Aproximación semiclásica en la fotoionización por pulsos ultracortos asistidos por láser. / Semiclassical approximation in laser-assisted photoionization by ultra shorts pulses.

Gramajo, Ana A. (2019) Aproximación semiclásica en la fotoionización por pulsos ultracortos asistidos por láser. / Semiclassical approximation in laser-assisted photoionization by ultra shorts pulses. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
9Mb

Resumen en español

En esta tesis se estudia la ionización por encima del umbral (ATI) y la fotoionización asistida por láser (LAPE) de átomos y moléculas producida por campos láser ultra intensos y ultra cortos. En primer lugar, se considera la contribución de la energía cinética promedio que adquiere un electrón libre oscilando en un campo láser al balance de energía del sistema en la ionización por encima del umbral (ATI) de hidrógeno atómico. A través de su promedio temporal, se revisa la definición de energía ponderomotriz UP , la cual extendemos su definición para el caso de pulsos con pocos ciclos ópticos y con envolvente altamente variable en el tiempo. Formulamos un modelo semiclásico que establece una conexión entre tiempos de emisión del electrón y energía del fotoelectrón, y mostramos que algunas estructuras del espectro tienen su origen en diferentes instantes de tiempo del pulso con envolvente variable. Luego, se extiende el modelo semiclásico (SCM) para estudiar la ionización por pulsos de dos colores, conocida como fotoemisión asistida por láser (LAPE). Se obtiene el espectro del fotoelectrón resuelto en angulo para la ionización del átomo de hidrógeno producida por un pulso con frecuencia en el extremo ultravioleta (XUV) en presencia de un láser con frecuencia en el infrarrojo (IR). Se logra factorizar la probabilidad de emisión como el producto de dos contribuciones diferentes que muestran la interferencia entre trayectorias clásicas del electrón originadas en un mismo ciclo óptico del láser (factor intraciclo) y en distintos ciclos (factor interciclo). Este ultimo factor es el responsable de dar origen a bandas laterales siguiendo la ley de conservación de energía para absorción de un solo fotón XUV y absorción/emisión de varios fotones IR. Se estudia el espectro del fotoelectrón resuelto en angulo variando distintos parametros del proceso LAPE, tales como la duración e intensidad de los campos XUV e IR y retardo temporal entre ellos, as como el blanco bajo estudio y la configuración geométrica de los campos. Para casos de emisión particulares, se encuentra que el espectro puede factorizarse de forma alternativa a través de dos contribuciones intra- e ínter-medio-ciclo, de manera que en un ciclo óptico del láser, las trayectorias originadas en cada medio ciclo interfieren destructivamente en la absorción y/o emisión de fotones, permitiendo solo el intercambio de un numero impar o par según la simetría del estado inicial de fotones del láser IR en la formación de las bandas laterales.

Resumen en inglés

In this thesis, we study the above-threshold ionization (ATI) and laser-assisted photoionization (LAPE) of atoms and molecules produced by ultra-intense and ultra-short laser fields. First, we consider the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field of a short laser pulse to the energy balance in above-threshold ionization of the hydrogen atom. Through its temporal average, we analyze the concept of ponderomotive energy UP , which is not well defined when we consider a few-cycle laser and a highly time-dependent envelope. We formulate a semiclassical model that establishes a connection between the electron emission times with the energy spectra. We show that some structures of the photoelectron spectra born at different times of the pulse envelope. Then, we extend the semiclassical model (SCM) to the two-color ionization known as laser-assisted photoemission (LAPE). We