Receptor digital de comunicaciones ópticas de alta capacidad / High capacity optical communications digital receiver

Moreno Morrone, Juan L. (2019) Receptor digital de comunicaciones ópticas de alta capacidad / High capacity optical communications digital receiver. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3993Kb

Resumen en español

Durante los últimos años hubo un crecimiento en la demanda de tasas de transmisi ón por parte de los usuarios por el surgimiento de aplicaciones de uso masivo como Internet, servicios de video de alta denición, comunicación entre data centers, juegos en línea y cómputo en la nube. Esto impone nuevos desafíos a las comunicaciones ópticas long-haul para satisfacer las demandas de los consumidores. En este trabajo se estudió el funcionamiento y desarrolló el DSP de un receptor de comunicaciones ópticas de alta capacidad, programado en un lenguaje de alto nivel, como MATLAB, y para operar oine. A su vez, se desarrolló un compensador de la automodulación de fase y la dispersión cromática, basado en el método de Digital Backpropagation (DBP), como reemplazo a un bloque que solo compensa la dispersión cromática (EDC). Finalmente se presentan resultados obtenidos sobre datos medidos a 84 Gbaud para una modulación DP-QPSK en distancias hasta 2880 km, obtenidos por una colaboración del Prof. Pablo A. Costanzo Caso del Instituto Balseiro y del LIAT, y el Laboratorio Photonics Systems Group del Prof. David V. Plant de la universidad McGill (Canadá). Se obtienen mejoras potenciales de hasta 820 km para una BER de 10􀀀3 al utilizar DBP respecto a utilizar EDC.

Resumen en inglés

During the past decades the demand for greater transmission rates grew steadily, mainly due to the arrival of massive use applications such as Internet, high-denition streaming video, data center communications, online gaming, and cloud computing. This imposes new challenges on long-haul optical communications to satisfy the demands of the consumers. In this work, the study of the operation and the development of a high capacity optical communications receiver was performed. The receiver was programmed in a high-level programming language, such as MATLAB, and intended to be operated in an oine manner. Also, a Self-Phase Modulation and Chromatic Dispersion compensator based on Digital Backpropagation was developed, as a replacement of a block that only compensates the Chromatic Dispersion (EDC). Finally, results were presented for DP-QPSK measurements at 84 Gbaud and distances up to 2880 km (obtained thanks to a collaboration between Prof. Pablo A. Costanzo Caso of the Instituto Balseiro and LIAT, and the Photonics Systems Group lead by Prof. David V. Plant at McGill University, Canada), showing an improvement of up to 820 km for a BER of 10􀀀3 when using DBP instead of EDC.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Optical fibers; Fibras ópticas; [High capacity optical communication; Comunicaciones ópticas de alta capacidad; Signal processing; Procesamiento de señales; Nonlinear processing; Procesamiento no lineal; Digital communications; Comunicación Digital; Digital backpropagation method; Métodos de digital backprogation]
