Sensores multipixel CCD de ultra bajo ruido de lectura para detección de partículas. / CCD image sensors with ultra low readout noise for particles detection.

Sofo Haro, Miguel (2017) Sensores multipixel CCD de ultra bajo ruido de lectura para detección de partículas. / CCD image sensors with ultra low readout noise for particles detection. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
20Mb

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Dark matter; Materia oscura; Neutrinos; Sensors; Sensores
Referencias:[1] Boyle, W. S. Nobel lecture: CCD–An extension of man’s view. Rev. Mod. Phys., 82, 2305–2306, Aug 2010. 2 [2] Smith, G. E. Nobel lecture: The invention and early history of the CCD. Rev. Mod. Phys., 82, 2307–2312, Aug 2010. 2 [3] Boyle, W., Smith, G. Buried channel charge coupled devices, feb. 12 1974. US Patent 3,792,322. 3 [4] White, M. H., Lampe, D. R., Blaha, F. C., Mack, I. A. Characterization of surface channel ccd image arrays at low light levels. Solid-State Circuits, IEEE Journal of, 9 (1), 1–12, 1974. 3, 71 [5] Akimov, D., Albert, J., An, P., Awe, C., Barbeau, P., Becker, B., et al. Observation of coherent elastic neutrino-nucleus scattering. Science, 357 (6356), 1123–1126, 2017. 5 [6] Fernandez Moroni, G., Estrada, J., Paolini, E. E., Cancelo, G., Tiffenberg, J., Molina, J. Charge coupled devices for detection of coherent neutrino-nucleus scattering. Phys. Rev. D, 91, 072001, Apr 2015. 5, 9, 10, 35, 106 [7] Zwicky, F. On the masses of nebulae and of clusters of nebulae. The Astrophysical Journal, 86, 217, 1937. 5 [8] Ade, P. A., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio- Barandela, F., et al. Planck 2013 results. xv. cmb power spectra and likelihood. Astronomy & Astrophysics, 571, A15, 2014. 5 [9] Matarrese, S., Colpi, M., Gorini, V., Moschella, U. Dark Matter and Dark Energy: A challenge for modern cosmology, tomo 370. Springer Science & Business Media, 2011. 6 [10] Speckhard, E. G., Ng, K. C. Y., Beacom, J. F., Laha, R. Dark matter velocity spectroscopy. Phys. Rev. Lett., 116, 031301, Jan 2016. URL https://link. aps.org/doi/10.1103/PhysRevLett.116.031301. 6 [11] Mirabolfathi, N. Dark matter direct detection with low temperature detectors. arXiv preprint arXiv:1308.0044, 2013. 6, 7 [12] Oka, N., Miuchi, K., Tsuru, T. G., Takeda, A., Matsumura, H. Light dark matter search with soipix. arXiv preprint arXiv:1507.06987, 2015. 7 [13] Izraelevitch, F., Amidei, D., Aprahamian, A., Arcos-Olalla, R., Cancelo, G., Casarella, C., et al. A measurement of the ionization efficiency of nuclear recoils in silicon. arXiv preprint arXiv:1702.00873, 2017. 8 [14] Chavarria, A., Collar, J., Peña, J., Privitera, P., Robinson, A., Scholz, B., et al. Measurement of the ionization produced by sub-kev silicon nuclear recoils in a ccd dark matter detector. Physical Review D, 94 (8), 082007, 2016. 8 [15] Groom, D., et al. Temperature dependence of mean number of eh pairs per ev of x-ray energy deposit. wwwccd. lbl. gov/w Si. pdf, 2004. 8, 24, 52 [16] Barreto, J., Cease, H., Diehl, H., Estrada, J., Flaugher, B., Harrison, N., et al. Direct search for low mass dark matter particles with CCDs. Physics Letters B, 711 (3–4), 264 – 269, 2012. 9, 13, 35, 64, 106 [17] Tiffenberg for the DAMIC collaboration, J. DAMIC: a novel dark matter experiment. En: ICRC 2013: 33rd International Cosmic Ray Conference. 2013. 9, 64 [18] Chavarria, A. E., Tiffenberg, J., Aguilar-Arevalo, A., Amidei, D., Bertou, X., Cancelo, G., et al. {DAMIC} at {SNOLAB}. Physics Procedia, 61 (0), 21 – 33, 2015. URL http://www.sciencedirect.com/science/article/pii/ S1875389214006191, 13th International Conference on Topics in Astroparticle and Underground Physics, [TAUP] 2013. 