Dinámica de movimiento animal y dispersión de semillas: modelos teóricos y experimentos. / Dynamics of animal movement and seed dispersal: models and experiments.

Kazimierski, Laila D. (2019) Dinámica de movimiento animal y dispersión de semillas: modelos teóricos y experimentos. / Dynamics of animal movement and seed dispersal: models and experiments. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
57Mb

Resumen en español

Esta tesis se enmarca en el análisis de las propiedades colectivas emergentes en sistemas complejos. Dentro de este marco general, focalizamos nuestro trabajo en el estudio de sistemas formados por unidades dinámicas en un contexto interdisciplinario con la Biología. En particular, inspirados en el movimiento que realiza un animal forrajero en un sustrato del cual se alimenta, trabajamos en la caracterización de sistemas ecológicos que involucran el desplazamiento animal en un hábitat heterogéneo en situaciones en que las poblaciones y el hábitat se acoplan y configuran mutuamente. Por un lado, desarrollamos modelos teóricos de movimiento con foco en los comportamientos que surgen de decisiones y estrategias individuales. En particular, desarrollamos un modelo basado en el movimiento que realiza un caminante con memoria en un sustrato del cual obtiene su alimento. Encontramos que las caminatas resultantes se distinguen de caminatas aleatorias en la medida que el caminante use eficientemente esta memoria. Ademas, desarrollamos un modelo basado en estrategias de uso del recurso: la cantidad de alimento que ingiere en los sitios que visita define su estrategia y determina el tipo de caminata resultante. Por otro lado, desarrollamos un modelo teórico de movimiento con foco en el proceso de dispersión de semillas mediado por animales. Para modelar la dinámica de las semillas utilizamos un sistema de ecuaciones diferenciales acopladas con retardo. Usamos diferentes métodos para aproximar la solución, mediante los cuales propusimos que la vegetación avanza como un frente de onda y logramos caracterizar como depende la velocidad de ese avance con el retardo entre la ingesta de semillas por animales y su deposición en un nuevo sitio. Desarrollamos, ademas, un modelo simulado que valida este comportamiento en 1D y lo extiende a 2D. Por ultimo, en esta tesis trabajamos en el desarrollo de un sistema de monitoreo de movimiento animal usando técnicas de radiotelemetría. El objetivo fue diseñar, desarrollar, caracterizar y utilizar este sistema para rastrear los movimientos de la especie animal que inspiro nuestro trabajo: el marsupial monito del monte (Dromiciops gliroides). Esta etapa experimental se realizo de manera interdisciplinaria en un grupo formado por biólogos, físicos e ingenieros en electrónica.

Resumen en inglés

This thesis is part of the analysis of collective properties emerging in complex systems. Within this general framework, we focus our work on the study of systems formed by dynamic units in an interdisciplinary context with Biology. In particular, in the characterization of ecological systems that involve animal movement in a heterogeneous habitat in situations in which populations and the habitat are coupled and configured mutually, inspired by the movement that makes a forage animal on a substrate from which it feeds. Firstly, we develop theoretical models of movement with focus on the behaviors that emerge from individual decisions and strategies. In particular, we developed a model based on the movement made by a walker with memory in a substrate from which they obtain their food. We nd that the resulting walks are distinguished from random walks as long as the walker uses that memory eciently. We also developed a model based on resource use strategies: the amount of food the animal eats at the sites it