Diseño conceptual de modulo robótico de inspección para ambientes subacuáticos. / Conceptual desing of robotic inspection module for underwater environments.

Robador, Eduardo M. (2014) Diseño conceptual de modulo robótico de inspección para ambientes subacuáticos. / Conceptual desing of robotic inspection module for underwater environments. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
76Mb

Resumen en español

En este trabajo se diseño un modulo robótico de inspección para ambientes subacuáticos cerrados. La motivación es facilitar las tareas de inspección visual de los internos de los recipientes de presión de reactores nucleares. Tradicionalmente, esto se realiza de forma manual durante el recambio de combustibles, lo que presenta inconvenientes, como la falta de precisión en el control de la cámara y el empleo de muchos operarios, con la consiguiente exposición a la radiación. El trabajo se encaro desde el diseño conceptual del vehículo subacuático, haciendo especial énfasis en el sistema de propulsión. Los principales requerimientos considerados fueron: el tamaño compacto, forma suave, peso liviano, flexibilizad y manejabilidad con buena precisión para movimientos a bajas velocidades. Esto llevo a optar por una configuración esférica para la carcasa del robot, con un sistema de propulsión, basado en chorros de agua, proporcionados por pequeñas bombas hidráulicas, y direccionados por servomotores; ubicados de manera específica para obtener todos los movimientos deseados. Para verificar la factibilidad del proyecto y validar el diseño conceptual, se desarrollo un primer prototipo de este robot esférico subacuático, con materiales de fácil adquisición en el mercado local. Para la carcasa se utilizaron semiesferas de acrílico de 25 cm de diámetro y para el sistema de propulsión se emplearon bombas de lava parabrisas y servomotores que se impermeabilizaron con selladores de poliuretano. Por ultimo, se realizaron pruebas experimentales que confirmaron cualitativamente el diseño ideado; y se planteo un modelo dinámico preliminar basado en estos experimentos, para obtener estimaciones cuantitativas entre los parámetros de control y los movimientos logrados del robot. En base a la experiencia adquirida durante el diseño, la construcción del prototipo y los ensayos, se propusieron mejoras y caminos a seguir para la continuación del proyecto.

Resumen en inglés

In this work, the design of a robotic inspection module for closed underwater environments is presented. The motivation is to simplify the tasks of visual inspection of the internal pressure vessels of nuclear reactors. Traditionally, this is done manually during fuel exchange, which has drawbacks, such as lack of precise control of the camera and the employment of many workers, with consequent exposure to radiation. The work covers the conceptual design of the underwater vehicle. The main requirements considered were a compact size, a smooth and, light weight body, flexibility and precise maniobrability for low-speed movements. This led to the use of a spherical configuration for the housing of the robot, with a propulsion system, based on water jets, provided by small hydraulic pumps and directed by servo motors; located specically to obtain all the desired movements. To verify the feasibility of the project and conrm the conceptual design, the rst prototype of this spherical underwater robot was developed with materials readily available in the local market. Two acrylic hemispheres with a diameter of 25 cm were used as the housing of the robot, car windshield washer pumps and servomotors -waterproofed with polyurethane sealants- were used for the propulsion system. Finally , experimental tests were performed, which qualitatively conrmed the developed design; and a preliminary dynamic model was proposed to obtain a cuantitative relationship between the control commands and the obtained movement. Based on the acquired experience during design, prototype construction and experiments, several modications are suggested and also possible continuation paths for the project.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Mecánica)
