Robador, Eduardo M. (2019) Diseño de un modulo robótico de inspección para ambientes subacuáticos. / Desing of a robotic module for inspection of subaquatic environments. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 13Mb |
Resumen en español
En el presente trabajo se realiza el diseño de un modulo robótico de inspección para ambientes subacuáticos. La motivación principal es la inspección visual del interior de contenedores de agua en centrales nucleares, tales como el recipiente del reactor. Habitualmente, esta tarea se realiza de forma manual con un endoscopio, lo que presenta inconvenientes como la exposición a la radiación de los operarios. Por ello, se propone como alternativa la utilización de dicho vehículo. Los principales requerimientos pedidos para este robot son: flotabilidad neutra, tamaño compacto, forma suave, gran precisión, estabilidad y maniobrabilidad a bajas velocidades. Para cumplir con estos requisitos se brinda una descripción general del sistema en cuestión y de los problemas y desafíos que se quieren resolver. Después, se elige un problema concreto para encarar en este trabajo, centrado en el sistema de actuadores, que es el encargado de los movimientos del robot. Se decide realizar los mismos mediante dos sub-sistemas: el de Propulsión, para los desplazamientos en el espacio a bajas velocidades, y el de Flotación, para la traslación vertical. Por tanto, la Tesis se centra en el desarrollo de estos sistemas. En cuanto al Sistema de Propulsión del robot, se opta por utilizar chorros de agua, proporcionados por bombas hidráulicas. Se comenta el antecedente principal de este trabajo, donde se fabrico el primer prototipo para validar la idea conceptual de propulsión. Luego, de acuerdo a lo aprendido, se describe el diseño, fabricación y caracterización de un nuevo sistema de propulsión destinado a un segundo prototipo funcional. De forma similar, se detalla el Sistema de Flotación del robot, mediante un modelo experimental fabricado anteriormente. El mismo se basa en un mecanismo de lastre variable del tipo cilindro-pistón, actuado por un motor eléctrico y un tornillo de potencia. Con ese prototipo se valido la idea conceptual de flotabilidad. En este trabajo se lo vuelve a utilizar para adquirir mayor experiencia, pensando en el diseño de un sistema similar que se implementara en el desarrollo mas actual. Luego, se detalla el Diseño Mecánico del nuevo robot que reúne las ideas aprendidas con los dos prototipos previos. Se mencionan los detalles de fabricación del sistema de actuadores, puntualizando sobre el dimensionado del nuevo sistema de flotación. También se consideran la instrumentación del modulo robótico. Posteriormente, se detalla la estructura diseñada para una correcta integración de todos los componentes del vehículo. Al final, se ensambla todo el conjunto y se realizan algunos comentarios respecto a su estabilidad y flotabilidad. Una vez fabricado el nuevo prototipo, se llevan a cabo ensayos en el Laboratorio, que logran validar satisfactoriamente el diseño del robot. Se verifica que el sistema de actuadores logrado es adecuado para cumplir en gran medida con los requerimientos planteados al principio. Por ultimo, en función de los objetivos alcanzados y los aspectos no abarcados en la presente Tesis, se proponen caminos futuros para acercarse al producto ideal requerido por la aplicación final.