visits denes its strategy and determines the type of the resulting walk. Secondly, we developed a theoretical model of movement with focus on the seed dispersal process mediated by animals. To model the dynamics of the seeds we write a system of differential equations coupled with delay. We used different methods to approximate the solution, through which we proposed that the vegetation advances as a wave front and we managed to characterize how the velocity of that advance depends on the delay between the ingestion of seeds by animals and their deposition in a new site. We also developed a simulated model that validates this behavior in 1D and extends it to 2D. Finally, we worked on the development of an animal movement monitoring system using radiotelemetry techniques. The objective was to design, develop, characterize and use this system to track the movements of the animal that inspired our work: the marsupial monito del monte (Dromiciops gliroides). This experimental stage was carried out in an interdisciplinary way in a group formed by biologists, physicists and electrical engineers.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Scattering; Dispersión; Models (Biological); Modelos(Biológicos) [Animal movement; Movimiento animal; Seed dispersal; Dispersión de semilla; Experiments; Experimentos]
Referencias:[1] Okubo, A. Diusion and ecological problems. Springer-Verlag, 1980. [2] Bolker, B., Pacala, S. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Pop. Biol., 52,179-197, 1997. [3] Pastor-Satorras, R., Diaz-Guilera, A. Diusion and ecological problems. Springer-Verlag, 2003. [4] Dieckmann, U., Law, R., Metz, J. A. J. The geometry of ecological interactions. Cambridge University Press, 2000. [5] Watts, D., Strogatz, S. Collective dynamics of \small-world" networks. Theor. Pop. Biol., 393, 440-442, 1998. [6] Amaral, L. A. N., Scala, A., Barthelemy, M., Stanley, H. E. Classes of small-world networks. PNAS, 97, 11149-11152, 2000. [7] Abramson, G., Kuperman, M. N. Social games in a social network. Phys. Rev. E, 63, 2000. [8] Kuperman, M. N., Abramson, G. Small world eect in an epidemiological model. Phys. Rev. Lett., 86, 2909-2912, 2001. [9] Morelli, L. G., Abramson, G., Kuperman, M. N. Associative memory on a smallworld neural network. Eur. Phys. J. B, 38, 495-500, 2004. [10] Gurovich, Y., Stannard, H. J., Old, J. M. The presence of the marsupial Dromiciops gliroides in parque nacional los alerces, chubut, southern Argentina, after the synchronous maturation and flowering of native bamboo and subsequent rodent irruption. Revista Chilena de Historia Natural, 88, 17, 2015. [11] Amico, G., Aizen, M. A. Ecology: Mistletoe seed dispersal by a marsupial. Nature, 408(6815), 929-930, 2000. [12] Amico, G. C., Vidal-Russell, R., Nickrent, D. L. Phylogenetic relationships and ecological speciation in the mistletoe tristerix (loranthaceae): the influence of pollinators, dispersers, and hosts. American Journal of Botany, 94, 558-567, 2007. [13] Morales, J. M., Fortin, D., Frair, J., Merrill, E. Adaptive models for large herbivore movements in heterogeneous landscapes. Landscape Ecology, 20, 301-316, 2005. [14] Morales, J. M., Moorcroft, P., Matthiopoulos, J., Frair, J., Kie, J., Powell, R., et al. Adaptive models for large herbivore movements in heterogeneous landscapes. Landscape Ecology, 20, 301-316, 2005. [15] Nathan, R. An emerging movement ecology paradigm. PNAS, 105, 19050-19051,2008. [16] Smouse, P., Focardi, S., Moorcroft, P., Kie, J., Forester, J., Morales, J. M. Stochastic modelling of animal movement. Phil. Trans. Roy. Soc. B, 365, 2201- 2211, 2010. [17] Carlo, T. A., Morales, J. M. Inequalities in frugivory and seed dispersal: consequences of bird behaviour, neighbourhood density and landscape aggregation. J. of Ecology, 96, 609-618, 