9 [19] Aguilar-Arevalo, A., Amidei, D., Bertou, X., Butner, M., Cancelo, G., Castañeda Vázquez, A., et al. Search for low-mass wimps in a 0.6 kg day exposure of the damic experiment at snolab. Phys. Rev. D, 94, 082006, Oct 2016. URL http://link.aps.org/doi/10.1103/PhysRevD.94.082006. 9, 13, 63, 88 [20] Aguilar-Arevalo, A., Bertou, X., Bonifazi, C., Butner, M., Cancelo, G., Vázquez, A. C., et al. Results of the engineering run of the coherent neutrino nucleus interaction experiment (connie). Journal of Instrumentation, 11 (07), P07024, 2016. URL http://stacks.iop.org/1748-0221/11/i=07/a=P07024. 10, 13, 26, 53, 64, 106 [21] Groom, D. E., Holland, S. E., Levi, M. E., Palaio, N. P., Perlmutter, S., Stover, R. J., et al. Quantum efficiency of a back-illuminated CCD imager: an optical approach. En: Electronic Imaging’99, págs. 80–90. International Society for Optics and Photonics, 1999. 13 [22] Holland, S., Groom, D., Palaio, N., Stover, R., Wei, M. Fully depleted, backilluminated charge-coupled devices fabricated on high-resistivity silicon. IEEE Transactions on Electron Devices, 50 (1), 225–238, Jan 2003. 13, 15, 69 [23] Fabricius, M. H. Quantum efficiency characterization of fully depleted back side illuminated ccd’s, 2006. 13 [24] Holland, S. E., Kolbe, W. F., Bebek, C. J. Device design for a 12.3-megapixel, fully depleted, back-illuminated, high-voltage compatible charge-coupled device. IEEE Transactions on Electron Devices, 56 (11), 2612–2622, 2009. 13, 15 [25] Estrada, J., Abbott, T., Angstadt, B., Buckley-Geer, L., Brown, M., Campa, J., et al. CCD testing and characterization for dark energy survey. Proc. SPIE, 6269, 62693K–62693K–15, 2006. 13, 69, 75, 81 [26] Estrada, J., Alvarez, R., Abbott, T., Annis, J., Bonati, M., Buckley-Geer, E., et al. Focal plane detectors for dark energy camera (decam), 2010. 13, 64, 69, 75, 81 [27] Holland, S. E. Fully depleted charge-coupled devices. Lawrence Berkeley National Laboratory, 2006. 14 [28] MF43, S. Semi mf43-0705 test methods for resistivity of semiconductor materials. Last published by ASTM International as ASTM F, 2005. 14 [29] Sedra, A. S., Smith, K. C. Microelectronic circuits, tomo 1. New York: Oxford University Press, 1998. 14 [30] Holland, S. E. High-voltage compatible, full-depleted CCD, sep. 18 2007. US Patent 7,271,468. 15 [31] Holland, S. E. Fully depleted back illuminated ccd, jul. 10 2001. US Patent 6,259,085. 15, 16, 17 [32] Bredthauer, R. A., Pinter, J. H., Janesick, J. R., Robinson, L. B. Notch and large-area ccd imagers. En: Medical Imaging’91, San Jose, CA, págs. 310–315. International Society for Optics and Photonics, 1991. 15 [33] Holland, S., Goldhaber, G., Groom, D., Moses, W., Pennypacker, C., Perlmutter, S., et al. A 200/spl times/200 ccd image sensor fabricated on high-resistivity silicon. En: Electron Devices Meeting, 1996. IEDM’96., International, págs. 911– 914. IEEE, 1996. 15, 18 [34] Janesick, J. Scientific Charge-coupled Devices. Press Monographs. Society of Photo Optical, 2001. 15, 16, 19, 22, 25, 26, 35, 64, 65, 66, 84, 85 [35] Holland, S. E., Groom, D. E., Palaio, N. P., Stover, R. J., Wei, M. Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon. Electron Devices, IEEE Transactions on, 50 (1), 225–238, 2003. 16, 17, 24, 33, 34, 38 [36] Estrada, J., Molina, J., Blostein, J., Moroni, G. F. Plasma effect in silicon charge coupled devices (CCDs). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 665 (0), 90 – 93, 2011. 22, 25, 31 [37] Knoll, G. F. Radiation detection and measurement. John Wiley & Sons, 2010. 25, 35 [38] Fraser, G., Abbey, A., Holland, A., McCarthy, K., Owens, A., Wells, A. The x-ray energy response of silicon part a. theory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 350 (1-2), 368–378, 1994. 