Resumen en inglés
In this work, the design of a robotic inspection module for underwater environments is carried out. The leading motivation is the visual inspection of the inside of water containers in nuclear power plants, such as the reactor's vessel. Usually, this task is done manually with an endoscope, which presents drawbacks such as the exposure of operators to radiation. Hence, as an alternative, the use of such a module is proposed. The main requirements for this robot are neutral buoyancy, compact size, smooth shape, and high precision, stability, and maneuverability at low speeds. To accomplish these requirements, a general description of the robot and its challenges to be solved are provided. Then, a specic problem is chosen to be studied in this work, focused on the actuators system, which is responsible for the robot's movements. It is decided to implement them employing two sub-systems: the propulsion system, for displacements in the space at low speeds, and the buoyancy engine, for vertical translation. Therefore, this thesis focuses on the development of these systems. For the propulsion system, it is decided to use water jets, provided by hydraulic pumps. The first antecedent of this work is commented, where a prototype was manufactured to validate the conceptual idea of propulsion. Subsequently, the design, manufacture, and characterization of a new propulsion system for a second functional prototype are described. Similarly, the buoyancy engine is detailed through an experimental model previously manufactured. It is based on a cylinder-piston variable ballast mechanism, driven by an electric motor and a power screw. The conceptual idea of buoyancy was validated utilizing this prototype, which is used again to gain more experience, with the design of a similar system in mind for future implementation. After that, the mechanical design of the new robot that brings together the ideas learned with the two previous prototypes is detailed. The manufacturing features of the actuators system are mentioned, specifying the development of the new Buoyancy Engine. The robot instrumentation is also considered. Subsequently, the structure designed for the correct integration of all vehicle components is described. Finally, the whole assembly is composed of the two systems, and some comments regarding its stability and buoyancy are made. Once the new prototype was complete, experimental tests were carried out in the laboratory. The design of the robot was validated with these tests. It was veried that the developed actuator system is adequate to meet most of the requirements set out at the beginning. Finally, considering the objectives that were achieved and other aspects not covered in this thesis, future paths are proposed to approach the ideal product required by the final application.
Tipo de objeto: | Tesis (Maestría en Ingeniería) |
---|---|
Palabras Clave: | Underwater; Subacuático; Robots; Autómata; Underwater vehicles; Vehículos submarinos; [Nuclear applications; Aplicaciones nucleares; Mechanical design; Diseño mecánico; Underwater spherical robot; Robot esférico subacuatico] |