2008. [18] Morales, J. M., Carlo, T. A. The eects of plant distribution and frugivore density on the scale and shape of dispersal kernels. Ecology, 87, 1489{1496, 2006. [19] Abramson, G., Kuperman, M. N., Morales, J. M., Miller, J. C. Space use by foragers consuming renewable resources. Eur. Phys. J. B, 87, 100, 2014. [20] Nathan, R. Long-distance dispersal of plants. Science, 313, 786{788, 2006. [21] Traveset, A., Robertson, A. W., Rodriguez-Perez, J. A review on the role of endozoochory in seed germination. seed dispersal: theory and its application in a changing world. CABI Publishing, Wallingford, pags. 78-101, 2007. [22] Herrera, C. M., Pellmyr, O. Seed dispersal by vertebrates. Plant-animal interactions: an evolutionary approach, pags. 185-208, 2002. [23] Herrera, C. M., Jordano, P., Lopez-Soria, L., Amat, J. A. Recruitment of a mast fruiting, bird-dispersed tree: bridging frugivore activity and seedling establishment. Ecological monographs, 64, 315{344, 1994. [24] Wang, B. C., Smith, T. B. Closing the seed dispersal loop. Trends in Ecology Evolution, 17, 379{386, 2002. [25] Jordano, P. Pre-dispersal biology of pistacia lentiscus (anacardiaceae): cumulative eects on seed removal by birds. Oikos, 55, D386, 1989. [26] Herrera, C. M., Jordano, P., Guitian, J., Traveset, A. Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. The American Naturalist, 152, 576{594, 1998. [27] Schupp, E. W., Fuentes, M. Spatial patterns of seed dispersal and the unication of plant population ecology. Ecoscience, 2, 267-275, 1995. [28] Morales, J. M., Ellner, S. P. Scaling up animal movements in heterogeneous landscapes: the importance of behavior. Ecology, 83, 2240{2247, 2002. [29] Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., Fryxell, J. M. Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology, 85, 2436-2445, 2004. [30] Amico, G. C., Rodriguez-Cabal, M., Aizen, M. A. Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a south-andean mistletoe. Ecography, 34, 318-326, 2011. [31] Aizen, M. A., Vazquez, D., Smith-Ramirez, C. Historia natural y conservacion de los mutualismos planta-animal del bosque templado de sudamerica austral. Revista Chilena de Historia Natural, 75, 79-97, 2002. [32] Traveset, A., Heleno, R., Nogales, M. The ecology of seed dispersal. The Ecology of Regeneration in Plant Communities, 3, 62-93, 2013. [33] Reid, N. Coevolution of mistletoes and frugivorous birds? Austral Ecology, 16, 457-469, 1991. [34] Aizen, M. A. Infuences of animal pollination and seed dispersal on winter owering in a temperate mistletoe. Ecology, 84, 2613{2627, 2003. [35] Rodrguez-Cabal, M. A., Garca, M. N. B., Amico, G. C., Aizen, M. A., Sanders, N. Node- by-node disassembly of a mutualistic interaction web driven by species introduction. Ecology, 110, 16503{16507, 2013. [36] Amico, G. C., Rodrguez-Cabal, M. A., Aizen, M. A. The potential key seeddispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecologica, 35, 8-13, 2009. [37] Rodrguez-Cabal, M. A., Aizen, M. A., Novaro, A. J. Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of south america. Biological Conservation, 139, 195-202, 2007. [38] Fonturbel, F., Franco, M., Rodrguez-Cabal, M. A., Rivarola, M. D., Amico, G. C. Ecological consistency across space: a synthesis of the ecological aspects of Dromiciops gliroides in Argentina and Chile. Naturwissenschaften, 99, 873-881, 2012. [39] Carlo, T., Aukema, J., Morales, J. M. Plant-frugivore interactions as spatially explicit networks:integrating frugivore foraging with fruiting plant spatial patterns. Seed dispersal: theory and its application in a changing world, pags. 369-390, 2007. [40] Sasal, Y., Morales, J. M. Linking frugivore behavior to plant population dynamics. Oikos, 122, 95{103, 2013. [41] Daz, G. B., Ojeda, R. A. Libro Rojo de los mamferos