Referencias:[1] Sandvine, The Global Internet Phenomena Report: October 2018, Consultado el 27 de Mayo de 2019 en URL: https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomenareport. pdf vii, 1 [2] Arsat, Tráfico de Internet entrante y saliente, Consultado el 27 de Mayo de 2019 en URL: https://datos.arsat.com.ar/visualizas/30053/trafico-de-internet-entrante-y-saliente/ v, 1, 2 [3] Peter J. Winzer, High-Spectral-Efficiency Optical Modulation Formats, J. Lightwave Technol. Vol. 30, Issue 24, pp. 3824-3835 (2012) v, 2 [4] R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini and B. Goebel, Capacity Limits of Optical Fiber Networks,ïn Journal of Lightwave Technology, vol. 28, no. 4, pp. 662-701, Feb.15, 2010. v, 3 [5] P A. Costanzo Caso, Christian Cuadrado Laborde, R Duchowicz, E Sicre, Distortion in optical pulse equalization through phase modulators and dispersive transmission, Optics Communications, 281, pp. 4001-4007, 2008. 4 [6] P A. Costanzo Caso, R Duchowicz, E Sicre, Optical Pulse Compression by Photonic Devices, Latin American Applied Research, Vol. 39 (3), pp. 213-217, 2009. [7] L A. Bulus Rossini, Pablo A. Costanzo Caso, R Duchowicz, E Sicre, Optical Pulse Compression Using the Temporal Radon-Wigner Transform, Optics Communications, vol. 283, pp. 25292535, 2010. [8] L A. Bulus Rossini, P A. Costanzo Caso, R Duchowicz, and E E. Sicre, Compression and equalization of arbitrary form pulses for optical fiber applications, Proc. SPIE 8011, 801150 (2011). 4 [9] J. P. Pascual, Yanet Estrada, L Morbidel, P A. Costanzo Caso, Compensación de dispersión mediante filtrado digital en sistema óptico con modulación OOK, Actas Congreso Argentino de IEEE (ARGENCON) junio 2018, Tucumán. 4 [10] A Natoli, E Paulucci, L A. Bulus Rossini y P A. Costanzo Caso, Control de efectos no lineales y dispersión en Sistema WDM de Comunicaciones Ópticas, Congreso Argentino de IEEE (ARGENCON) Septiembre 2014, Bariloche. 33 [11] A Natoli, L A. Bulus Rossini y P A. Costanzo Caso, Optimization of the control of dispersion and nonlinear effects in WDM communication systems, Actas de XVI Reunión de Procesamiento de la Información y Control (RPIC) Octubre 2015, Córdoba. [12] E. Battocchio, J. L. Moreno Morrone, L. A. Bulus Rossini, J. P. Pascual y P. A. Costanzo Caso, Linear and Non-Linear Compensation in High Capacity Optical Communication Systems, 2018 IEEE Biennial Congress of Argentina (ARGENCON), San Miguel de Tucumán, Argentina, 2018, pp. 1-7. 4, 33, 38, 45, 47 [13] G Zoire, P A. Costanzo Caso, Laureano A. Bulus Rossini, Analysis of nonlinear companding techniques for short range DMT optical links, Actas Congreso Argentino de IEEE (ARGENCON) 2018, junio Tucumán. 4 [14] G. Zoire, P. A. Costanzo Caso, L. A. Bulus Rossini, On the Performance of Companding Techniques for DMT Optical Links, submitted to Journal of Lightwave Technology, May 2019. 4 [15] Erik Agrell et al. Roadmap of optical communications, 2016 J. Opt. 18 063002 5 [16] M Barturen, J Milano, N Abadía, P A. Costanzo Caso, D Plant,Manipulation of extinction features in frequency combs through the usage of graphene, Optics Express, Vol. 26, 12, pp. 15490-15502 (2018). 10 [17] M.C. Bustillos, G.F. Rinalde, L. A. Bulus Rossini, N. Abadía, and P. A. Costanzo Caso, C-Band tunable laser modeling and simulation, IET Optoelectronics, submitted 2019. [18] M. Barturen, N. Abadía, P. A. Costanzo Caso, "Latest advances in microresonator based frequency combs," IET Optoelectronics, submitted 2019. [19] M.C. Bustillos, G.F. Rinalde, P. A. Costanzo Caso and L. A. Bulus Rossini, CBand Tunable Laser Control for WDM Optical Comunications Networks, submitted RPIC 2019. 