Corro, Pablo G. del (2017) Sistema de fabricación de nano-estructuras basado en MEMS. / MEMS-based nano-structures fabrication system. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 15Mb |
Resumen en español
Esta tesis de doctorado fue desarrollada en el marco de un proyecto de colaboración entre el Instituto Balseiro, la Universidad de Boston (U.S.A) y Lucent-Alcatel (U.S.A), denominado proyecto Atomic Calligraphy el cual plantea la construcción sistema de impresión 3D de nano-estructuras usando dispositivos micro-electro mecánicos (MEMS). Dicho sistema esta basado en el principio funcionamiento de un sistema de evaporación térmica convencional. El proyecto Atomic Calligraphy propone reemplazar las piezas fundamentales de un evaporador térmico convencional como las canastas de tungsteno por un MEMS al que se nombró micro-fuente de evaporación térmica, el sensor de espesor por un MEMS al que se llamó micro-sensor de espesor y la máscara litografía por un MEMS al que se llamó escritor. El escritor se comporta como un esténcil dinámico - como una máscara de litografía móvil - y es actuado usando unos actuadores electrostáticos llamados comb drives. El aporte de este trabajo de tesis al proyecto Atomic Calligraphy se focalizó en la optimización de la respuesta mecánica de los comb drives y en la implementación de un sistema detección capacitiva del desplazamiento del esténcil dinámico. En particular respecto al funcionamiento de los comb drives se muestra que es posible, usando solo consideraciones del diseño, reducir significativamente el efecto de levitación presente en estos dispositivos fabricados con técnicas de litografía/etching convencionales. Para el sistema de detección capacitiva construido, se aprovecha la simetría del MEMS escritor para implementar dos puentes capacitivos con excitación balanceada de los cuales se puede obtener la información del desplazamiento espacial del esténcil dinámico en tiempo real. Los MEMS diseñados para este proyecto fueron fabricados usando el proceso multiusuario PolyMUMPs que ofrece la empresa MEMSCAP.
Resumen en inglés
This P.h.D thesis took place in a collaborative project between Balseiro Institute (AR), Boston University (U.S.A.) and Lucent-Alcatel (U.S.A.) called Atomic Calligraphy in which the construction of a 3D printing system of nano-structures using MEMS (micro-electro mechanical systems) devices is proposed. Such a system is based on the operating principle of a conventional thermal evaporator. The Atomic Calligraphy project proposes to replace essential parts of the conventional thermal evaporator as the evaporation boats for a MEMS device referred to as micro thermal evaporation sources, the thickness monitor sensor for a MEMS device referred to as micro thickness monitor sensor, and the shutter and the lithography mask for a MEMS device referred to as writer. The writer behaves as a dynamic stencil -or mobile lithography mask - and is actuated using electrostatic actuators called comb drives. The contribution of this work to the Atomic Calligraphy project was focused on the comb drives mechanical response optimization and on the implementation of a capacitive detection system of the dynamic stencil displacement. Specifically, regarding to the comb drives operation we prove that, using design considerations only, is possible to reduce significantly the levitation effect present on this type of devices fabricated using conventional lithography/etching techniques. Regarding to the build capacitive detection system, the MEMS writer symmetry was utilized to implement two capacitive bridges with balanced excitation from which it is possible to get information of the dynamic stencil spatial displacement. The designed MEMS devices for this project were fabricated using the PolyMUMPs multi-user process offered by MEMSCAP company.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | [Micro-electromechanical systems; Sistemas micro-electromecánicos; Comb drives; Nano-fabrication; Nano-fabricación; Capacitive sensing; Sensado capacitivo; Dynamics stencil; Estencil dinámico; Thermal evaporation; Evaporación térmica ] |
