Buitrago Montañez, Nayibe L. (2019) Radiografía neutrónica avanzada de componentes nucleares base circonio / Advanced neutron radiography of nuclear components-zirconium base. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 73Mb |
Resumen en español
Las aleaciones base circonio (Zr) utilizadas en los componentes de los reactores nucleares se encuentran en contacto con el refrigerante, por lo que incorporan hidrógeno (H) o deuterio (D) como resultado de un moderado proceso de corrosión, produciendo la fragilización del material debido a la precipitación de hidruros. En presencia de campos de tensiones, aparece el proceso conocido como fractura asistida por hidruros (Delayed Hydride Cracking-DHC), que involucra la migración de H a zonas de altas tensiones, y el crecimiento de fisuras por precipitación y ruptura de hidruros. Por esto, el contenido de H en estas aleaciones está directamente relacionado con su vida útil. El desarrollo de técnicas no destructivas para el estudio de la difusión de H en aleaciones base Zr posibilitará la visualización de la redistribución de H, ayudando a una interpretación más clara del proceso de DHC, muy difícil de alcanzar por métodos destructivos de caracterización. La radiografía de neutrones es equivalente a la radiografía con rayos X, pero con un contraste diferente y muchas veces complementario, ya que presenta una atenuación importante para muchos elementos livianos (H, B, Li). Así, el coeficiente de atenuación de neutrones del hidruro de circonio es ~25 veces mayor que el del Zr metálico, lo cual posibilita cuántica pequeños contenidos de H en forma no destructiva. En la presente tesis hemos utilizado la radiografía de neutrones para cuantificar la distribución espacial de bajos contenidos de H en muestras de aleaciones de Zr. Losexperimentos para explorar la factibilidad de la técnica fueron realizados sobre un conjunto de muestras de Zircaloy-2 y Zr-2.5Nb con contenidos conocidos de H en cuatro instrumentos de neutrones de características diferentes. Todos estos instrumentos pudieron resolver satisfactoriamente muy bajos contenidos de hidrogeno (0-300 wt ppm) en las aleaciones estudiadas, aunque con una resolución espacial y tiempo de medición dependientes de la colimacion, el flujo y el sistema de detección disponibles en cada caso. Además, se demostró que usando el protocolo de medición y la metodología de análisis de imágenes propuestos, es posible cuantificar el contenido de H con una resolución de ~5 wt ppm, una precisión de ~10 wt ppm y una resolución espacial de ~25μmx5mmx10mm para una línea de imágenes de neutrones fríos, de características similares a la que se instalará en el Laboratorio de Haces de Neutrones del reactor RA-10. Los estudios de difusión de H en aleaciones base Zr presentan gran variabilidad en los coeficientes de difusión reportados, debido en parte a diferencias entre las técnicas experimentales utilizadas, y en parte por diferencias intrínsecas en los posibles caminos para la difusión de H que aparecen en distintas microestructuras. En particular, existe evidencia que la solubilidad total de H y el coeficiente de difusión de H en las distintas fases cristalinas son muy diferentes, por lo que la difusión en una aleación de H compuesta de varias fases dependerá del volumen y la morfología de las fases presentes. Partiendo de la técnica de determinación de H desarrollada, hemos optimizado un método pre-existente para la determinación del coeficiente de difusión de H, que permite realizar estudios en forma no-destructiva en muestras de pequeñas dimensiones (10x10x4mm3) en el rango de temperaturas en las que trabajan estas aleaciones en reactores nucleares de potencia. Con este método se estudió la difusión de H a lo largo de distintas direcciones de chapas laminadas de Zircaloy-2 y Zr-2.5Nb para temperaturas entre 250°C y 350°C; la primera compuesta casi exclusivamente por β-Zr y la segunda conteniendo ~10% de fase βZr. Se encontró que la difusión de H en Zircaloy-2 laminado en frío, compuesto principalmente de granos α-Zr redondeados, es casi isotrópica