Amenazados de la Argentina. SAREM, Mendoza: Sociedad Argentina para el Estudio de los Mamferos, 2000. [42] Fuentes, M., Kuperman, M., Kenkre, V. Nonlocal interaction eects on pattern formation in population dynamics. Phys. Rev. Lett., 91, 158104, 2003. [43] Abramson, G., Giuggioli, L., Parmenter, R. R., Kenkre, V. M. Quasi-onedimensional waves in rodent populations in heterogeneous habitats: A consequence of elevational gradients on spatio-temporal dynamics. J. of Theoretical Biology, 319, 96-101, 2013. [44] Mikhailov, A., Calenbuhr, V. From Cells to Societies. Springer, 2006. [45] Schat, C. L., Kuperman, M. N., Wio, H. S. An exact analytical solution of a three-component model for competitive coexistence. Math. Biosci., 131, 205, 1996. [46] Viswanathan, G. M., da Luz, M. G. E., Raposo, E. P., Stanley. The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, 2011. [47] Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., Stanley, H. E. Levy ight search patterns of wandering albatrosses. Nature, 381, 413{415, 1996. [48] Giuggioli, L., Sevilla, F. J., Kenkre, V. M. A generalized master equation approach to modelling anomalous transport in animal movement. J. Phys. A: Math. Theor., 42, 43, 2009. [49] Borger, L., Dalziel, B. D., Fryxell, J. M. Are there general mechanisms of animal home range behaviour? a review and prospects for future research. Ecol. Lett., 11, 637, 2008. [50] Turchin, P. Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sunderland, Massachusetts, USA: Sinauer Associates, 1998. [51] Ohashi, K., Thomson, J. D., D'Souza, D. Trapline foraging by bumble bees: Iv. optimization of route geometry in the absence of competition. Behav. Ecol., 18, 1, 2007. [52] Bartumeus, F., Catalan, J., Fulco, U. L., Lyra, M. L., Viswanathan, G. M. Optimizing the encounter rate in biological interactions, levy versus brownian strategies. Phys Rev Lett, 88, 097901{1{4, 2002. [53] Fronhofer, E. A., Hovestadt, T., Poethke, H. J. From random walks to informed movement. Oikos, 122, 857{866, 2013. [54] Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal, 24, 346, 1943. [55] Ovaskainen, O. Habitat specic movement parameters estimated using mark recapture data and a diusion model. Ecology, 85, 242{257, 2004. [56] Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61, 65{71, 1980. [57] Rabenold, K. N., Bromer, W. R. Plant communities as animal habitats: eects of primary resources on the distribution and abundance of animals. Plant Animal Interactions, pags. 291{353, 1989. [58] Tan, Z. J., Zou, X. W., Huang, S. Y., Zhang, W., Jin, Z. Z. Random walk with memory enhancement and decay. Phys. Rev. E, 65, 041101, 2002. [59] Schutz, G. M., Trimper, S. Elephants can always remember: exact long-range memory eects in a non-markovian random walk. Phys. Rev. E, 70, 045101, 2004. [60] Flory, P. Principles of Polymer Chemistry. Cornell University Press, 1953. [61] de Gennes, P. G. Scaling Concepts in Polymer Physics. Cornell University Press,1979. [62] Schulz, B., Trimper, S. Random walks in two-dimensional glass-like environments . Phys. Lett. A, 256, 266, 1999. [63] Schulz, B., Trimper, S. Feedback-induced localization in random walks. Phys. Rev. B, 64, 233101, 2001. [64] Keshet, U., Hod, S. Survival probabilities of history-dependent random walks. Phys. Rev. E, 72, 046144, 2005. [65] Paraan, F. N. C., Esguerra, J. P. Exact moments in a continuous time random walk with complete memory of its history. Phys. Rev. E, 74, 032101, 2006. [66] Sapozhbikiv, V. B. Self-attracting walk with nu <1/2. J. Phys. A: Math. Gen., 27, L151, 1994. [67] A. Ordemann, S. H., G. Berkolaiko, Bunde, A. Swelling-collapse transition of self-attracting walks. Phys. Rev. E, 61, R1005, 2000. [68] Ordemann, A., Tomer, E., Berkolaiko, G., Havlin, S., Bunde, A. Structural properties of self-attracting