Referencias: | 1] Lardies, O. L. Ensayos no destructivos: 662 preguntas de test resueltas : una coleccion de test, todos ellos resueltos, para la formacion tecnica en end para ciclos formativos y carreras tecnicas. Educalia, 2012. 1 [2] Houssay, L. P. Robotics and radiation hardening in the nuclear industry. Proyecto Fin de Carrera, University of Florida, 2000. 1, 2 [3] Cho, B., Byun, S., Shin, C., Yang, J., Song, S., Oh, J. KeproVT: underwater robotic system for visual inspection of nuclear reactor internals. Elsevier, Nuclear Engineering and Design, 231, 327-335, 2004. 1, 2, 4, 21 [4] Delmastro, D., Mazzi, R., de Soler, G., S., S., A., Ishida, V. General aspects of CAREM- 25 reactor. AATN, 2000. Reunión Anual de la Asociación Argentina de Tecnología Nuclear, Buenos Aires. 3 [5] White, F. M. Fluid Mechanics. 4a ed. WCB/McGraw-Hill, 2008. 3, 47, 48, 50, 51, 53, 63, 72 [6] Olcese, J., Tomasi, G. Estimacion de la tasa de dosis dentro del RPR en la zona de operacion de la maquina de recambio de elementos combustibles durante la parada. Inf. tec., CNEA - Proyecto CAREM, 2015. 3 [7] Licht, S. C. Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability. Tesis Doctoral, Massachusetts Institute of Technology, USA, Junio 2008. 4 [8] Inzartsev, A. V. (ed.) Underwater Vehicles. In-Tech, 2009. 5, 15 [9] Rust, I. C., Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. En: 2012 IEEE International Conference on Robotics and Automation, pags. 2445-2450. 2012. 5 [10] Scaleo-Light. Which color temperature is best suited for a dive light?, 2017. URL http://www.scaleo-light.de/which-color-temperature-is-best-suited-for-a-dive-light/?lang=en, Internet, Fecha de consulta: 5 de junio de 2019. 5 [11] Zhang, X., Cui, J., Das, S., Gerla, M., Chitre, M. Underwater wireless communications and networks: Theory and application. IEEE Communications Magazine, 54 (2), 30-32, Febrero, 2016. 8 [12] ISO Standard 13268-8:2002. Petroleum and natural gas industries - Design and operation of subsea production systems - Part 8: Remotely Operated Vehicle (ROV) interfaces on subsea production systems, 2015. URL https://www.iso.org/standard/37291.html. 8 [13] Antonelli, G. Underwater Robots. Heidelberg, D.: Springer Tracts in Advanced Robotics, 4a ed. Springer-Verlag, 2018. 10 [14] Ortíz Villasuso, H. F. Diseño conceptual de un brazo robótico para un vehículo autónomo sumergible. Proyecto Fin de Carrera, Instituto Balseiro, Universidad Nacional de Cuyo, 2019. 10 [15] Nortek Group. New to subsea navigation?, 2019. URL https://www.nortekgroup.com/ insight/nortek-wiki/new-to-subsea-navigation, Internet, Fecha de consulta: 7 de junio de 2019. 10 [16] Coda Octopus. Echoscope 4G, 2019. URL https://www.codaoctopus.com/products/3d/echoscope4G, Internet, Fecha de consulta: 7 de junio de 2019. 10 [17] ROVTECH SOLUTIONS. Harsh environment problem solvers, 2019. URL https://rovtechsolutions.com/, Internet, Fecha de consulta: 7 de junio de 2019. 10 [18] Ouyang, B., Dalgleish, F., Negahdaripour, S., Vuorenkoski, A. Experimental study of underwater stereo via pattern projection. En: 2012 Oceans, pags. 1-7. 2012. 11 [19] Burguera, A. B., Bonin-Font, F. Towards multi session visual slam in underwater environments colonized with posidonia oceanica. En: 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pags. 1-7. 2018. 11 [20] Robador, E. M. Diseño conceptual de un modulo robótico para inspección de ambientes subacuáticos. Proyecto Fin de Carrera, Instituto Balseiro, Universidad Nacional de Cuyo, 2014. 13, 39, 43, 47, 54, 59, 95 [21] Hansen, G. M. Dise~no conceptual de un sistema de flotabilidad para el control de profundidad de un vehículo robótico subacuático. Proyecto Fin de Carrera, Instituto Balseiro, Universidad Nacional de Cuyo, 2017. 13, 14, 69, 71, 72, 74, 75, 84, 91, 95 [22] Petillot, Y., Antonelli, G., Casalino, G., Ferreira, F. Underwater Robots: From Remotely Operated Vehicles to Intervention-Autonomous Underwater Vehicles. IEEE Robotics and Automation Magazine, 26, 96-101, Junio, 2019. 