y no varía significativamente cuando el material es relevado de tensiones y/o recristalizado. Los valores obtenidos ((D=6.80 ± 0.80)x10-¹¹1 m²/s a 300°C) coinciden con medidos por otras técnicas, reportados en la literatura. Como contrapartida,en chapas de Zr-2.5Nb compuestas de granos α-Zr alargados separados por delgadas láminas de fase β-Zr, la difusión es claramente anisotropía y presenta valores considerablemente mayores a los del Zircaloy-2 (D = (2.16± 0.43) x10-¹° m2/s en la dirección normal y D = (5.67± 1.9) x10-¹° m²/s en la dirección de laminado a 300ºC). Más aun, tras un tratamiento térmico a 860ºC durante 3h, la anisotropía observada en la difusión de H se invierte (D= (3.9± 0.4)x10-¹° m²/s en la dirección normal y D= (1.44 ±0.14) x10-¹° m²/s en la dirección de laminado a T=300°C). Esto puede ser explicado por cambios en la conectividad de la fase β-Zr producto de la doble transformación de fase que ocurre durante el tratamiento. Estos resultados demuestran la potencialidad de la técnica desarrollada y prevén su extensión al estudio de la difusión de H en otros materiales. Por ultimo, con el objeto de mejorar la exactitud de la técnica de determinación de H y prescindir del uso de patrones de calibración, se estudió el coeficiente de atenuación de las aleaciones Zircaloy-2 y Zr-2.5Nb con distintas cantidades de H en función de la longitud de onda y se lo comparó con cálculos teóricos. Se encontró que utilizando neutrones con longitudes de onda mayores a 5.7 ºA permitirán determinar contenidos de H en el rango de 1-300 wt ppm H sin la necesidad de muestras de calibración y alcanzar una exactitud mejor que 5 wt ppm H.
Resumen en inglés
Zr-based alloys are used in nuclear power plants because of a unique combination of very low neutron absorption and excellent mechanical properties and corrosion resistance at operating conditions. However, Hydrogen (H) or Deuterium ingress due to waterside corrosion during operation can embrittle these materials. In particular, Zr alloys are affected by Delayed Hydride Cracking (DHC), a stress-corrosion cracking mechanism operating at very low H content (~100-300 wt ppm), which involves the diffusion of H to the crack tip, followed by crack growth through precipitation and rupture of hydrides. Hence, H content in Zr alloy specimen may have a profound impact on its service life. Development of non-destructive techniques to directly visualize H diffusion in Zr alloys would greatly contribute to a better understanding of the DHC process, very difficult to achieve by destructive techniques. Neutron radiography is a technique similar and complementary to conventional X-ray radiography, with no clear dependence on Z, and a particularly large attenuation for several light elements (H, B. Li). So the neutron attenuation coefficient in zirconium hydride is ~25 times larger than in metal Zr, which opens the possibility to quantify very low content H profiles in Zr alloys by non-destructive tests. In this work, we have used neutron imaging to non-destructively quantify the spatial distribution of H in Zr alloys specimens. Feasibility experiments were performed in a set of Zircaloy-2 and Zr-2.5Nb samples with calibrated H contents in four neutron instruments worldwide. All beamlines were able to resolve very low H contents (0-300 wt ppm H) in those alloys, yet with differences on spatial resolution and counting times, depending on the neutron beam collimation, neutron ux and detection system available at each instrument. This showed that by following the proposed measurement protocol and image analysis procedure, it is possible to quantify H contents with a resolution of ~5 wt ppm, an accuracy of ~10 wt ppm and a spatial resolution of ~ 25μmx5mm x10 mm in a cold neutron imaging beamline, similar to the one to be installed at the Argentinean Neutron Beam Laboratory (LAHN) of the RA-10 reactor. Diffusion coefficients of H in Zr alloys found in the literature show large variability, partly due to the different techniques used in each work, and partly due to real differences in the diffusion paths