10 [20] Simon Haykin, Digital communication systems. 1ra Edición. John Wiley & Sons, Inc, EE. UU., 2014. ISBN 978-0-471-64735-5. v, 8, 9, 13 [21] Govind P. Agrawal, Fiber-optic communication systems. 4ta Edición. John Wiley & Sons, Inc, Hoboken, New Jersey, EE. UU. 2010. ISBN 978-0-470-50511-3. 9, 15, 16, 17, 19 [22] Leonardo Didier Coelho, Modeling, Simulation and Optimization of Optical Communication Systems using Advanced Modulation Formats. Tesis de Doctorado en Ingeniería, Fakultät für Elektrotechnik und Informationstechnik, Technische Universität München, 2010. 10, 11, 18, 24, 34 [23] B.E.A. Saleh & M.C. Teich, Fundamentals of Photonics. 2da Edición. John Wiley & Sons, Inc, EE. UU., 2007. ISBN 978-0-471-35832-9. 10 [24] Matthias Seimetz, High-Order Modulation for Optical Fiber Transmission. 1ra Edición. Springer, Berlin, Alemania. 2009. ISBN 978-3-540-93771-5. 10, 20, 21 [25] Evelin Battocchio, Procesamiento no lineal en sistemas WDM de alta capacidad. Tesis de Maestría en Ingeniería, Laboratorio de Investigación Aplicada en Telecomunicaciones, Instituto Balseiro, Universidad Nacional de Cuyo, CNEA, Diciembre 2017. 11, 38, 45 [26] John G. Proakis, Digital communications. 2da Edición. McGraw-Hill Book Company, Singapur, 1989. ISBN 0-07-100269-3 13 [27] J. P. Pascual, Y Estrada, Mauricio Tosi, P A. Costanzo Caso, Ecualización de desbalances en el fotodetector de un sistema óptico con modulación DPSK, Actas Congreso Argentino de IEEE (ARGENCON) junio 2018, Tucumán. 21 [28] Milorad Cvijetic & Ivan B. Djordjevic, Advanced optical communication: Systems and Networks. 1ra Edición. Artech House, Boston, Londres. 2013. ISBN 978-1-60807-555-3 20, 21, 46, 53 [29] Govind P. Agrawal, Nonlinear Fiber Optics. 5ta Edición. Academic Press, Oxford, UK. 2013. ISBN 978-0-12397-023-7 24, 32 [30] Ivan P. Kaminow, Tingye Li, Alan E. Wilner, Optical Fiber Teleccomunications: VIB Systems and Networks. 6ta Edición. Academic Press, Oxford, UK. 2013. ISBN 978-0-12-396960-6 32 [31] Mohammed Y. S. Sowailem et al.,770-Gb/s PDM-32QAM Coherent Transmission Using InP Dual Polarization IQ Modulator,IEEE Photonics Technology Letters vol 29, NO. 5, March 1, 2017. vi, vi, 35, 36, 37 [32] Mohammed Y. S. Sowailem et al., 400-G Single Carrier 500-km Transmission With an InP Dual Polarization IQ Modulator, IEEE Photonics Technology Letters,vol 28, NO. 11, June 1, 2016. vi, 35, 37, 38, 59, 63 [33] Mohammed Y. S. Sowailem et al., Impact of Chromatic Dispersion Compensation in Single Carrier Two-Dimensional Stokes Vector Direct Detection System, IEEE Photonics Journal,vol 9, I. 4, August, 2017. [34] Mohammed Y. S. Sowailem, High-Speed Optical Systems for Intra and Inter Datacenter Networking, Department of Electrical and Computer Engineering, McGill University. 35, 37 [35] M. Tosi, A. Fasciszewki, N. Abadía, LA Bulus Rossini and P. A. Costanzo Caso, Silicon Nitride Polarization Beam Splitters: A Review, IET Optoelectronics, May 2019. 37 [36] S.J. Savory, Digital Coherent Optical Receivers: Algorithms and subsystems, IEEE J. Sel. Topics Quantum Electron., vol. 16. no. 5, pp. 1164-1179, Sep/Oct. 2010. 38, 54, 61 [37] P. Ciblat and M. Ghogho, Blind NLLS carrier frequency-oset estimation for QAM, PSK and PAM modulations: Performance at low SNR, IEEE Trans. Commun., vol. 54, no. 10, pp. 1725-1730, Oct. 2006. 