crystals,- Phys. Rev., vol. 112, pp. 1555-1567, Dec 1958. 112 [160] A. Kavokin and F. P. Laussy, Microcavities. Oxford University Press, 2017. 112 [161] M. Sheik-Bahae and R. I. Epstein, -Optical refrigeration,- nature photonics, vol. 1, no. 12, p. 693, 2007. 119 [162] S. Anguiano, A. E. Bruchhausen, I. Favero, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, -Optical cavity mode dynamics and coherent phonon generation in high-Q micropillar resonators,- Phys. Rev. A, vol. 98, p. 013816, Jul 2018. 114, 119, 120 [163] A. D. Poularikas, Transforms and applications handbook. CRC press, 2010. 121 [164] K. Birch and M. Downs, -An updated Edlén equation for the refractive index of air,- Metrologia, vol. 30, no. 3, p. 155, 1993. 133
Materias:Física > Optomecánica en cavidades
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica
Código ID:814
Depositado Por:Tamara Cárcamo
Depositado En:01 Mar 2021 12:21
Última Modificación:01 Mar 2021 12:21

Personal del repositorio solamente: página de control del documento