15 [23] Cruz, N. A. Autonomous Underwater Vehicles. Heidelberg, D.: Springer Tracts in Advanced Robotics, 4a ed. InTech, 2011. 15 [24] Antonelli, G., Fossen, T. I., Yoerger, D. R. Handbook of Robotics, cap. 43: Underwater Robotics, pags. 987 - 1008. Springer, 2008. 15, 17 [25] Liang, X., Pang, Y., Wan, L., Wang, B. Dynamic Modelling and Motion Control for Underwater Vehicles with Fins, cap. 28, pags. 551 - 567. In-Tech, 2009. 15 [26] Wood, S. Autonomous Underwater Gliders, cap. 26, pags. 511 - 536. In-Tech, 2009. 16 [27] Jordan, M. Experiencias en el Desarrollo de PIELAGOS I. En: IV Jornadas para Emprendedores Tecnológicos JET 2012. Bahía Blanca, 2012. 16 [28] Acosta, G., Curti, H., Calvo Ibáñez, O., Rossi, S. Some Issues on the Design of a Low-Cost Autonomous Underwater Vehicle with an Intelligent Dynamic Mission Planner for Pipeline and Cable Tracking, cap. 1, pags. 11 - 28. In-Tech, 2009. 16 [29] Yamamoto, S. Development of Inspection Robot for Nuclear Pover Plant. En: Proceedings of the 1992 IEEE International Conference on Robotics and Automation (ICRA 1992), pags. 1559-1566. Nice, Francia, 2012. 18 [30] Asada, H. Various robots that support and take the place of human beigns in decommissioning works at Fukushima Daiichi Nuclear Power Station. Inf. tec., IRID: International Research Institute for Nuclear Decommissioning, 2017. 18 [31] Toshiba Corporation. New Toshiba and IRID Robot Will Inspect Interior of Primary Containment Vessel at Fukushima Daiichi 3. Inf. tec., IRID: International Research Institute for Nuclear Decommissioning, 2017. 19 [32] Tooma, M., Mori, H., Senoo, M., Takatori, Y., Sonobe, M., Kimura, K., et al. Underwater Remotely Operated Vehicle System for Core Internals Inspection of Nuclear Power Plant. En: JRC-NDE 2010: 8th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components. Berlín, Alemania, 2010. 20 [33] Koji, K. Underwater inspection robot|AIRIS 21. Elsevier, Nuclear Engineering and Design, 188, 367 -371, Marzo 1999. 20 [34] Cho, B.-H., Park, J.-Y., Lee, J.-K. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using time delay control. Elsevier, Nuclear Engineering and Design, 239, 2543 - 2551, Julio 2009. 22 [35] Sung-UkLee, Young-SooChoi, Jeong, K.-M., Jung, S. Development of an underwater manipulator for maintaining nuclear power reactor. En: International Conference on Control, Automation and Systems, pags. 1006-1010. 2007. 22 [36] Pyne, S., Jones, W., Crabbe, I., Carr, E. Submersible ROVs Pioneer Decommissioning of a Legacy Nuclear Fuel Storage Pond. En: Nuclear Waste Management Conference WM2015. Phoenix, USA, 2015. 24 [37] Mazumdar, A., Asada, H. H. A compact underwater vehicle using high-bandwidth coandae effect valves for low speed precision maneuvering in cluttered environments. En: 2011 IEEE International Conference on Robotics and Automation, pags. 1544-1550. 2011. 25 [38] Mazumdar, A., Lozano, M., Fittery, A., Harry Asada, H. A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems. En: 2012 IEEE International Conference on Robotics and Automation, pags. 2818-2823. 2012. 25 [39] Mazumdar, A., Asada, H. H. Valve-pwm control of integrated pump-valve propulsion systems for highly maneuverable underwater vehicles. En: 2012 American Control Conference (ACC), pags. 5414-5420. 2012. 25, 27 [40] Fittery, A., Mazumdar, A., Lozano, M., Asada, H. H. Omni-egg: A smooth, spheroidal, appendage free underwater robot capable of 5 dof motions. En: 2012 Oceans, pags. 1-5. 2012. 