25 [39] Shaw, T., Ballester, O., Cardiel-Sas, L., Castilla, J., Chappa, S., De Vicente, J., et al. System architecture of the dark energy survey camera readout electronics. En: SPIE Astronomical Telescopes+ Instrumentation, págs. 77353G–77353G. International Society for Optics and Photonics, 2010. 26, 50, 75, 76, 77, 95 [40] Oluseyi, H. M., Karcher, A., Kolbe, W. F., Turko, B. T., Aldering, G., Bebek, C. J., et al. Characterization and deployment of large-format fully depleted back- illuminated p-channel ccds for precision astronomy. En: Proceedings of SPIE, tomo 5570, págs. 515–524. 2004. 26, 50 [41] Fisher-Levine, M., Nomerotski, A. Characterising ccds with cosmic rays. Journal of Instrumentation, 10 (08), C08006, 2015. 28 [42] Meroli, S., Passeri, D., Servoli, L. Energy loss measurement for charged particles in very thin silicon layers. Journal of Instrumentation, 6 (06), P06013, 2011. [43] Bichsel, H. Straggling in thin silicon detectors. Reviews of Modern Physics, 60 (3), 663, 1988. 57 [44] Groom, D., Klein, S. Passage of particles through matter. The European Physical Journal C-Particles and Fields, 15 (1), 163–173, 2000. 28, 56, 57 [45] Ziegler, J. F., Ziegler, M. D., Biersack, J. P. Srim–the stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (11), 1818–1823, 2010. 35, 36 [46] Williams, G. P. X-ray data booklet. X-ray data booklet, 2001. 35, 52 [47] Ashley, J., Tung, C., Ritchie, R., Anderson, V. Calculations of mean free paths and stopping powers of low energy electrons (<10 kev) in solids using a statistical model. IEEE Transactions on Nuclear Science, 23 (6), 1833–1837, 1976. [48] Moody, I., Watkins, M., Bell, R., Soman, M., Keelan, J., Holland, A. Ccd qe in the soft x-ray range, 2017. 35 [49] Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., Gauvin, R. Casino v2. 42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29 (3), 92–101, 2007. 35, 38 [50] Shapiro, S. D. Carrier mobilities in silicon empirically related to doping and field. Proc IEEE, 1967. 36 [51] Jacoboni, C., Canali, C., Ottaviani, G., Quaranta, A. A. A review of some charge transport properties of silicon. Solid-State Electronics, 20 (2), 77–89, 1977. 36 [52] Ottaviani, G., Reggiani, L., Canali, C., Nava, F., Alberigi-Quaranta, A. Hole drift velocity in silicon. Physical Review B, 12 (8), 3318, 1975. [53] Canali, C., Majni, G., Minder, R., Ottaviani, G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. Electron Devices, IEEE Transactions on, 22 (11), 1045–1047, 1975. 36 [54] Canali, C., Ottaviani, G., Quaranta, A. A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. Journal of Physics and Chemistry of Solids, 32 (8), 1707–1720, 1971. [55] Arora, N. D., Hauser, J. R., Roulston, D. J. Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Transactions on Electron Devices, (2), 292–295, 1982. 36 [56] Williamson, J. Brownian motion of electrons. Journal of Physics A: General Physics, 1 (6), 629, 1968. 37 [57] Yousef, H. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector. Tesis Doctoral, Ph. D thesis, Universität Siegen, Siegen, Germany, 2011. 37, 39 [58] Sharma, S., et al. Brownian motion problem: Random walk and beyond. Resonance, 10 (8), 49–66, 2005. 38 [59] Brunetti, R., Jacoboni, C., Nava, F., Reggiani, L., Bosman, G., Zijlstra, R. Diffusion coefficient of electrons in silicon. Journal of Applied Physics, 52 (11), 6713–6722, 1981. 38 [60] Groom, D., Eberhard, P., Holland, S., Levi, M., Palaio, N., Perlmutter, S., et al. Point-spread function in depleted and partially depleted ccds. En: Optical Detectors For Astronomy II, págs. 201–216. Springer, 2000. 