Referencias: | [1] Dorsch, J. The internet of things needs MEMS and sensors – plus more security and better software. URL http://electronics360.globalspec.com/article/6039/ the-internet-of-things-needs-mems-and-sensors-plus-more-security-and-better-software. 1 [2] Beyeler, F., Muntwyler, S., Nagy, Z., Graetzel, C., Moser, M., Nelson, B. J. Design and calibration of a MEMS sensor for measuring the force and torque acting on a magnetic microrobot. Journal of Micromechanics and Microengineering, 18 (2), 025004, 2008. URL http://stacks.iop.org/0960-1317/18/i=2/a=025004. 1 [3] Huang, X., Li, S., Schultz, J., Wang, Q., Lin, Q. A capacitive MEMS viscometric sensor for affinity detection of glucose. Journal of Microelectromechanical Systems, 18 (6), 1246–1254, Dec 2009. [4] Goldsmith, C. L., Auciello, O. H., Sumant, A. V., Mancini, D. C., Gudeman, C., Sampath, S., et al. Electrostatic mems devices with high reliability. 1 [5] Mohammed, A. A. S., Moussa, W. A., Lou, E. High sensitivity MEMS strain sensor: Design and simulation. Sensors, 8 (4), 2642, 2008. URL http://www. mdpi.com/1424-8220/8/4/2642. 1 [6] Mohammed, A. A. S., Moussa, W. A., Lou, E. High-performance piezoresistive MEMS strain sensor with low thermal sensitivity. Sensors, 11 (2), 1819, 2011. URL http://www.mdpi.com/1424-8220/11/2/1819. [7] Lee, J. S., Yoo, E. S., Park, C. H., An, J. E., Park, C. G., Song, J.W. Development of a piezoresistive MEMS pressure sensor for a precision air data module. En: Control, Automation and Systems (ICCAS), 2014 14th International Conference on, págs. 874–878. 2014. 1 [8] Lu, J., Sagawa, T., Zhang, L., Takagi, H.,Wang, D. F., Itoh, T., et al. Piezoelectric mems devices and its application as bio-chemical sensors. En: Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on, págs. 163–166. 2013. 1 [9] Muscalu, G., Anghelescu, A., Firtat, B. Design optimization of MEMS piezoelectric energy cantilever device for environment vibrations harvesting. En: Semiconductor Conference (CAS), 2015 International, págs. 267–270. 2015. [10] Lam, C. S. A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. En: 2008 IEEE Ultrasonics Symposium, págs. 694–704. 2008. 1 [11] Schaevitz, A. J., Samuel B.and Franz, Jensen, K. F., Schmidt, M. A. A Combustion-Based MEMS Thermoelectric Power Generator, págs. 30–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. URL http://dx.doi.org/10.1007/ 978-3-642-59497-7_6. 1 [12] Ancik, Z., Vlach, R., Janak, L., Kopecek, P., Hadas, Z. Modeling, simulation and experimental testing of the MEMS thermoelectric generators in wide range of operational conditions, 2013. URL http://dx.doi.org/10.1117/12.2017134. 1 [13] Automotive MEMS sensors are driving the automotive industry. URL http://www.sensorsmag.com/automotive/ mems-sensors-are-driving-automotive-industry-1088. 1 [14] Automotive MEMS sensors are driving the automotive industry. URL http://www.st.com/content/ccc/resource/sales_and_marketing/ promotional_material/brochure/73/62/31/8a/89/9f/48/60/brmemsauto.pdf/files/brmemsauto.pdf/jcr:content/translations/en.brmemsauto.pdf. [15] MEMS sensors. URL http://www.bosch-semiconductors.de/en/automotive_electronics/mems/mems_.html. 1 [16] Smartphones and tablets. URL http://www.st.com/content/st_com/en/applications/personal-and-multimedia/smartphones-and-tablets.html. 1 [17] Bogue, R. Recent developments in MEMS sensors: a review of applications, markets and technologies. Sensor Review, 33 (4), 300–304, 2013. URL http://dx.doi.org/10.1108/SR-05-2013-678. [18] TI DLP Technology. URL http://www.ti.com/lsds/ti/analog/dlp/overview.page.1 [19] The future of MEMS in the iot. URL http://www.semi.org/en/node/57911. 1 [20] Borovic, B., Liu, A. Q., Popa, D., Cai, H., Lewis, F. L. Open-loop versus closedloop control of MEMS devices: choices and issues. Journal of Micromechanics and Microengineering, 15 (10), 1917, 2005. URL http://stacks.iop.org/0960-1317/15/i=10/a=018. 