Diseño de blindajes y protección radiológica de un reactor de fusión tipo MIT ARC. / Desing of shielding and radiological protection of a fusion reactor type MIT ARC.

Chang Alcover, Ariel (2019) Diseño de blindajes y protección radiológica de un reactor de fusión tipo MIT ARC. / Desing of shielding and radiological protection of a fusion reactor type MIT ARC. Proyecto Integrador Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
4Mb

Resumen en español

El ARC (asequible, robusto, compacto) es un diseño conceptual de una planta piloto de fusión de 525MW de potencia de fusión. El ARC propone varias soluciones novedosas, como el uso de superconductores de alta temperatura, espiras desmontables y un blanket liquido reproductor de tritio de FLiBe. Se presenta el diseño conceptual del blindaje de las espiras toroidales, así como el blindaje biológico. Se analizan la activación y el calor de decaimiento de distintos componentes luego de 10 años a plena potencia. Para esto se desarrollo un modelo simplificado del reactor y se lo analizo con el código computacional MCNP. Se analiza la importancia del enriquecimiento de Li-6 en el blanket de FLibe y de las paredes de tungsteno y berilio en el valor de la tasa de generación de tritio. Se identifican los componentes principales del circuito primario de refrigeración considerando un ciclo rankine de dos lazos independientes. Empleando el código de calculo de blindajes MicroShield se proponen los blindajes de las componentes del primario.

Resumen en inglés

The ARC (affordable, robust, compact) is a pilot plant conceptual design with 525MW of fusion power. ARC has high temperature superconducting toroidal field coils, which have joints to enable disassemble and a liquid blanket tritium breeding consisting of FLiBe. The conceptual design of the shielding of the toroidal eld coils is presented, and the biological shielding. The activation and decay heat of different components are analyzed after 10 years at full power. A simplied model of the reactor is developed with the radiation transport code MCNP. The importance of the enrichment of Li-6 in the blanket of FLiBe and the walls of tungsten and berylium in the value of tritium breeding ratio is analyzed. The main components of the primary cooling circuit are identified considering a rankine cycle of two independent loops. The MicroShields calculation code is employed to propose the shielding of the components of the primary.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Nuclear)
Palabras Clave:Fusion reactors; Reactores de fusión; Shields; Blindajes; Radiological protection; Protección radiológica
Referencias:[1] Fischerr, D. The effect of fast neutron irradiation on the superconducting properties of rebco coated conductors with and without articial pinning centers. Supercond. Sci. Technol, 31, 2018. [2] Kuang, A. Conceptual design study for heat exhaust management in the arc fusion pilot plant, mit plasma science and fusion center. Cambridge MA, 2018. [3] Jaeger, R. II, 1975. [4] ITER. [5] Association, W. N. Nuclear fusion power. [6] Energy, T. [7] EUROfusion. Introducing alternative fusion concepts: Helion energy. [8] X. Yang, F. C., Y. Petrov. Simulations of high harmonic fast wave heating on the c-2u advanced beam-driven eld-reversed conguration device. EPJ Web Conferences, 2017 [9] B.N. Sorbom, T. P., J. Ball. Arc: A compact, high-eld, fusion nuclear science facility and demonstration power plant with demountable magnets. physics.plasm, 2015. [10] SuperPower. 2g hts wire. [11] Science, P., Fusion Center, M. I. o. T. Sparc. [12] ARN. Arn 10.1.1. [13] D.B. Pelowitz. MCNP6 version 1.0: User's manual, may 2013. Documento LACP- 13-00634, Rev 0. [14] Forrest, I. A. Fispact 2007: User Manual-EASY Documentation Series. EURATOM/ UKNEA Fusion Asociation. [15] Gelles, D. pags. 233-237, 1996. [16] Laila A. El-Guebaly, S. M. Toward the ultimate goal of tritium self-suficiency: Technical issues and requirements imposed on aries advanced power plants. Fusion Engineering and Design, 84, December 2009. [17] Wiki. Fispact ii. [18] Harry, B. 15, 423-427, 1910. [19] Agency, N. E. Ordinary differential equations system sparse matrices. [20] Pacheco, J. E., 2002. [21] Grove Software, Inc. MicroShield 8: User's manual, 2009. [22] Atzeni. pags. 18-20, 2004.
Materias:Ingeniería nuclear > Fusión nuclear
Divisiones:INVAP
Código ID:830
Depositado Por:Tamara Cárcamo
Depositado En:10 Mar 2021 10:08
Última Modificación:10 Mar 2021 10:08

Personal del repositorio solamente: página de control del documento