obtain the angle-resolved photoelectron spectra for the ionization of a hydrogen atom produced by with an extreme ultraviolet (XUV) nite laser pulse assisted by an IR laser. The emission probability can be factorized in two different contributions which involve the interference stemming from electron trajectories within the same cycle (intracycle factor) and the interference stemming from electron trajectories released at dierent cycles (intercycle factor). The latter factor giving rise to the sidebands following the energy conservation rule for the absorption of one XUV photon accompanied by sideband lines associated with an additional exchange of laser photons. We study the dependence of the angle-resolved photoelectron spectra with different parameters of the LAPE process as the laser intensity and the XUV pulse duration, the time delay between them and different targets and geometric congurations of the XUV and IR elds. For particular emission cases, the photoelectron spectra can be factorized alternatively in two different contributions intra-half and inter-half-cycle. The interference stemming from electron trajectories released at different half cycles in one IR optical cycle interfere destructively for the absorption and/or emission of IR photons. The latter allows only the exchange of an odd or even number of IR photons to the formation of sidebands according to the symmetry properties for the initial state.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Photoemission; Fotoemisión; Photoionization; Fotoionización; Lasers; Laseres
Referencias:[1] Maiman, T. H. Stimulated optical radiation in ruby. Nature, 187 (4736), 493-494, 1960. 1 [2] Brabec, T., Krausz, F. Intense few-cycle laser elds: Frontiers of nonlinear optics. Rev. Mod. Phys., 72, 545-591, Abril 2000. 1 [3] Drescher, M., Hentschel, M., Kienberger, R., Tempea, G., Spielmann, C., Reider, G. A., et al. X-ray pulses approaching the attosecond frontier. 291 (5510), 1923- 1927, 2001. 1, 2 [4] Lamb, W. E. Theory of an optical maser. Phys. Rev., 134, A1429-A1450, Junio 1964. 1 [5] Ferray, M., L'Huillier, A., Li, X. F., Lompre, L. A., Mainfray, G., Manus, C. Multiple-harmonic conversion of 1064 nm radiation in rare gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 21 (3), L31. 2 [6] Paul, P. M., Toma, E. S., Breger, P., Mullot, G., Auge, F., Balcou, P., et al. Observation of a train of attosecond pulses from high harmonic generation. 292 (5522), 1689-1692, 2001. 2 [7] Corkum, P. B., Krausz, F. Attosecond science. Nature Physics, 3, 381 EP -, Junio 2007. Review Article. 2 [8] Goulielmakis, E., Loh, Z.-H., Wirth, A., Santra, R., Rohringer, N., Yakovlev, V. S., et al. Real-time observation of valence electron motion. Nature, 466, 739 EP -, Agosto 2010. [9] Krausz, F., Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nature Photonics, 8, 205 EP -, Febrero 2014. Review Article. 2 [10] Xu, L., Spielmann, C., Poppe, A., Brabec, T., Krausz, F., Hansch, T. W. Route to phase control of ultrashort light pulses. Opt. Lett., 21 (24), 2008-2010, Diciembre 1996. 2 [11] Baltuska, A., Udem, T., Uiberacker, M., Hentschel, M., Goulielmakis, E., Gohle, C., et al. Attosecond control of electronic processes by intense light elds. Nature, 421, 611 EP -, Febrero 2003. 2 [12] Compression of amplied chirped optical pulses. Optics Communications, 56 (3), 219 - 221, 1985. 2 [13] Strickland, D., Mourou, G., Ashkin, A. The nobel prize in physics, 2018. 2 [14] Fernández, B., Tobalina, I., Varillas, R., A., S., Jarque, E., Gonzáles, A., et al. El láser, la luz de nuestros tiempos. Universidad de Salamanca, 2010. 2 [15] Einstein, A. ber einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der Physik, 322 (6), 132-148. 3 [16] Damon, E. K., Tomlinson, R. G. Observation of ionization of gases by a ruby laser. Appl. Opt., 2 (5), 546-547, Mayo 1963. 