Palabras Clave:Underwater; Subacuatico; Robots; Autómatas; [Nuclear applications; Aplicaciones nucleares; Jets propulsion; Propulsión jets]
Referencias:[1] White, F. M. Fluid Mechanics. 4a editon. WCB/McGraw-Hill, 2008. v, v, 35, 36, 41, 42, 87 [2] Cho, B., Byun, S., Shin, C., Yang, J., Song, S., Oh, J. Keprovt : underwater robotic system for visual inspection of nuclear reactor internals. Elsevier, Nuclear Engineering and Design, (231), 327 - 335, March 2004. ix, x, 2, 3, 12 [3] Mazumdar, A., Asada, H. H. A compact underwater vehicle using high bandwidth coanda-effect valves for low speed precision maneuvering in cluttered environments. En: Proc. of the IEEE International Conference on Robotics and Automation, págs. 1544-1550. 2011. ix, x, 14, 15, 83 [4] Lardies, O. L. Ensayos no destructivos: 662 preguntas de test resueltas : una colección de test, todos ellos resueltos, para la formacion tecnica en END para ciclos formativos y carreras técnicas. Educalia, 2012. 1 [5] Houssay, L. P. Robotics and radiation hardening in the nuclear industry. Proyecto Fin de Carrera, University of Florida, 2000. 2, 3 [6] Inzartsev, A. V. (ed.) Underwater Vehicles. www.intechweb.org: In-Tech, 2009. 4, 10 [7] Asada, H. H., Rust, I. C. A dual-use visible light approach to integrated communication and localization of underwater robots with application to nondestructive nuclear reactor inspection. En: Proc. of the IEEE International Conference on Robotics and Automation, págs. 2445 - 2450. 2012. 7, 14 [8] Sumantr, B., Karsiti, M., Agustiawan, H. Development of variable ballast mechanism for depth positioning of spherical urv. En: Proc. of the IEEE International Conference on Robotics and Automation. 2008. 7 [9] Anderson, C. Diy drones, the leading company for personal uavs, 2010. URL http://diydrones.com/. 9 [10] Antonelli, G., Fossen, T. I., Yoerger, D. R. Springer Handbook of Robotics, cap. 11, págs. 987 - 1008. SpringerVerlag Berlin Heidelberg, 2008. 9 [11] Liang, X., Pang, Y., Wan, L., Wang, B. Dynamic Modelling and Motion Control for Underwater Vehicles with Fins, cap. 28, págs. 551 - 567. In-Tech, 2009. 10 [12] G.G, A., H., C., O., C. I., S., R. Some Issues on the Design of a Low-Cost Autonomous Underwater Vehicle with an Intelligent Dynamic Mission Planner for Pipeline and Cable Tracking, cap. 1, pags. 11 - 28. In-Tech, 2009. 10 [13] Wood, S. Autonomous Underwater Gliders, cap. 26, pags. 511 - 536. In-Tech, 2009. 10 [14] Stackpole, E. Openrov - open source underwaters robots for exploration and education, 2013. URL http://openrov.com/. 10 [15] Lam, B. My underwater robot, 2013. URL http://www.ted.com/talks/david_lang_my_underwater_robot?utm_source=email&source=email&utm_medium=social&utm_campaign=ios-share. 12 [16] Engineering, D. O. Deep ocean engineering, 2001. URL http://www.deepocean.com/. 12 [17] CIDTech. Thermo scientic, 2001. URL http://www.thermoscientific.com/.12 [18] Cho, B.-H., Park, J.-Y., Lee, J.-K. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using time delay control. Elsevier, Nuclear Engineering and Design, (239), 2543 - 2551, July 2009. 14 [19] Sung-UkLee, Young-SooChoi, Jeong, K.-M., Jung, S. Development of an underwater manipulator for maintaining nuclear power reactor. En: International Conference on Control, Automation and Systems, pags. 1006-1010. 