38 [61] Fairfield, J. A., Groom, D. E., Bailey, S. J., Bebek, C. J., Holland, S. E., Karcher, A., et al. Reduced charge diffusion in thick, fully depleted ccds with enhanced red sensitivity. IEEE transactions on nuclear science, 53 (6), 3877–3881, 2006. [62] Holland, S., Bebek, C., Kolbe, W., Lee, J. Physics of fully depleted ccds. Journal of Instrumentation, 9 (03), C03057, 2014. [63] Stover, R. J., Wei, M., Lee, Y. J., Gilmore, D. K., Holland, S. E., Groom, D. E., et al. Characterization of a fully depleted ccd on high-resistivity silicon. En: Electronic Imaging’97, págs. 183–188. International Society for Optics and Photonics, 1997. 65 [64] Holland, S., Goldhaber, G., Groom, D., Moses, W., Pennypacker, C., Perlmutter, S., et al. Development of back-illuminated, fully-depleted ccd image sensors for use in astronomy and astrophysics. En: IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, Bruges, Belgium. 1997. [65] Lumb, D., Hopkinson, G. Charge diffusion effects in ccd x-ray detectors: Ii. experimental results. Nuclear Instruments and Methods in Physics Research, 216 (3), 431–438, 1983. [66] Hopkinson, G. Charge diffusion effects in ccd x-ray detectors: I. theory. Nuclear Instruments and Methods in Physics Research, 216 (3), 423–429, 1983. [67] Pavlov, G. G., Nousek, J. A. Charge diffusion in ccd x-ray detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 428 (2), 348–366, 1999. 38 [68] Gatti, E., Longoni, A., Rehak, P., Sampietro, M. Dynamics of electrons in drift detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 253 (3), 393– 399, 1987. 39 [69] Kimmel, N., Andritschke, R., Hartmann, R., Holl, P., Meidinger, N., Richter, R., et al. Experimental and theoretical study of the signal electron motion in fully depleted silicon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 624 (2), 334–339, 2010. [70] Castoldi, A., Guazzoni, C., Zambon, P. A 3-d simulation code of electron-hole transport and signal formation with coulomb repulsion and thermal diffusion in 2-d semiconductor detectors. En: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE, págs. 961–967. IEEE, 2012. 40 [71] Mutoh, H. Device simulations for ultrahigh-speed and high-voltage image sensors, 2016. [72] Rykov, V., Bellwied, R., French, A., Hall, J., Pruneau, C., Wilson, W. Ssd signal parametrization. STAR Note, 170, 1–22, 1994. 39 [73] Jarque, C. M., Bera, A. K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics letters, 6 (3), 255–259, 1980. 41 [74] Papoulis, A., Pillai, S. U. Probability, random variables, and stochastic processes. Tata McGraw-Hill Education, 2002. 44, 49 [75] James, F., Roos, M. Minuit-a system for function minimization and analysis of the parameter errors and correlations. Computer Physics Communications, 10 (6), 343–367, 1975. 45 [76] T. Abbott, e. a. Comparison of decam engineering ccds with the des technical requirements, 2007. 50, 51, 64, 66 [77] Curran, S., Angus, J., Cockroft, A. The beta-spectrum of tritium. Physical Review, 76 (6), 853, 1949. 50 [78] Groom, D. E., Mokhov, N. V., Striganov, S. I. Muon stopping power and range tables 10 mev–100 tev. Atomic Data and Nuclear Data Tables, 78 (2), 183–356, 2001. 56 [79] Honscheid, K., DePoy, D. L. The dark energy camera (decam) a new instrument for the dark energy survey. En: Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE, págs. 3357–3360. 2008. 64 [80] Diehl, H. T., Angstadt, R., Campa, J., Cease, H., Derylo, G., Emes, J. H., et al. Characterization of decam focal plane detectors, 2008. URL http://dx.doi.org/10.1117/12.790053. 64 [81] Zhang, W. W., Chen, Q. Optimum signal-to-noise ratio performance of electron multiplying charge coupled devices. World Academy of Science, Engineering and Technology, 54, 264–268, 2009. 