3 [17] Voronov, G. S., Delone, N. B. Many-photon Ionization of the Xenon Atom by Ruby Laser Radiation. Soviet Journal of Experimental and Theoretical Physics, 23, 54, 1966. 3 [18] Agostini, P., Barjot, G., Bonnal, J., Mainfray, G., Manus, C., Morellec, J. Multiphoton ionization of hydrogen and rare gases. IEEE Journal of Quantum Electronics, 4 (10), 667-669, Octubre 1968. 3 [19] Agostini, P., Fabre, F., Mainfray, G., Petite, G., Rahman, N. K. Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett., 42, 1127-1130, Abril 1979. 3, 31 [20] Petite, G., Agostini, P., Muller, H. G. Intensity dependence of non-perturbative above-threshold ionisation spectra: experimental study. Journal of Physics B: Atomic, Molecular and Optical Physics, 21 (24), 4097. 3, 4 [21] Cohen-Tannoudji, C., Gury-Odelin, D. Advances in Atomic Physics. World Scientifi c, 2011. 5 [22] Above-threshold ionization. Physics Reports, 204 (5), 331 - 383, 1991. 5 [23] Agostini, P., Kupersztych, J., Lompré, L. A., Petite, G., Yergeau, F. m. c. Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization. Phys. Rev. A, 36, 4111-4114, Octubre 1987. 5 [24] van de Sand, G., Rost, J. M. Semiclassical description of multiphoton processes. Phys. Rev. A, 62, 053403, Octubre 2000. 6 [25] Keldysh, L. V. Zh. Eksp. Teor. Fiz., 47, 1945, 1964. 6 [26] Kulander, K. C., Schafer, K. J., Krause, J. L. Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion, pags. 95-110. Boston, MA: Springer US, 1993. 7 [27] Corkum, P. B. Plasma perspective on strong eld multiphoton ionization. Phys. Rev. Lett., 71, 1994-1997, Septiembre 1993. 7 [28] Krausz, F., Ivanov, M. Attosecond physics. Rev. Mod. Phys., 81, 163-234, Febrero 2009. 7 [29] Itatani, J., Quéré, F., Yudin, G. L., Ivanov, M. Y., Krausz, F., Corkum, P. B. Attosecond streak camera. Phys. Rev. Lett., 88, 173903, Abril 2002. 8 [30] Swoboda, M., Dahlstrom, J. M., Ruchon, T., Johnsson, P., Mauritsson, J., L'Huillier, A., et al. Intensity dependence of laser-assisted attosecond photoionization spectra. Laser Physics, 19 (8), 1591-1599, 2009. 8 [31] Jiménez-Galán, A., Martín, F., Argenti, L. Two-photon nite-pulse model for resonant transitions in attosecond experiments. Phys. Rev. A, 93, 023429, Febrero 2016. 8 [32] Joachain, C. J., Kylstra, N. J., Potvliege, R. M. Atoms in Intense Laser Fields. Cambridge University Press, 2011. 11, 15 [33] Der comptoneffekt nach der schrodingerschen theorie. Zeitschrift fr Physik, 40 (1- 2), 1926. 21, 32 [34] Wolkow, D. M. Uber eine klasse von losungen der diracschen gleichung. Zeitschrift fur Physik, 94 (3), 250-260, Marzo 1935. 21 [35] Macri, P. A., Miraglia, J. E., Gravielle, M. S. Ionization of hydrogen targets by short laser pulses. J. Opt. Soc. Am. B, 20 (9), 1801-1806, Septiembre 2003. 25 [36] Gravielle, M. S. Captura electrónica en colisiones atómicas a energías altas e intermedias. Tesis Doctoral, Grupo de Colisones Atómicas. Instituto de Astronomía y Física del Espacio. Universidad de Buenos Aires, Diciembre 1991. 26 [37] Duchateau, G., Cormier, E., Gayet, R. A simple non-perturbative approach of atom ionisation by intense and ultra-short laser pulses. 28 [38] Duchateau, G., Cormier, E., Bachau, H., Gayet, R. Coulomb-volkov approach of atom ionization by intense and ultrashort laser pulses. Phys. Rev. A, 63, 053411, Abril 2001. 28 [39] Chirilá, C. C., Potvliege, R. M. Low-order above-threshold ionization in intense few-cycle laser pulses. Phys. Rev. A, 71, 021402, Febrero 2005. 29, 54 [40] Corkum, P. B., Burnett, N. H., Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett., 19 (22), 1870-1872, Noviembre 1994. [41] Ivanov, M., Corkum, P. B., Zuo, T., Bandrauk, A. Routes to control of intense-eld atomic polarizability. Phys. Rev. Lett., 74, 2933-2936, Abril 1995. [42] Lewenstein, M., Kulander, K. C., Schafer, K. J., Bucksbaum, P. H. Rings in above-threshold ionization: A quasiclassical analysis. Phys. Rev. A, 51, 1495- 1507, Febrero 1995. 