2007. 14 [20] Mazumdar, A., Lozano, M., A., F., Asada, H. H. A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems. En: Proc. of the IEEE International Conference on Robotics and Automation, pags. 2818 - 2823. 2012. 14 [21] Mazumdar, A., Asada, H. H. Valve-pwm control of integrated pump-valve propulsion systems for highly maneuverable underwater vehicles. En: American Control Conference, pags. 5414 - 5420. 2012. 14 [22] Mazumdar, A., Lozano, M., A., F., Asada, H. H. Omni-egg: A smooth, spheroidal, appendage free underwater robot capable of 5 dof motions. En: Proc. of the IEEE International Conference on Robotics and Automation. 2013. 14 [23] Mazumdar, A., Asada, H. H. Control-congured design of spheroidal, appendagefree, underwater vehicles. En: Proc. of the IEEE International Conference on Robotics and Automation. 2013. 14 [24] Mazumdar, A., Chuah, M., Triantafyllou, M., Asada, H. Design for precision multi-directional maneuverability: Egg-shaped underwater robots for infrastructure inspection. En: Proc. of the IEEE International Conference on Robotics and Automation. 2014. 15 [25] Ltd, T. M. Tcs micropumps, design and manufacture of high performance miniature pumps, 2013. URL http://www.micropumps.co.uk/index.html. 16, 50, 53 [26] Kirshner, J. Design Theory of fluidyc components. New York: NY, USA: Academic, 1975. 16 [27] Lin, X., Guo, S. Development of a spherical underwater robot. En: Proc. of the IEEE-IICME International Conference on Complex Medical Engineering, pags. 662 - 665. 2011. 18 [28] Yue, C., Guo, S., Li, Y. Passive and active attitude stabilization method for the spherical underwater robot (sur-ii). En: Proc. of the IEEE-IICME International Conference on Robotics and Biomimetics (ROBIO), pags. 1019 - 1023. 2013. 18, 22 [29] Lin, X., Guo, S., Tanaka, K., Hata, S. Underwater experiments of a water-jet-based spherical underwater robot. En: Proc. of the IEEE International Conference on Mechatronics and Automation, pags. 738 - 742. 2011. 22 [30] Lin, X., Guo, S., Yue, C., Juan, D. Analysis and improvement of the waterjet propulsion system of a spherical underwater robot. En: Proc. of the IEEE International Conference on Mechatronics and Automation, pags. 2208 - 2213. 2012. 22 [31] Lin, X., Guo, S., Shi, L., Juan, D. Characteristics evaluation of the vertical motion of a spherical underwater robot. En: Proc. of the IEEE International Conference on Robotics and Biomimetics (ROBIO), pags. 759 - 764. 2012. 22, 59, 83, 85, 86 [32] Prasad, B., Agrawal, A., Viswanathan, V., Yadav, P., Kumar, R., Panda, S. K. Energy-effcient optimal thrust allocation for spherical underwater robot. IEEE, 2012. 22 [33] Agrawal, A., Prasad, B., Viswanathan, V., , Panda, S. K. Dynamic modeling of variable ballast tank for spherical underwater robot. IEEE, pags. 58 - 63, 2013. 22 [34] Lin, X., Guo, S., Yue, C., Juan, D. 3d modelling of a vectored water jet-based multi-propeller propulsion system for a spherical underwater robot. International Journal of Advanced Robotic Systems, Jul 2012. 22 [35] Guo, S., Yue, C., Shi, L. Hydrodynamic analysis of the spherical underwater robot sur-ii. International Journal of Advanced Robotic Systems, April 2013. 22 [36] Guo, S., Yue, C., Li, M. Ansys uent-based modeling and hydrodynamic analysis for a spherical underwater robot. En: Proc. of the IEEE International Conference on Mechatronics and Automation, pags. 1577 - 1581. 2013. 22 [37] Newson, E., Randle, K., Wells, O., Mills, N., Venning, L., Richardson, P. Water Jet ROV. Proyecto Fin de Carrera, University of Southampton, 2001. 22, 44, 82 [38] Szczerbaty, E., Borral, R. Centro atomico: Nuclear-resistant investigative submarine. Inf. tec., CNEA: Comision Nacional de Energa Atomica, 2013. 