1, 53 [21] Perez, D. J. Diseño e implementación de MEMS para mediciones de transiciones de fase en sistemas de vórtices superconductores con desorden. Tesis Doctoral, Universidad Nacional de Cuyo, May 2015. URL http://fisica.cab.cnea.gov.ar/bt/images/1/10/Tesis_perez.pdf. 1, 2 [22] Han, H., Imboden, M., Stark, T., del Corro, P. G., Pardo, F., Bolle, C. A., et al. Programmable solid state atom sources for nanofabrication. Nanoscale, 7, 10735–10744, 2015. URL http://dx.doi.org/10.1039/C5NR01331C. 1, 10, 13, 14, 69 [23] Senturia, S. D. Microsystem Design. Springer US, 2001. 1, 41 [24] Arroyo, S. I. Dinámica de micro osciladores clamped-clamped, estabilización de lafrecuencia. Tesis Doctoral, Universidad Nacional de Cuyo, December 2013. URL http://ricabib.cab.cnea.gov.ar/449/. 2, 48 [25] Mangussi, F. Estabilización de la frecuencia de un microoscilador no lineal mediante una resonancia interna. Tesis Doctoral, Universidad Nacional de Cuyo, December 2015. URL http://ricabib.cab.cnea.gov.ar/545/, area temática: Física aplicada. Sistemas dinámicos. 2 [26] Zarate, J. J. Detección de infrarrojo lejano con bolómetros micromaquinados. Tesis Doctoral, Universidad Nacional de Cuyo, August 2013. URL http://ricabib. cab.cnea.gov.ar/492/. 2 [27] 3D Printing. URL https://en.wikipedia.org/wiki/3D_printing. 2 [28] Vazquez-Mena, O., Gross, L., Xie, S., L.G. Resistless nanofabrication by stencil lithography: A review. Microelectronic Engineering, 132, 236 – 254, 2015. URL http://www.sciencedirect.com/science/article/pii/S0167931714003359, micro and Nanofabrication Breakthroughs for Electronics, {MEMS} and Life Sciences. 3, 4 [29] Chou, S. Y., Krauss, P. R., Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science, 272 (5258), 85–87, 1996. URL http://science.sciencemag.org/ content/272/5258/85. 4 [30] Imboden, M., Han, H., Chang, J., Pardo, F., Bolle, C. A., Lowell, E., et al. Atomic calligraphy: The direct writing of nanoscale structures using a microelectromechanical system. Nano Letters, 13 (7), 3379–3384, 2013. URL http://dx.doi.org/10.1021/nl401699w, pMID: 23782403. 4, 6, 15 [31] Imboden, M., Han, H., Chang, J., Pardo, F., Bolle, C. A., Lowell, E., et al. Atomic calligraphy: The direct writing of nanoscale structures using a microelectromechanical system. Nano Letters, 13 (7), 3379–3384, 2013. URL http://dx.doi.org/10.1021/nl401699w, pMID: 23782403. 6 [32] Cowen, A., Hardy, B., Mahadevan, R., Wilcenski, S. PolyMUMPs DesignHandbook. URL http://www.memscap.com/__data/assets/pdf_file/0019/1729/PolyMUMPs-DR-13-0.pdf. 9, 10, 19, 21 [33] Sandia National Laboratories. SUMMiT V Design Manual. URL http://www.sandia.gov/mstc/_assets/documents/design_documents/SUMMiT_V_Dmanual.pdf. 10 [34] Mastrangelo, C. H., Yeh, J. H. J., Muller, R. S. Electrical and optical characteristics of vacuum-sealed polysilicon microlamps. IEEE Transactions on Electron Devices, 39 (6), 1363–1375, Jun 1992. 11, 13 [35] Imboden, M., Han, H., Stark, T., Lowell, E., Chang, J., Pardo, F., et al. Building a fab on a chip. Nanoscale, 6, 5049–5062, 2014. URL http://dx.doi.org/10.1039/ C3NR06087J. 12, 16, 67, 74 [36] Geisberger, A. A., Sarkar, N., Ellis, M., Skidmore, G. D. Electrothermal properties and modeling of polysilicon microthermal actuators. Journal of Microelectromechanical Systems, 12 (4), 513–523, Aug 2003. 12 [37] McConnell, A. D., Uma, S., Goodson, K. E. Thermal conductivity of doped polysilicon layers. Journal of Microelectromechanical Systems, 10 (3), 360–369, Sep 2001. 12 [38] Desai, P. D. Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data, 15 (3), 967–983, 1986. URL http://scitation.aip.org/content/aip/journal/ jpcrd/15/3/10.1063/1.555761. 12 [39] Okada, Y., Tokumaru, Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. Journal of Applied Physics, 56 (2), 314–320, 1984. URL http://scitation.aip.org/content/aip/journal/jap/56/2/10.1063/1.333965. 