25, 26 [41] Mazumdar, A., Asada, H. H. Control-congured design of spheroidal, appendage-free, underwater vehicles. IEEE Transactions on Robotics, 30 (2), 448-460, Abril 2014. 25 [42] Mazumdar, A., Chuah, M. Y., Triantafyllou, M. S., Asada, H. H. Design for precision multidirectional maneuverability: Egg-shaped underwater robots for infrastructure inspection. En: 2014 IEEE International Conference on Robotics and Automation (ICRA), pags. 2950-2956. 2014. 25, 69 [43] Mazumdar, A., Triantafyllou, M. S., Asada, H. H. Dynamic analysis and design of spheroidal underwater robots for precision multidirectional maneuvering. IEEE/ASME Transactions on Mechatronics, 20 (6), 2890-2902, Diciembre 2015. 25, 27, 69 [44] Zoval, J. V., Madou, M. J. Centrifuge-based fluidic platforms. Proceedings of the IEEE, 92 (1), 140-153, Enero 2004. 26 [45] Kirshner, J. Design Theory of fluidyc components. New York: NY, USA: Academic, 1975. 27 [46] Lin, X., Guo, S., Tanaka, K., Hata, S. Development of a spherical underwater robot. En: The 2011 IEEE/ICME International Conference on Complex Medical Engineering, pags. 662-665. 2011. 27, 28 [47] Gu, S., Guo, S., Zheng, L. Characteristic evaluation of the mobile acoustic communication for spherical underwater robots (sur iii). En: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pags. 2191-2196. 2018. 27 [48] Gemmell, B. J., Costello, J. H., Colin, S. P., Stewart, C. J., Dabiri, J. O., Tafti, D., et al. Passive energy recapture in jellysh contributes to propulsive advantage over other metazoans. Proceedings of the National Academy of Sciences, 110 (44), 17904-17909, 2013. URL https://www.pnas.org/content/110/44/17904. 28 [49] Sighard F. Hoerner. Fluid-Dynamic Drag: theoretical, experimental and statistical information. 1a ed. Hoerner, 1965. 28 [50] Lin, X., Guo, S., Tanaka, K., Hata, S. Underwater experiments of a water-jet-based spherical underwater robot. En: 2011 IEEE International Conference on Mechatronics and Automation, pags. 738{742. 2011. 29 [51] Yue, C., Guo, S., Lin, X., Du, J. Analysis and improvement of the water-jet propulsion system of a spherical underwater robot. En: 2012 IEEE International Conference on Mechatronics and Automation, pags. 2208-2213. 2012. 29 [52] Yue, C., Guo, S., Shi, L. Hydrodynamic analysis of the spherical underwater robot sur-ii. International Journal of Advanced Robotic Systems, 10 (5), 247, 2013. URL https://doi.org/10.5772/56524. 30 [53] Li, Y., Guo, S., Yue, C. Preliminary concept and kinematics simulation of a novel spherical underwater robot. En: 2014 IEEE International Conference on Mechatronics and Automation, pags. 1907-1912. 2014. 31 [54] Li, Y., Guo, S., Yue, C. Study on the control system of a novel spherical underwater robot. En: 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pags. 2100- 2105. 2015. 31 [55] Yang, H., Ye, X., Guo, S., Gu, S., Chen, S. Hydrodynamic analysis of water-jet thrusters for the spherical underwater robot (sur iii). En: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pags. 1354{1359. 2017. 31 [56] Li, Y., Guo, S., Wang, Y. Design and characteristics evaluation of a novel spherical underwater robot. Robotics and Autonomous Systems, 94, 61{74, 2017. 31 [57] Guo, S. Spherical underwater robot, Septiembre 2017. URL http://www.guolab.org/Patents/no4.pdf, JP Patent 2017-159816 A. 31 [58] Agrawal, A., Prasad, B., Viswanathan, V., Panda, S. K. Dynamic modeling of variable ballast tank for spherical underwater robot. En: 2013 IEEE International Conference on Industrial Technology (ICIT), pags. 58{63. 2013. 