29, 54 [43] Arbó, D. G., Ishikawa, K. L., Schiessl, K., Persson, E., Burgdorfer, J. Intracycle and intercycle interferences in above-threshold ionization: The time grating. Phys. Rev. A, 81, 021403, Febrero 2010. 30, 37, 53, 70 [44] Arbó, D. G., Ishikawa, K. L., Schiessl, K., Persson, E., Burgdorfer, J. Diffraction at a time grating in above-threshold ionization: The in fluence of the Coulomb potential. Phys. Rev. A, 82 (4), 043426, 2010. 37, 53, 70 [45] Arbó, D. G., Nagele, S., Tong, X.-M., Xie, X., Kitzler, M., Burgdorfer, J. Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses. Phys. Rev. A, 89, 043414, Abril 2014. 30, 68 [46] Di Mauro, L. F., Agostini, P. Ionization dynamics in strong laser elds, Advances in Atomic, Molecular and Optical Physics, tomo 35. Academic Press, 1995. 31 [47] Wickenhauser, M., Burgdorfer, J., Krausz, F., Drescher, M. Attosecond streaking of overlapping fano resonances. Journal of Modern Optics, 53 (1-2), 247-257, 2006. 32, 45 [48] Uber eine klasse von losungen der diracschen gleichung. Zeitschrift fur Physik, 94 (3-4), 1935. 32 [49] Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chemical Physics, 217 (2), 119 - 130, 1997. Dynamics of Driven Quantum Systems. 45, 63, 77, 90 [50] Tong, X.-M., Chu, S.-I. Time-dependent approach to high-resolution spectroscopy and quantum dynamics of rydberg atoms in crossed magnetic and electric fields. Phys. Rev. A, 61, 031401, Febrero 2000. 63, 77, 90 [51] Arbó, D. G., Yoshida, S., Persson, E., Dimitriou, K. I., Burgdorfer, J. Interference Oscillations in the Angular Distribution of Laser-Ionized Electrons near Ionization Threshold. Physical Review Letters, 96 (14), 143003, 2006. 45, 68 [52] Radclié, P., Arbeiter, M., Li, W. B., Dusterer, S., Redlin, H., Hayden, P., et al. Atomic photoionization in combined intense xuv free-electron and infrared laser fields. New Journal of Physics, 14 (4), 043008. 48 [53] Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., et al. Atomic transient recorder. Nature, 427, 817 EP -, Febrero 2004. 50 [54] Drescher, M., Krausz, F. Attosecond physics: facing the wave particle duality. Journal of Physics B Atomic Molecular Physics, 38, S727-S740, 2005. 51 [55] Della Picca, R., Fiol, J., Fainstein, P. D. Factorization of laser pulse ionization probabilities in the multiphotonic regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 46 (17), 175603. 52 [56] Gramajo, A. A., Della Picca, R., Garibotti, C. R., Arbó, D. G. Intra- and intercycle interference of electron emissions in laser-assisted xuv atomic ionization. Phys. Rev. A, 94, 053404, Noviembre 2016. 56, 65, 66, 73, 88, 92 [57] Gramajo, A. A., Della Picca, R., Arbó, D. G. Electron emission perpendicular to the polarization direction in laser-assisted xuv atomic ionization. Phys. Rev. A, 96, 023414, Agosto 2017. 56, 65, 66, 85 [58] Arbó, D. G., Miraglia, J. E., Gravielle, M. S., Schiessl, K., Persson, E., Burgdorfer, J. Coulomb-Volkov approximation for near-threshold ionization by short laser pulses. , 77 (1), 013401, 2008. 65, 68 [59] Nagele, S., Pazourek, R., Feist, J., Doblhó-Dier, K., Lemell, C., Tokési, K., et al. Time-resolved photoemission by attosecond streaking: extraction of time information. Journal of Physics B: Atomic, Molecular and Optical Physics, 44 (8), 081001. 68 [60] Kazansky, A. K., Kabachnik, N. M. Sideband structure in angle-resolved electron spectra from laser-assisted auger decay generated by ultra-short pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 42 (12), 121002. 74 [61] Kazansky, A. K., Kabachnik, N. M. On the gross structure of sidebands in the spectra of laser-assisted auger decay. Journal of Physics B: Atomic, Molecular and Optical Physics, 43 (3), 035601. 74, 78, 79, 99, 100, 121 [62] Bivona, S., Bonanno, G., Burlon, R., Leone, C. Two-color ionization of hydrogen by short intense pulses. Laser Physics, 20 (12), 2036-2044, 2010. 