walks. Phys. Rev. E, 64, 046117, 2001. [69] Levey, D. J., Bolker, B. M., Tewksbury, J. J., Sargent, S., Haddad, N. M. Eects of landscape corridors on seed dispersal by birds. Science, 309, 146{148, 2005. [70] Herrera, J. M., Morales, J. M., Garca, D. Dierential efects of fruit availability and habitat cover for frugivore-mediated seed dispersal in a heterogeneous landscape. J Ecol., 99, 1100-1107, 2011. [71] Cresswell, J. E. Spatial heterogeneity, pollinator behaviour and pollinator-mediated gene ow: bumblebee movements in variously aggregated rows of oilseed rape. Oikos, 78, 546-556, 1997. [72] Kazimierski, L. D., Abramson, G., Kuperman, M. N. Random walk model to study cycles emerging from the exploration-exploitation trade-o. Phys. Rev. E, 91, 012124, 2015. [73] Barton, K. A., Phillips, B. L., Morales, J. M., Travis, J. M. J. The evolution of an `intelligent' dispersal strategy, biased, correlated random walks in patchy landscapes. Oikos, 118, 309-319, 2009. [74] Benhamou, S. How many animals really do the levy walk? Ecology, 88, 1962{1969, 2007. [75] Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., et al. Revisiting levy fight search patterns of wandering albatrosses, bumblebees and deer. Nature, 449, 1044-U1045, 2007. [76] Reynolds, A. M. Distinguishing between levy walks and strong alternative models. Ecology, 93, 1228-1233, 2012. [77] Boyer, D., Miramontes, O., Larralde, H. Levy-like behaviour in deterministic models of intelligent agents exploring heterogeneous environments. J. Phys. A: Math. Theor., 42, 434015, 2009. [78] Giuggioli, L., Abramson, G., Kenkre, V. M. Theory of home range estimation from mark-recapture measurements of animal populations. J. Theor. Biol., 240, 126{135, 2006. [79] Lima, G. F., Martinez, A. S., Kinouchi, O. Deterministic walks in random media. Phys. Rev. Lett., 87, 010603, 2001. [80] Shipley, L. A., Spalinger, D. E. Mechanics of browsing in dense food patches: eects of plant and animal morphology on intake rate. Can. J. Zool., 70, 1743-1752, 1992. [81] Moen, R., Pastor, J., Cohen, Y. A spatially explicit model of moose foraging and energetics. Ecology, 78, 505, 1997. [82] Illius, A. W., Gordon, I. J., Elston, D. A., Milne, J. D. Diet selection in goats: a test of intake-rate maximization. Ecology, 80, 1008, 1999. [83] Fryxell, J. M., Wilmshurst, J. F. Predictive models of movement by Serengeti grazers. Ecology, 85, 2429, 2004. [84] Spalinger, D. E., Hobbs, N. T. Mechanisms of foraging in mammalian herbivores: new models of functional response. Am. Nat., 140, 325, 1992. [85] Ginnett, T. F., Demment, M. W. The functional response of herbivores: analysis and test of a simple mechanistic model. Funct. Ecol., 9, 376, 1995. [86] Laca, E. A., Ungar, E. D., Demment, M. W. Mechanisms of handling time and intake rate of a large mammalian grazer. Applied Animal Behaviour Science, 39, 3, 1994. [87] Ungar, E. D., Ravid, N., Zada, T., Ben-Moshe, E., Yonatan, R., Baram, H., et al. The implications of compound chew{bite jaw movements for bite rate in grazing cattle. Applied Animal Behaviour Science, 98, 183-195, 2006. [88] Shipley, L. A. The in uence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos, 116, 1964-1974, 2007. [89] Chacon, E., Stobbs, T. H. Infuence of progressive defoliation of a grass sward on the eating behaviour of cattle. Australian J. Agric. Res., 27, 709, 1976. [90] Hodgson, J. Variations in the surface characteristics of the sward and the shortterm rate of herbage intake by calves and lambs. Grass Forage Sci., 36, 49, 1981. [91] Hodgson, J. The control of herbage intake in the grazing ruminant. Proc. Nutr. Soc., 44, 339, 1985. [92] Neupane, R. C., Powell, J. A. Mathematical model of seed dispersal by frugivorous birds and migration potential of pinyon and juniper in utah. Applied Mathematics, 