22 [39] Choi, H. T., Hanai, A., Choi, S. K., Yuh, J. Development of an underwater robot, odin-iii. En: Proc. of the IEEE International Conference on Inteligent Robots and Systems, pags. 836 - 841. 2003. 22 [40] Rust, I. C., Asada, H. H. The eyeball rov: Design and control of a spherical underwater vehicle steered by an internal eccentric mass. En: Proc. of the IEEE International Conference on Robotics and Automation, pags. 5855 - 5862. 2011. 22 [41] Systems, S. Sbg systems - subsea applications, 2007. URL http://www.sbg-systems.com/. 26 [42] IAEA. Small and medium sized reactors (smrs) development, assessment and deployment, 2014. URL http://www.iaea.org/NuclearPower/SMR/. 27 [43] Timoshenko. Resistencia de materiales, cap. 3: Tensiones membranales en cascaras. Espasa-Calpe, 1955. 28 [44] 100 Propiedades del acrílico, 2014. URL http://uruguay334.wordpress.com/category/informacion-tecnica/. 29 [45] Norton, R. L. Desgin of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. II, 2a edición. WCB/McGraw-Hill, 1999. 31 [46] Resnick, R., D, H., Krane, K. S. Física, tomo 1. 5a edición. Grupo Editorial Patria, 2008. 33, 86, 87 [47] Balcells, J., Romeral, J. L. Autómatas Programables. Mundo Electrónico. Marcombo, 1997. 39, 40 [48] Purcell, J. E., Silvaggio, J. A. J. A comparison of positive displacement and centrifugal pump applications. En: Proc. of the 14th international Pump Users Symposium, págs. 99 - 104. 42 [49] Actuators - servos, 2014. URL http://www.societyofrobots.com/actuators_servos.shtml. 45 [50] What's a servo?, 2013. URL http://www.seattlerobotics.org/guide/servos.html. 46 [51] Regueiro, A. Servos, ¿analógico o digital?, 2012. URL http://www.aeromodelismoelcan.com/10-productos/75-servos-analogico-digital. 47 [52] USA, S. Savox waterproof servo line, 2014. URL http://www.savoxusa.com/Waterproof_Servos_s/72.htm. 53 [53] Pablo, J. El mundo del acrílico, 2014. URL http://www.mundoacrilico.com.ar/acrilico/semiesferas-y-esferas/. 54 [54] Indmag. Autopartes, 2014. URL http://www.indumagsrl.com.ar/. 55 [55] Rc servo specications and reviews, 2014. URL http://www.servodatabase.com/. 56 [56] Aeromodelismo, C. Entendiendo los diferentes servos RC. 56 [57] Lalevine, G. Waterproof your servo motors, 2014. URL http://www.instructables.com/id/Waterproof-your-servo-motors/?lang=es. 60 [58] Balarini, E. Cómo doblar una tubería de cobre, 2014. URL http://www.ehowenespanol.com/doblar-tuberia-cobre-como_32969/. 61 [59] Mabie, Reinholtz. Mecanismos y dinámica de maquinaria, cap. 4: Engranajes rectos. Limusa Wiley, 1997. 61, 62 [60] Polinorte. Eps: Poliestireno expandido, 2014. URL http://www.polinorte.com/que-es-eps.html. 65 [61] Gilbert, E. N. How things oat. 98 (3), 201 - 216, March 1991. 66 [62] Bidcom. Càmara deportiva fenix, 2014. URL http://www.bidcom.com.ar/camara-deportiva-rd39-fenix-cam-hd-con-accesorios/. 66 [63] Arduino. Arduino uno, 2014. URL http://arduino.cc/en/Main/ArduinoBoardUno. 67 [64] INGENIERIA, E. Conceptos y terminología utilizada en circuitos impresos (pcb), 2014. URL http://www.pcb.electrosoft.cl/04-articulos-circuitos-impresos-desarrollo-sistemas/01-conceptos-circuitos-impresos/conceptos-circuitos-impresos-pcb. html. 68 [65] Viloriatous. ¿que es la radiación de cherenkov?, 2009. URL http://radiaciondecherenkov.wordpress.com/. 73 [66] Rondón, P. Evaluación de dos bombas hidraulicas de engranajes de desplazamientos, 2013. URL http://scielo.sld.cu/scielo.php?pid=S2071-00542013000500010&script=sci_arttext. 79
Materias:Ingeniería mecánica > Robótica
Divisiones:Presidencia > Proyecto CAREM
Código ID:852
Depositado Por:Tamara Cárcamo
Depositado En:10 Oct 2019 15:48
Última Modificación:10 Oct 2019 15:48

Personal del repositorio solamente: página de control del documento