65 [82] Denvir, D. J., Coates, C. G. Electron-multiplying CCD technology: application to ultrasensitive detection of biomolecules. En: International Symposium on Biomedical Optics, págs. 502–512. International Society for Optics and Photonics, 2002. 65 [83] Hynecek, J. Electron—hole recombination antiblooming for virtual-phase ccd imager. IEEE Transactions on Electron Devices, 30 (8), 941–948, 1983. 65, 66 [84] Stefanov, K., Tsukamoto, T., Miyamoto, A., Sugimoto, Y., Tamura, N., Abe, K., et al. A study of the radiation hardness of a two-phase ccd sensor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 453 (1), 136–140, 2000. 65 [85] Stefanov, K. Radiation damage effects in CCD sensors for tracking applications in high energy physics. Tesis Doctoral, PhD thesis, Saga University (Japan), 2001. 65, 66 [86] Wei, M., Stover, R. J. Characterization and optimization of MIT lincoln laboratories CCID20 CCDs. En: Astronomical Telescopes & Instrumentation, págs. 598–607. International Society for Optics and Photonics, 1998. 65 [87] Janesick, J. R., Hynecek, J., Blouke, M. Virtual phase imager for galileo. En: Solid State Imagers for Astronomy, págs. 165–173. International Society for Optics and Photonics, 1981. 67 [88] Razavi, B. Design of analog CMOS integrated circuits. McGraw Hill, 2001. 68, 70, 71, 72 [89] Centen, P. Ccd on-chip amplifiers: Noise performance versus mos transistor dimensions. IEEE Transactions on Electron Devices, 38 (5), 1206–1216, 1991. 69 [90] Centen, P. G. M. CCD imaging: concepts for low noise and high bandwidth. Tesis Doctoral, Technische Universiteit Eindhoven, 1999. 69 [91] Haque, S., Dion, F., Frost, R., Groulx, R., Holland, S., Karcher, A., et al. Design of low-noise output amplifiers for p-channel charge-coupled devices fabricated on high-resistivity silicon. En: IS&T/SPIE Electronic Imaging, págs. 82980X–82980X. International Society for Optics and Photonics, 2012. 69, 70, 95, 103 [92] Bebek, C., Emes, J., Groom, D., Haque, S., Holland, S., Jelinsky, P., et al. Status of the ccd development for the dark energy spectroscopic instrument. Journal of Instrumentation, 12 (04), C04018, 2017. 69, 70, 103 [93] Hopkinson, G., Lumb, D. Noise reduction techniques for ccd image sensors. Journal of Physics E: Scientific Instruments, 15 (11), 1214, 1982. 71, 121 [94] Wilmshurst, T. H. Signal recovery from noise in electronic instrumentation. CRC Press, 1990. 72, 121 [95] Cardiel-Sas, L., Barceló, M., Castilla, J., DeVicente, J., Huffman, D., Kozlovsky, M., et al. Front-end electronics for the dark energy camera (decam). En: SPIE Astronomical Telescopes+ Instrumentation, págs. 70146P–70146P. International Society for Optics and Photonics, 2008. 75, 76 [96] Starr, B. M., Buchholz, N., Rahmer, G., Penegor, J., Schmidt, R., Warner, M., et al. Monsoon image acquisition system. En: Scientific Detectors for Astronomy, págs. 269–276. Springer, 2004. 76 [97] Seifert, F. Resistor current noise measurements. Open access LIGO document LIGO-T0900200-v1, 2009. 82 [98] Stefanov, K. Digital cds for image sensors with dominant white and 1/f noise. Journal of Instrumentation, 10 (04), P04003, 2015. 85 [99] Wen, F., Li, T.-z. Research on ccd de-noising technology. En: Image and Signal Processing, 2009. CISP’09. 2nd International Congress on, págs. 1–4. IEEE, 2009. [100] Alessandri, C., Guzman, D., Abusleme, A., Avila, D., Alvarez, E., Campillo, H., et al. Theoretical framework and simulation results for implementing weighted multiple sampling in scientific ccds. arXiv preprint arXiv:1510.09105, 2015. [101] Cancelo, G. I., Estrada, J. C., Moroni, G. F., Treptow, K., Zmuda, T., Diehl, H. T. Achieving sub electron noise in ccd systems by means of digital filtering techniques that lower 1/f pixel correlated noise. Experimental Astronomy, 34 (1), 13–29, 2012. 