38, 47, 61 [38] Y. Han and G. Li, Coherent optical communication using polarization multipleinput-multiple-output, Opt. Express, Vol. 13, Issue 19, pp. 7527-7534 (2005) 38 [39] I. Fatadin, D. Ives and S. J. Savory, Compensation of Frequency Oset for Dierentially Encoded 16- and 64-QAM in the Presence of Laser Phase Noise, IEEE Photonics Technology Letters, vol. 22, no. 3, pp. 176-178, Feb.1, 2010. 38 [40] Mathworks, resample: Resample uniform or nonuniform data to new - xed rate, Documentación web. Consultado el 17 de Mayo de 2019, URL: https://www.mathworks.com/help/signal/ref/resample.html. 43 [41] Mathworks, rls: Least-squares linear-phase FIR lter design, Documentación web. Consultado el 17 de Mayo de 2019, URL: https://www.mathworks.com/help/signal/ref/rls.html 44 [42] Mathworks, uprdn: Upsample, apply FIR lter, and downsample, Documentación web. Consultado el 17 de Mayo de 2019, URL: https://www.mathworks.com/help/signal/ref/uprdn.html 45 [43] Dimitris G. Manolakis and Vinay K. Ingle, Applied Digital Signal Processing: Theory and practice, 1ra Edición. Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK. 2011. ISBN 978-0-521-11002-0 45 [44] Juan L. Moreno Morrone, Laureano A. Bulus Rossini, Leonardo Morbidel, Pablo A. Costanzo Caso, Simple method to measure the ber optic nonlinear coecient using a Sagnac interferometer Enviado a la XVIII Reunión de trabajo en Procesamiento de la Información y Control. 47, 63 [45] M P. Fernández, L A. Bulus Rossini, Pablo A. Costanzo Caso, Method for real-time measurement of the nonlinear refractive index, enviado a Applied Physics Letter, April 2019. 47 [46] L. B. Du et al., Digital Fiber Nonlinearity Compensation: Toward 1-Tb/s transport, in IEEE Signal Processing Magazine, vol. 31, no. 2, pp. 46-56, March 2014. doi: 10.1109/MSP.2013.2288110 46 [47] A. Viterbi, Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission, IEEE Transactions on Information Theory, vol. 29, no. 4, pp. 543-551, July 1983. 47, 61 [48] Olivier Besson, Petre Stoica, Nonlinear Least-Squares Approach to Frequency Estimation and Detection for Sinusoidal Signals with Arbitrary Envelope,Digital Signal Processing, Volume 9, Issue 1, 1999, Pages 45-56, ISSN 1051-2004. 49 [49] S.J. Savory, Digital filters for coherent optical receivers, Opt. Express Vol. 16, Issue 2, pp. 804-817 (2008) 54 [50] Yan Han and Guifang Li, Coherent optical communication using polarization multiple-input-multiple-output, Vol. 13, Issue 19, pp. 7527-7534 (2005) 54 [51] I. Fatadin, D. Ives and S. J. Savory, Compensation of Frequency Offset for Differentially Encoded 16- and 64-QAM in the Presence of Laser Phase Noise, in IEEE Photonics Technology Letters, vol. 22, no. 3, pp. 176-178, Feb.1, 2010. 56, 62 [52] UIT-T G.975.1 (02/2004), Corrección de errores en recepción para sistemas submarinos con multiplexación por división en longitud de onda densa de alta velocidad binaria. SERIE G: SISTEMAS Y MEDIOS DE TRANSMISIÓN, SISTEMAS Y REDES DIGITALES. Secciones digitales y sistemas digitales de línea Sistemas en cables submarinos de bra óptica 59
Materias:Ingeniería en telecomunicaciones > Comunicaciones ópticas
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
Código ID:848
Depositado Por:Tamara Cárcamo
Depositado En:31 Mar 2021 09:48
Última Modificación:12 Abr 2021 12:14

Personal del repositorio solamente: página de control del documento