32 [59] Sumantr, B., Karsiti, M. N., Agustiawan, H. Development of variable ballast mechanism for depth positioning of spherical urv. En: 2008 International Symposium on Information Technology, tomo 4, pags. 1{6. 2008. 33 [60] Eltigani Ibrahim, A., Noh Karsiti, M., Elamvazuthi, I. Experimental depth positioning control for a spherical underwater robot vehicle (urv). En: Applied Mechanics and Materials, tomo 785, pags. 729{733. Trans Tech Publ, 2015. 33 [61] Sumantri, B., Karsiti, M. N. Variable Ballast Mechanism for Depth Positioning of a Spherical Underwater Robot Vehicle, cap. 10, pags. 181 { 204. Scientic and Engineering Applications Using MATLAB. In-Tech, 2011. 33 [62] Parameswaran, S., Selvin, S. Fish model for underwater robots. En: 2011 Annual IEEE India Conference, pags. 1{4. 2011. 35 [63] Roper, D. T., Sharma, S., Sutton, R., Culverhouse, P. A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 225 (2), 77{96, 2011. URL https://doi.org/10.1177/1475090210397438. 35 [64] Du, R., Li, Z., Youcef-Toumi, K., Alvarado, P. Robot Fish: Bio-inspired Fishlike Underwater Robots. Springer Tracts in Mechanical Engineering. Springer Berlin Heidelberg, 2015. URL https://books.google.com.ar/books?id=QrslCQAAQBAJ. 35 [65] Barrera, C., Real-Arce, D. A., Waldmann, C., Caldeira, R., Rueda, M. J., Hernandez, J., et al. Ocean-gliders contribution to improve monitoring capacity in the east-central north atlantic. En: 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pags. 1{5. 2018. 35 [66] Song, S., Kim, T., Sung, M., Yu, S. Attitude control of auv using multiple buoyancy engines for exploration and water column proling. En: 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pags. 1{5. 2018. 35 [67] Williams, A. OSUG: Open-Source Underwater Glider. A versatile autonomous environmental drone using a buoyancy engine, 2017. URL https://hackaday.io/project/20458-osug-open-source-underwater-glider, Internet, Fecha de consulta: 10 de junio de 2019. 35, 36 [68] Aubin, C. A., Choudhury, S., Jerch, R., Archer, L. A., Pikul, J. H., Shepherd, R. F. Electrolytic vascular systems for energy-dense robots. Nature, 571, 51{57, 2019. URL https://doi.org/10.1038/s41586-019-1313-1. 36 [69] Robador, E. M., Rovere, L., Pedre, S., Quispe Mamani, T. Dise~no conceptual de módulo robótico de inspección para ambientes subacuáticos. En: CAIM 2014 IV Congreso Argentino de Ingeniería Mecánica. Resistencia, Chaco, 2014. 39 [70] Prensa y Comunicacion Institucional Facultad de Ingeniería de la UNNE. IV CAIM - MODULO ROBOTICO DE INSPECCION PARA AMBIENTES SUBACUATICOS, 2014. URL https://biturl.website/Robotino_CAIM, [Archivo de Video]. 39 [71] Robador, E. M. Avance en X, 2014. URL https://biturl.website/Robotino_Avance, [Archivo de Video]. 43 [72] Robador, E. M. Giro en Z, 2014. URL https://biturl.website/Robotino_Giro, [Archivo de Video]. 43 [73] Newson, E., Randle, K., Wells, O., Mills, N., Venning, L., Richardson, P. Water Jet ROV. Proyecto Fin de Carrera, University of Southampton, 2001. 45 [74] Anderson, H. H. Prediction of Head, Quantity, and Eciency in Pumps|The Area-Ratio Principle. En: Performance Prediction of Centrifugal Pumps and Compressors, ASME Symposium, tomo I000127, págs. 201{211. New York, 1980. 49 [75] Franklin, G., Powell, D., Emami-Naeini, A. Feedback Control of Dynamic Sistems. 6a ed. Pearson, 2009. 57, 88 [76] Robador, E. M., Rovere, L., Pedre, S., Quispe Mamani, T. Optimizacion del sistema de propulsión de un módulo robótico de inspección para ambientes subacuáticos. En: CAIM 2016 V Congreso Argentino de Ingeniera Mecanica. Santiago del Estero, 2016. 