12 [40] Legtenberg, R., Groeneveld, A. W., Elwenspoek, M. Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6 (3), 320,1996. URL http://stacks.iop.org/0960-1317/6/i=3/a=004. 17, 18 [41] Tang, W. C., Lim, M. G., Howe, R. T. Electrostatically balanced comb drive for controlled levitation. En: Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, págs. 23–27. IEEE, 1990. 20, 22, 25, 33 [42] Hammer, H. Analytical model for comb-capacitance fringe fields. Microelectromechanical Systems, Journal of, 19 (1), 175–182, 2010. 22 [43] Lee, A. P., McConaghy, C. F., Krulevitch, P. A., Campbell, E. W., Sommargren, G. E., Trevino, J. C. Electrostatic comb drive for vertical actuation. En: Micromachining and Microfabrication, págs. 109–119. International Society for Optics and Photonics, 1997. 23 [44] Imboden, M., Morrison, J., Lowell, E., Han, H., Bishop, D. J. Controlling levitation and enhancing displacement in electrostatic comb drives of MEMS actuators. Microelectromechanical Systems, Journal of, 23 (5), 1063–1072, 2014. 23, 24, 26, 36, 37 [45] Tang, W. C., Lim, M. G., Howe, R. T. Electrostatic comb drive levitation and control method. Journal of Microelectromechanical systems, 1 (4), 170–178, 1992. 25, 36, 37, 39 [46] Xu, Y., MacDonald, N. C., Miller, S. A. Integrated micro-scanning tunneling microscope. Appl. Phys. Lett., 67, 2305, 1995. 27 [47] Shea, H. R., Gasparyan, A., Chan, H. B., Arney, S., Frahm, R. E., Lopez, D., et al. Effects of electrical leakage currents on MEMS reliability and performance. IEEE Transactions on Device and Materials Reliability, 4 (2), 198–207, June 2004. 39, 53 [48] Baxter, L. K. Capacitive Sensors: Design and Applications. IEEE Press. 42, 48 [49] Ashrafi, A., Golnabi, H. A high precision method for measuring very small capacitance changes. Review of Scientific Instruments, 70 (8), 3483–3487, 1999. URL http://scitation.aip.org/content/aip/journal/rsi/70/8/10.1063/1.1149941. 47 [50] LMH6551 differential, high-speed op amp. URL http://www.ti.com/lit/ds/symlink/lmh6551.pdf. 47 [51] PA341 high voltage power operational amplifier. URL https://www.apexanalog.com/resources/products/pa341u.pdf. 49 [52] DAC8574: Quad, 16-bit, low-power, voltage output, I2C interface digital-to-analog converter. URL http://www.ti.com/lit/ds/slas377b/slas377b.pdf. 50 [53] ISO154x low-power bidirectional I2C isolators. URL http://www.ti.com/lit/ds/ symlink/iso1541.pdf. 50 [54] Model 7124: Precision lock-in amplifier, instruction manual. URL http://www.ameteksi.com/-/media/ameteksi/download_links/documentations/ 7124/197776-a-mnl-d.pdf. 50 [55] OPA657 1.6-ghz, low-noise, fet-input operational amplifier. URL http://www.ti. com/lit/ds/symlink/opa657.pdf. 51 [56] What is a lock-in amplifier? URL http://www.signalrecovery.com/download/TN1000%20What%20is%20a%20Lock in%20Amplifier.pdf. 52 [57] Imboden, M. Bu physics condensed matter seminar. 64, 65, 66, 80 [58] Semiconductor fabrication plant. URL https://en.wikipedia.org/wiki/Semiconductor_fabrication_plant. 67 [59] Orloff, J., Swanson, L. W., Utlaut, M. Fundamental limits to imaging resolution for focused ion beams. Journal of Vacuum Science & Technology B, 14 (6), 3759–3763, 1996. URL http://scitation.aip.org/content/avs/journal/jvstb/14/6/10.1116/1.588663;jsessionid=D7E8_2dzvN3Useeyj8AuQIng.x-aip-live-06. 71 [60] Williams, K. R., Muller, R. S. Etch rates for micromachining processing. Journal of Microelectromechanical Systems, 5 (4), 256–269, Dec 1996. 71 [61] AZ p4000 photoresist series. URL http://www.microchemicals.com/products/ photoresists/az_p4620.html. 84 [62] MA/BA6 manual mask and bond aligner. URL https://www.suss.com/en/ products-solutions/products/mask-aligner/maba6/overview.html. 84 |
Materias: | Física > Nanotecnología |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas |
Código ID: | 862 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 19 Feb 2021 10:14 |
Última Modificación: | 19 Feb 2021 10:14 |
Personal del repositorio solamente: página de control del documento