85 [102] Potzick, J. Noise averaging and measurement resolution (or “a little noise is a good thing”). Review of scientific instruments, 70 (4), 2038–2040, 1999. 86 [103] Ruscak, S., Singer, L. Using histogram techniques to measure a/d converter noise, 1995. 86 [104] Roberts, C. G., Hall, J. E. Floating gate amplifier using conductive coupling for charge coupled devices, ago. 27 1985. US Patent 4,538,287. 91, 94, 99 [105] Chandler, C. E., Bredthauer, R. A., Janesick, J. R., Westphal, J. A., Gunn, J. E. Sub-electron noise charge coupled devices. En: M. M. Blouke (ed.) Charge- Coupled Devices and Solid State Optical Sensors, tomo 1242 de Society of Photo- Optical Instrumentation Engineers (SPIE) Conference Series, págs. 238–251. 1990. [106] Janesick, J., Tower, J. Particle and photon detection: Counting and energy measurement. Sensors, 16 (5), 688, 2016. [107] Fernandez Moroni, G., Estrada, J., Cancelo, G., Holland, S., Paolini, E., Diehl, H. Sub-electron readout noise in a skipper CCD fabricated on high resistivity silicon. Experimental Astronomy, 34 (1), 43–64, 2012. 91, 94, 95, 99 [108] Moroni, G. F., Estrada, J., Cancelo, G., Holland, S. E., Paolini, E. E., Diehl, H. T. Sub-electron readout noise in a skipper ccd fabricated on high resistivity silicon. Experimental Astronomy, 34 (1), 43–64, 2012. 92, 93 [109] Kahng, D., Sze, S. M. A floating gate and its application to memory devices. Bell Labs Technical Journal, 46 (6), 1288–1295, 1967. 93 [110] Wen, D. Design and operation of a floating gate amplifier. Solid-State Circuits, IEEE Journal of, 9 (6), 410–414, Dec 1974. 93 [111] Chandler, C. E., Bredthauer, R. A., Janesick, J. R., Westphal, J. A. Sub-electron noise charge-coupled devices. En: SC-DL tentative, págs. 238–251. International Society for Optics and Photonics, 1990. 94, 99 [112] Hynecek, J., Roberts, C. G. Floating gate amplifier method of operation for noise minimization in charge coupled devices, ene. 5 1982. US Patent 4,309,624. 99 [113] Kay, S. M. Fundamentals of statistical signal processing, volume i: estimation theory, 1993. 100 [114] O’Connor, P. Crosstalk in multi-output ccds for lsst. Journal of Instrumentation, 10 (05), C05010, 2015. 103 [115] Doering, D., Andresen, N., Contarato, D., Denes, P., Joseph, J. M., McVittie, P., et al. High speed, direct detection 1k frame-store ccd sensor for synchrotron radiation. En: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, págs. 1840–1845. IEEE, 2011. 103 [116] Madan, S. K., Bhaumik, B., Vasi, J. M. Experimental observation of avalanche multiplication in charge-coupled devices. Electron Devices, IEEE Transactions on, 30 (6), 694–699, 1983. 104 [117] Robbins, M. S., Hadwen, B. J. The noise performance of electron multiplying charge-coupled devices. IEEE Transactions on Electron Devices, 50 (5), 1227– 1232, 2003. 104 [118] Seo, M.-W., Kawahito, S., Kagawa, K., Yasutomi, K. A 0.27 e-rms read noise 220- μv/e-conversion gain reset-gate-less cmos image sensor with 0.11-μm cis process. IEEE Electron Device Letters, 36 (12), 1344–1347, 2015. 104 [119] Ahn, J.-C. Backside illuminated image sensor, dic. 22 2015. US Patent 9,219,094. 104 [120] Suzuki, A., Shimamura, N., Kainuma, T., Kawazu, N., Okada, C., Oka, T., et al. 6.1 a 1/1.7-inch 20mpixel back-illuminated stacked CMOS image sensor for new imaging applications. En: 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, págs. 1–3. IEEE, 2015. 104 [121] Board, S. S., Council, N. R., et al. Panel Reportsâ¬"New Worlds, New Horizons in Astronomy and Astrophysics. National Academies Press, 2011. 105 [122] Crill, B. P., Siegler, N. Updated starshade technology gap list. En: American Astronomical Society Meeting Abstracts, tomo 229. 2017. 105 [123] Shaklan, S. B. Techniques and Instrumentation for Detection of Exoplanets IV. 2009. 