74, 78, 79, 99 [63] Kazansky, A. K., Sazhina, I. P., Kabachnik, N. M. Angle-resolved electron spectra in short-pulse two-color xuv+ir photoionization of atoms. Phys. Rev. A, 82, 033420, Septiembre 2010. 78, 79, 99, 100, 121 [64] Maquet, A., Taieb, R. Two-colour ir+xuv spectroscopies: the soft-photon approximation. Journal of Modern Optics, 54 (13-15), 1847-1857, 2007. 78, 79, 97, 120, 135 [65] Meyer, M., Cubaynes, D., O'Keée, P., Luna, H., Yeates, P., Kennedy, E. T., et al. Two-color photoionization in xuv free-electron and visible laser fields. Phys. Rev. A, 74, 011401, Julio 2006. 79 [66] Meyer, M., Cubaynes, D., Glijer, D., Dardis, J., Hayden, P., Hough, P., et al. Polarization control in two-color above-threshold ionization of atomic helium. Phys. Rev. Lett., 101, 193002, Noviembre 2008. [67] Meyer, M. Two-color photoionization of atoms in low and high radiation fields. Journal of Physics: Conference Series, 212 (1), 012018. [68] O'Kée, P., López-Martens, R., Mauritsson, J., Johansson, A., L'Huillier, A., Véniard, V., et al. Polarization effects in two-photon nonresonant ionization of argon with extreme-ultraviolet and infrared femtosecond pulses. Phys. Rev. A, 69, 051401, Mayo 2004. [69] Dusterer, S., Hartmann, G., Babies, F., Beckmann, A., Brenner, G., Buck, J., et al. Angle resolved photoelectron spectroscopy of two-color xuvnir ionization with polarization control. Journal of Physics B: Atomic, Molecular and Optical Physics, 49 (16), 165003. 118 [70] Hayden, P., Dardis, J., Hough, P., Richardson, V., Kennedy, E. T., Costello, J. T., et al. The laser-assisted photoelectric effect of he, ne, ar and xe in intense extreme ultraviolet and infrared laser fields. Journal of Modern Optics, 63 (4), 358-366, 2016. 79 [71] Jiménez-Galán, A., Argenti, L., Martín, F. The soft-photon approximation in infrared-laser-assisted atomic ionization by extreme-ultraviolet attosecond-pulse trains. New Journal of Physics, 15 (11), 113009. 97, 99, 120, 135 [72] Kazansky, A. K., Grigorieva, A. V., Kabachnik, N. M. Dichroism in short-pulse two-color xuv plus ir multiphoton ionization of atoms. Phys. Rev. A, 85, 053409, Mayo 2012. 99, 121 [73] Kazansky, A. K., Bozhevolnov, A. V., Sazhina, I. P., Kabachnik, N. M. Circular dichroism in xuv + ir multiphoton ionization of atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 47 (6), 065602. 99, 121 [74] H Bransden, B., Joachain, C. Physics of Atoms and Molecules. Prentice Hall, 2014. 112 [75] Gramajo, A. A., Picca, R. D., López, S. D., Arbó, D. G. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted xuv atomic ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 51 (5), 055603. 117 [76] Dusterer, S., Rading, L., Johnsson, P., Rouzée, A., Hundertmark, A., Vrakking, M. J. J., et al. Interference in the angular distribution of photoelectrons in superimposed xuv and optical laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 46 (16), 164026. 118 [77] Haber, L. H., Doughty, B., Leone, S. R. Time-resolved photoelectron angular distributions and cross-section ratios of two-colour two-photon above threshold ionization of helium. Molecular Physics, 108 (7-9), 1241-1251, 2010. 118 [78] Mazza, T., Ilchen, M., Rapoor, A. J., Callegari, C., Finetti, P., Plekan, O., et al. Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism. Nature Communications, 5, 3648, 2014. 122 [79] Dichroism in the photoionisation of atoms at fXUVg free-electron lasers. Journal of Electron Spectroscopy and Related Phenomena, 204, Part B, 313 - 321, 2015. 122 [80] Courant, R., Hilbert, D. Methods of Mathematical Physics. Wiley-VCH, 1953. 125
Materias:Física > Física atómica
Divisiones:Investigación y aplicaciones no nucleares > Física > Colisiones atómicas
Código ID:819
Depositado Por:Tamara Cárcamo
Depositado En:01 Mar 2021 09:46
Última Modificación:03 Mar 2021 09:03

Personal del repositorio solamente: página de control del documento