60, 167 [77] Fackrell, S. Study of the Added Mass of Cylinders and Spheres. Tesis Doctoral, University of Windsor, 2011. URL htps://scholar.uwindsor.ca/etd/458. 61, 62 [78] Technet, A. H. Derivation of added mass around a sphere. URL http://web.mit.edu/2.016/www/handouts/Added_Mass_Derivation_050916.pdf. 62, 76 [79] Faith A. Morrison. Data Correlation for Drag Coecient for Sphere. URL www.chem.mtu.edu/~fmorriso/DataCorrelationForSphereDrag2016.pdf. 62, 77, 82 [80] Green, M. Propuesta de Mecanismo para la Extraccion de Elementos Combustibles del reactor CAREM. Proyecto Fin de Carrera, Instituto Balseiro, Universidad Nacional de Cuyo, 2014. 64 [81] Hansen, G. M., Burgos, F., D'Ovidio, C., Smitt, C., Robador, E. M. Dise~no conceptual de un sistema de otabilidad para el control de profundidad de un vehículo robótico subacuático. En: IX Jornadas Argentinas de Robotica - IX JAR 2017. Cordoba, 2017. 70, 167 [82] Hansen, G. M. Va o video 1, 2017. URL http://bit.ly/2ndProto_2, [Archivo de Video]. 71 [83] Hansen, G. M. Va o video 2, 2017. URL http://bit.ly/2ndProto_1, [Archivo de Video]. 71 [84] Brennen, C. A review of added mass and fluid inertial forces. NAVAL CIVIL ENGINEERING LABORATORY, 01 1982. 78 [85] Chasey, A. Applying step motors successfully: Torque and inertia. Motion System Design, págs. 14-15, 2002. 98, 101 [86] ORIENTAL MOTOR U.S.A. CORP. Motor sizing calculations, 2003. Referencia técnica. 99 [87] Agarwal, N. K., Lawson, C. P. A practical method to account for seal friction in aircraft hydraulic actuator preliminary design. En: Journal of Aerospace Engineering, págs. 941 - 950. 2016. 104 [88] Corporation, P. H. Parker O-Ring Handbook, cap. V, págs. 5-1-5-44. Ord 5700 ed. Parker, 2018. 104 [89] Helix Nook - Linear Technologies. The engineer's guide: Lead screws vs. ball screws, 2018. Referencia técnica. 105 [90] Helix Nook - Linear Technologies. An engineer's guide to lead screw selection, 2018. Referencia técnica. 105 [91] Nook Industries. Precision screw assemblies, 2017. Catálogo técnico. 106 [92] Eggert, R. J. Design of Machine Elements, cap. 13, pags. 13.1-13.13. 2a ed. McGraw Hill, 2004. 106 [93] Blue Robotics. Fathom ROV Tether. URL https://www.bluerobotics.com/store/cables-connectors/cables/cab-nbpuf-4utp-26awg/. 112 [94] Gilbert, E. N. How things float. Amer. Math. Monthly, 98, 210-216, 1991. 121 [95] Cengel, Y. Mecánica de fuidos. McGraw-Hill Interamericana de España S.L., 2006. 127 [96] Maldonado Betanzo, S. M. Ensayos preparativos para el control del movimiento vertical de un robot subacuático. Inf. téc., Instituto Balseiro, Universidad Nacional de Cuyo, 2019. 129 [97] Granados, G. E. Caracterización del sistema de propulsión para el control de un robot submarino. Inf. téc., Instituto Balseiro, Universidad Nacional de Cuyo, 2019. 129 [98] Hi-Tech Seals Inc. U-cups selection guide, 2008. Referencia técnica. 131 [99] Smitt, C. G. Dise~no y construcción de un torquímetro axial. Inf. téc., Instituto Balseiro, Universidad Nacional de Cuyo, 2015. 147 [100] Robador, E. M., Hansen, G. M., Acha, L., Pedre, S., y. A. T. Quispe Mamani. Design of an AUV for Visual Inspection of Nuclear Power Plants. En: 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pags. 1{6. 2018. 167 |
Materias: | Ingeniería mecánica > Robótica |
Divisiones: | Presidencia > Proyecto CAREM |
Código ID: | 853 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 11 Oct 2019 10:23 |
Última Modificación: | 11 Oct 2019 11:46 |
Personal del repositorio solamente: página de control del documento