105 [124] Essig, R., Fernández-Serra, M., Mardon, J., Soto, A., Volansky, T., Yu, T.-T. Direct detection of sub-gev dark matter with semiconductor targets. Journal of High Energy Physics, 2016 (5), 46, 2016. 105, 107 [125] Essig, R., Mardon, J., Volansky, T. Direct detection of sub-gev dark matter. Physical Review D, 85 (7), 076007, 2012. [126] Graham, P. W., Kaplan, D. E., Rajendran, S., Walters, M. T. Semiconductor probes of light dark matter. Physics of the Dark Universe, 1 (1), 32–49, 2012. [127] Lee, S. K., Lisanti, M., Mishra-Sharma, S., Safdi, B. R. Modulation effects in dark matter-electron scattering experiments. Physical Review D, 92 (8), 083517, 2015. 105 [128] An, H., Pospelov, M., Pradler, J. Dark matter detectors as dark photon helioscopes. Physical review letters, 111 (4), 041302, 2013. 106 [129] An, H., Pospelov, M., Pradler, J., Ritz, A. Direct detection constraints on dark photon dark matter. Physics Letters B, 747, 331–338, 2015. [130] Bloch, I. M., Essig, R., Tobioka, K., Volansky, T., Yu, T.-T. Searching for dark absorption with direct detection experiments. Journal of High Energy Physics, 2017 (6), 1–21, 2017. [131] Hochberg, Y., Lin, T., Zurek, K. M. Absorption of light dark matter in semiconductors. Physical Review D, 95 (2), 023013, 2017. 106 [132] Kouvaris, C., Pradler, J. Probing sub-gev dark matter with conventional detectors. Physical Review Letters, 118 (3), 031803, 2017. 106 [133] Aguilar-Arevalo, A., Amidei, D., Bertou, X., Butner, M., Cancelo, G., Vázquez, A. C., et al. First direct-detection constraints on ev-scale hidden-photon dark matter with damic at snolab. Physical Review Letters, 118 (14), 141803, 2017. 107 [134] Angle, J., Aprile, E., Arneodo, F., Baudis, L., Bernstein, A., Bolozdynya, A., et al. Search for light dark matter in xenon10 data. Physical Review Letters, 107 (5), 051301, 2011. 107 [135] Essig, R., Manalaysay, A., Mardon, J., Sorensen, P., Volansky, T. First direct detection limits on sub-gev dark matter from xenon10. Physical review letters, 109 (2), 021301, 2012. 107 [136] Essig, R., Volansky, T., Yu, T.-T. New constraints and prospects for sub-gev dark matter scattering off electrons in xenon. arXiv preprint arXiv:1703.00910, 2017. 107 [137] Sorensen, P. Electron train backgrounds in liquid xenon dark matter search detectors are indeed due to thermalization and trapping. arXiv preprint ar- Xiv:1702.04805, 2017. 107 [138] Agnese, R., Anderson, A., Aramaki, T., Asai, M., Baker, W., Balakishiyeva, D., et al. New results from the search for low-mass weakly interacting massive particles with the cdms low ionization threshold experiment. Physical review letters, 116 (7), 071301, 2016. 107 [139] Aalseth, C. E., Barbeau, P. S., Colaresi, J., Collar, J., Leon, J. D., Fast, J. E., et al. Cogent: A search for low-mass dark matter using p-type point contact germanium detectors. Physical Review D, 88 (1), 012002, 2013. [140] Abgrall, N., Arnquist, I., Avignone III, F., Barabash, A., Bertrand, F., Bradley, A., et al. New limits on bosonic dark matter, solar axions, pauli exclusion principle violation, and electron decay from the low-energy spectrum of the majorana demonstrator. arXiv preprint arXiv:1612.00886, 2016. [141] Armengaud, E., Arnaud, Q., Augier, C., Benoît, A., Bergé, L., Billard, J., et al. Measurement of the cosmogenic activation of germanium detectors in edelweissiii. Astroparticle Physics, 91, 51–64, 2017. 107
Materias:Ingeniería
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Partículas y campos
Código ID:855
Depositado Por:Tamara Cárcamo
Depositado En:22 Feb 2021 09:05
Última Modificación:22 Feb 2021 09:05

Personal del repositorio solamente: página de control del documento