6, 1506-1523, 2015. [93] Wenny, D. G. Advantage of seed dispersal: a re-evaluation of directed dispersal. Evolutionary Ecology Research, 3, 51-74, 2001. [94] Ridley, H. N. The dispersal of plants throughout the world. Reeve, Asford, UK, 1930. [95] Murray, D. R. Seed dispersal. Academic Press, Sydney, 1986. [96] Bullock, J. M., Kenward, R. E., Hails, R. S. Dispersal ecology: The 42nd symposium of the british ecological society held at the university of reading. Am. J. Bot., Blackwell, Oxford, 2002. [97] Nathan, R., Muller-Landau, H. C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution, 15, 278-285, 2000. [98] Russo, S. E., Portnoy, S., Augspurger, C. K. Incorporating animal behavior into seed dispersal models: implications for seed shadows. Ecology, 87, 3160-3174, 2006. [99] Spiegel, O., Nathan, R. Incorporating dispersal distance into the disperser effectiveness framework: frugivorous birds provide complementary dispersal to plants in a patchy environment. Ecology Letters, 10, 718-728, 2007. [100] Ford, R. G., Krumme, D. W. The analysis of space usepatterns. J. Theor. Biol., 76, 125, 1979. [101] Grinstead, C. M., Snell, J. L. Introduction to probability. American Mathematical Society, 1997. [102] Polya, G. Math. Ann., 84, 149, 1921. [103] Montroll, E. W. Random walks in multidimensional spaces, especially on periodic lattices. J. SIAM, 4, 241, 1956. [104] Stamps, J. A., Krishnan, V. V. A learning-based model of territory establishment. Q. Rev. Biol., 74, 291, 1999. [105] Moorter, B. V., Visscher, D., Benhamou, S., Borger, L., Boyce, M. S., Gaillard, J. M. Memory keeps you at home: a mechanistic model for home range emergence. Oikos, 118, 641, 2009. [106] Fawcett, T. W., Fallenstein, B., Higginson, A. D., Houston, A. I., Mallpress, D. E. W., Trimmer, P. C., et al. The evolution of decision rules in complex environments. Trends Cogn Sci., 18, 153, 2014. [107] Gaan, E. A., Davies, J. The role of exploration in win-shift and win-stay performance on a radial maze. Learning and Motivation, 12, 282{299, 1981. [108] Eliassen, S., Jrgensen, C., Mangel, M., Giske, J. Exploration or exploitation: life expectancy changes the value of learning in foraging strategies. Oikos, 116, 513, 2007. [109] Bell, W. J. Searching behaviour: the behavioural ecology of nding resources. London, UK: Animal Behaviour Series, Chapman & Hall, 1991. [110] MacArthur, R. H., Pianka, E. R. On the optimal use of a patchy environment. Am. Nat., 100, 603-609, 1966. [111] Pyke, G. H., Pulliam, H. R., Charnov, E. L. Optimal foraging-selective review of theory and tests. Q. J. Biol., 52, 137{154, 1977. [112] Stephens, D. W., Krebs, J. R. Foraging theory. Princeton: NJ: Princeton University Press, 1986. [113] Virgilio, A. D., Amico, G. C., Morales, J. M. Behavioral traits of the arboreal marsupial Dromiciops gliroides during Tristerix corymbosus fruiting season. J. Mammal., 95, 1189-1198, 2014. [114] Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol., 9, 129-136, 1976. [115] Fortin, D., Boyce, M. S., Merrill, E. H. Multitasking by mammalian herbivores: overlapping processes during foraging. Ecology, 85, 2312-2322, 2004. [116] Pellew, R. A. Food consumption and energy budgets of the girae. J. Appl. Ecol., 21, 141-159, 1984. [117] Bergman, C. M., Fryxell, J. M., Gates, C. C., Fortin, D. Ungulate foraging strategies: energy maximizing or time minimizing. J. Anim. Ecol., 70, 289-300, 2001. [118] Howe, H. F., Smallwood, J. Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201-228, 1982. [119] Schupp, E. W. Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio, 107/108, 15{29, 1993. [120] Schupp, E. W., Jordano, P., Gomez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytologist, 188, 333-353, 2010. [121] Bullock, J. M., Mallada, G. L., Tamme, R., Gtzenberger, L., White, S. M., Prtel, M., et al. A synthesis of empirical plant dispersal kernels. J. Ecol., 105, 6-19, 2017. [122] Tamme, R., Gtzenberger, L., Zobel, M., Bullock, J. M., Hooftman, D. A. P., Kaasik, A., et al. Predicting species' maximum dispersal distances from simple plant traits. Ecology, 95, 505-513, 2014. [123] Muller-Landau, H. C., Wright, S. J., Caldern, O., Condit, R., Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecology, 96, 653-667, 2008. [124] Pitelka, L. F. Plant migration and climate change. Am. Sci., 85, 464{473, 1997. [125] Cain, M. L., Milligan, B. G., Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot., 87, 1217-1227, 2000. [126] Dore, W. G., Raymond, L. C. Viable seeds in pasture soil and manure. Sci. Agric., 23, 69-79, 1942. [127] Welch, D. Studies in the grazing of heather moorland in northeast scotland. iv. seed dispersal and plant establishment in dung. J. Appl. Ecol., 22, 461-472, 1985. [128] Malo, J. E., Jimenez, B., Suarez, F. Herbivore dunging and endozoochorous seed deposition in a mediterranean dehesa. J. Range Manage, 53, 322-328, 2000. [129] Heinken, T., Hanspach, H., Raudnitschka, D., Schaumann, F. Dispersal of vascular plants by four species of wild mammals in a deciduous forest in ne germany. Phytocoenologia, 32, 627-643, 2002. [130] Vellend, M., Myers, J. A., Gardescu, S., Marks, P. L. Dispersal of trillium seeds by deer: implications for long-distance migration of forest herbs. Ecology, 84, 1067-1072, 2003. [131] Murray, K. G. Avian seed dispersal of three neotropical gap-dependent plants. Ecological Monographs, 58, 271-298, 1988. [132] Pakeman, R. J. Plant migration rates and seed dispersal mechanisms. J. Biogeography, 28, 795-800, 2001. [133] Neubert, M. G., Caswell, H. Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations. Ecology, 81, 1613-1628, 2000. [134] Neubert, M. G., Kot, M., Lewis, M. A. Dispersal and pattern formation in a discrete-time predator-prey model. Theoretical Population Biology, 48, 7-43, 1995. [135] Hadeler, K. P., Ruan, S. Interaction of diffusion and delay. Discrete and Continuous Dynamical Systems-Series B, 8, 95-105, 2007. [136] Morita, Y. Desestabilization of periodic solutions arising in delay-diffusion systems in several space dimensions. Japan J. Appl. Math., 1, 39-65, 1984. [137] de Oliveira, L. A. F. Instability of homogeneous periodic solutions of parabolic-delay equations. J. Dierential Equations, 109, 42-76, 1994. [138] Faria, T. Bifurcation aspects for some delayed population models with diusion. Fields Institute Communications, 21, 143-158, 1999. [139] Freitas, P. Some results on the stability and bifurcation of stationary solutions of delay-diusion equations. J. Math. Anal. Appl., 206, 59-82, 1997. [140] Murray, J. D. Mathematical Biology. Springer, Berlin, 1989. [141] Estrada, R., Kanwal, R. P. Asymptotic analysis. Birkhauser, 1994. [142] Wu, J., Zou, X. Traveling wave fronts of reaction-diffusion systems with delay. J. Dynamics Dierential Equations, 13, 651-687, 2001. [143] Zou, X. Delay induced traveling wave fronts in reaction diffusion equations of kpp-sher type. Journal of Computarional and Applied Mathematics, 146, 309-321, 2002. [144] Kelt, D. A., Martinez, D. R. Notes on distribution and ecology of two marsupials endemic to the valdivian forests of southern south america. Journal of Mammalogy, 70, 220-224, 1989. [145] Martin, G. M. Geographic distribution and historical occurrence of Dromiciops gliroides (Metatheria: Microbiotheria). Journal of Mammalogy, 91, 1025-1035, 2010. [146] Fonturbel, F. E., Jimenez, J. Environmental and ecological architects: guidelines for the chilean temperate rainforest management derived from the monito del monte (Dromiciops gliroides) conservation. Revista Chilena de Historia Natural, 84, 203-211, 2011. [147] Amico, G. C., Rodrguez-Cabal, M. A., Aizen, M. A. Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a southandean mistletoe. Ecography, 34, 318-326, 2011. [148] Oliver, A. B. Efectos del comportamiento de dispersores en la dinámica de plantas: selección de hábitat y patrones de movimiento del monito del monte (Dromiciops gliroides) y sus efectos en la dinámica poblacional de la planta parásita aérea Tristerix corymbosus. Tesis de Licenciatura, Universidad Nacional del Comahue, 2017. [149] Aizen, M. A. Influences of animal pollination and seed dispersal on winter owering in a temperate mistletoe. Ecology, 84, 2613-2627, 2003. [150] Armesto, J. J., Rozzi, R., Smith-Ramirez, C., Arroyo, M. T. K. Conservation targets in south american temperate forests. Science, 282(5392), 1271-1272, 1998. [151] Rodriguez-Cabal, M. A., Amico, G. C., Novaro, A., Aizen, M. A. Population characteristics of Dromiciops gliroides an endemic marsupial of the temperate forest of patagonia. Mammalian Biology, 73, 74-76, 2008. [152] Ormazabal, C. Plan de acción forestal para Chile. Informe nal. Comisión de medio ambiente. Resultados y propuestas., pág. 33, 1992. [153] Lara, A., Donoso, C., Aravena, J. C. La conservación del bosque nativo de Chile: problemas y desafíos. Ecología de Los Bosques Nativos de Chile, 1996. [154] Fonturbel, F. E., Silva-Rodriguez, E. A., Cardenas, N. H., Jimenez, J. E. Spatial ecology of monito del monte (Dromiciops gliroides) in a fragmented landscape of southern Chile. Mammalian Biology, 75, 1-9, 2009. [155] Fonturbel, F. E., Salazar, D. A. Beyond habitat structure: landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees. Integrative Zoology, 11, 413-421, 2016. [156] Kays, R., Tilak, S., Crofoot, M., Fountain, T., Obando, D., Ortega, A., et al. Tracking animal location and activity with an automated radio telemetry system in a tropical rainforest. The Computer Journal Advance Access, 2011. [157] Boonstra, R., Craine, I. T. M. Natal nest location and small mammal tracking with a spool and line technique. Canadian Journal of Zoology, 64, 1034-1036, 1986. [158] White, G. C., Garrot, R. A. Analysis of wildlife radio-tracking data. Academic Press, 1990. [159] Millspaugh, J. J., Marzlu, J. M. Radio tracking and animal populations. Academic Press, 2001. [160] Mishra, M., Potnis, A., Dwivedy, P., Meena, S. K. Software defined radio based receivers using rtl-sdr: A review. Proceeding International conference on Recent Innovations is Signal Processing and Embedded Systems (RISE-2017, 27-29, 2017. [161] SDR-Radio. Software Dened Radio. http://www.sdr-radio.com/. [162] Javaid, R., Qureshi, R., Enam, R. N. Rssi based node localization using trilateration in wireless sensor network. Bahria University Journal of Information Communication Technologies, 8, 2, 2015. [163] Oguejiofor, O. S., Okorogu, V. N., Adewale, A., Osuesu, B. O. Outdoor localization system using rssi measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2, 2, 2013. [164] Rani, K., Saluja, D. A review on design and applications of nyquist lter. Electronics and Communication, 02, 33{37, 2017. [165] Mathworks. FIR Nyquist Filter Design. https://www.mathworks.com/--/dsp/ref/fdesign.nyquist.html/. [166] Bevelacqua, P. Antenna theory. 2009. [167] CST. Computer Simulation Technology. https://www.cst.com. [168] Zollner, P. A., Lima, S. L. Search strategies for landscape-level interpatch movements.Ecology, 80, 1019-1030, 1999. [169] Volpert, V., Petrovskii, S. Reaction-diffusion waves in biology. Physics of Life Reviews, 6, 267-310, 2009.
Materias:Física > Sistemas complejos
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria
Código ID:847
Depositado Por:Tamara Cárcamo
Depositado En:01 Mar 2021 09:08
Última Modificación:01 Mar 2021 09:08

Personal del repositorio solamente: página de control del documento