that are available to H in different microstructures. In particular, it has been reported that H terminal solubility and diffusion coefficients in α-Zr and β-Zr are very different, so the actual diffusion coefficient in an alloy composed by both phases will depend on the volume and morphology of the two phases. Here, we have combined a traditional technique used to determine diffusion coefficients with the previously developed neutron imaging technique to non-destructively determine diffusion coefficients within the operational range of Zr alloys in nuclear power plants, using relatively small specimens (4x10x10 mm3). Using this optimized method, we studied H diffusion along different directions of rolled Zircaloy-2 and Zr- 2.5Nb plates for temperatures between 250°C and 350°. The former alloy is almost exclusively composed by β-Zr, whilst the later typically contains 10% of β phase. We found that H diffusion in cold rolled Zircaloy-2, composed mainly by rounddigrains, is nearly isotropic an does not change significantly upon common thermal treatments (stress relief, recrystallization). Measured values ((6.80± 0.80)x10-¹¹ m²/s at 300°C) agree well with those found by other techniques. On the other hand, H diffusion in Zr-2.5Nb plates composed by elongated _ grains surrounded by filaments of β phase is clearly anisotropic, and much larger than in Zircaloy-2 (D = (2.16±0.43)x10-¹° m²/s along the normal direction and D = (5.67 ±1.9)x10-¹° m²/s along the rolling direction, both at 300°C). Moreover, the diffusion anisotropy inverts after a thermal treatment of 3h at 860°C (D=(3.9 ±0.4)x10-¹° m²/s along the normal diffrection and D= (1.44±0.14)x10-¹° m²/s along the rolling direction, both at 300°C). These results can qualitatively be explained by changes in the connectivity of the β phase induced by the thermal treatment, as a result of the double phase transformation α-β-α. These results illustrate the capability of the technique and envisage its future application to the study of H diffusion in other materials. Finally, with the goal of improving the accuracy of the technique for H determination and to allow its application without calibrated standards, we measured the dependence of neutron wavelength on the attenuation coefficient of Zircaloy-2 and Zr-2.5Nb specimens with different H contents, and compared it with theoretical calculations. We found that calibrated standards can be avoided by taking images with neutrons having wavelengths longer than 5.7 °A, with an expected accuracy better than 5 wt ppm H.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Zirconium alloys; Aleaciones de circonio; [Neutron imaging; Radiografía de neutrones; Hydrogen diffusion; Difusión de hidrógeno] |
Referencias: | [1] Kearns, J. Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4. Journal of nuclear materials, 22 (3), 292-303, 1967. vi, 16, 91, 95 [2] Kim, Y. S., Ahn, S. B., Cheong, Y. M. Precipitation of crack tip hydrides in zirconium alloys. Journal of alloys and compounds, 429 (1-2), 221-226, 2007. vi, 20 [3] Skinner, B., Dutton, R. Hydrogen di_usivity in alpha-beta zirconium alloys and its role in delayed hydride cracking. Hydrogen effects on material behavior, 1990. vi, xi, xiv, 21, 22, 95, 96, 116, 137, 140, 143, 144, 145 [4] Srivastava, D., Dey, G., Banerjee, S. Evolution of microstructure during fabrication of zr-2.5 wt pct nb alloy pressure tubes. Metallurgical and Materials Transactions A, 26 (10), 2707-2718, 1995. vi, 22 [5] Saibaba, N. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules. Journal of Nuclear Materials, 383 (1-2), 63-70, 2008. vi, 22 [6] Banhart, J. Advanced tomographic methods in materials research and engineering, tomo 66. Oxford University Press, 2008. vi, 30 [7] Brenizer, J. A review of signi_cant advances in neutron imaging from conception to the present. Physics Procedia, 43, 10-20, 2013. vii, 31 [8] Schulz, M., Schillinger, B. Antares: Cold neutron radiography and tomography facility. Journal of large-scale research facilities JLSRF, 1, 17, 2015. vii, 39 [9] Kaestner, A., Hartmann, S., Kuhne, G., Frei, G., Grunzweig, C., Josic, L., et al. The icon beamline{a facility for cold neutron imaging at sinq. Nuclear Instru-ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 659 (1), 387-393, 2011. vii, 39, 40 [10] Marín, J. Description of the new neutrography facility at ra6. Inf. tec., Technical Report CNEA-CAB IT 47/023, 2013. vii, 40, 41, 42 [11] Darìo, P., Ariel, F. Rediseño de la facilidad de neutrografía del ra-6 y su aplicación a la tecnología del hidrógeno. Insituto Balseiro, Centro Atómico Bariloche, 2009. vii, 42 [12] Grosse, M., Lehmann, E., Vontobel, P., Steinbrueck, M. Quantitative determination of absorbed hydrogen in oxidised zircaloy by means of neutron radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 566 (2), 739-745, 2006. vii, 5, 45, 46, 97, 164 [13] Grosse, M., Van den Berg, M., Goulet, C., Lehmann, E., Schillinger, B. Insitu neutron radiography investigations of hydrogen difrfusion and absorption in zirconium alloys. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651 (1), 253-257, 2011. vii, 5, 45, 46, 97, 164 [14] Krop, G. J., F. Informe CAB, 1975. vii, 48, 156 [15] Santisteban, J., Vicente-Alvarez, M., Vizcaino, P., Banchik, A., Vogel, S., Tremsin, A., et al. Texture imaging of zirconium based components by total neutrón cross-section experiments. Journal of Nuclear Materials, 425 (1-3), 218-227, 2012. vii, 47, 48, 49, 153, 156 [16] Santisteban, J. R. Desarrollo de nuevas t_ecnicas neutronicas para el estudio experimental del sistema metal-hidrogeno. Tesis Doctoral, Tesis Doctoral, Instituto Balseiro, 1998. vii, viii, 48, 51, 73, 156 [17] Sawatzky, A. Hydrogen in zircaloy-2: Its distribution and heat of transport. Journal of Nuclear Materials, 2 (4), 321-328, 1960. xi, 91, 92, 93 [18] Kearns, J. Di_usion coe_cient of hydrogen in alpha zirconium, zircaloy-2 and zircaloy-4. Journal of Nuclear Materials, 43 (3), 330-338, 1972. xi, xi, xi, 4, 95, 96, 118, 128, 131, 164 [19] Sawatzky, A. The diffusion and solubility of hydrogen in the alpha phase of zircaloy-2. Journal of Nuclear Materials, 2 (1), 62-68, 1960. xi, 95, 96, 131, 143 [20] McRae, G., Coleman, C., Leitch, B. The _rst step for delayed hydride cracking in zirconium alloys. Journal of Nuclear Materials, 396 (1), 130-143, 2010. xi, 17, 96 [21] Khatamian, D. Deuterium di_usion along the three principal directions in anisotropic zr-2.5 nb. Journal of Alloys and Compounds, 580, S58-S62, 2013. xi, xiv, 4, 95, 96, 143, 144, 145 [22] Khatamian, D. Diffusion of deuterium in zr-2.5 nb alloy under neutron irradiation. Journal of Alloys and Compounds, 509, S797-S800, 2011. xi, xiv, 95, 96, 116, 140, 145 [23] Shrivastava, K. C., Kulkarni, A., Ramanjaneyulu, P., Sunil, S., Saxena, M., Singh, R., et al. Determination of diffusion coefficients of hydrogen and deuterium in zr-2.5% nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry. Journal of Nuclear Materials, 461, 151-156, 2015. xi, xiv, 95, 96, 145 [24] Sawatzky, A., Ledoux, G., Tough, R., Cann, C. Hydrogen di_usion in zirconiumniobium alloys. En: Metal-Hydrogen Systems, pags. 109-120. Elsevier, 1982. xi, xiv, 95, 96, 137, 143, 145 [25] Kerr, M., Daymond, M., Holt, R., Almer, J. Strain evolution of zirconium hydride embedded in a zircaloy-2 matrix. Journal of nuclear Materials, 380 (1-3), 70-75, 2008. xii, 111, 112 [26] Cai, S., Daymond, M., Holt, R., Gharghouri, M., Oliver, E. Evolution of interphase and intergranular stresses in zr-2.5 nb during room temperature deformation. Materials Science and Engineering: A, 501 (1-2), 166-181, 2009. xii, xii, 111, 113, 114, 115 [27] Lehmann, E., Frei, G., Vontobel, P., Josic, L., Kardjilov, N., Hilger, A., et al. The energy-selective option in neutron imaging. Nuclear Instruments and Met- hods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603 (3), 429-438, 2009. 2 [28] Tremsin, A. S., Feller, W. B., Downing, R. G., Mildner, D. F. The e_ciency of thermal neutron detection and collimation with microchannel plates of square and circular geometry. IEEE transactions on nuclear science, 52 (5), 1739-1744, 2005. 2 [29] Kockelmann, W., Frei, G., Lehmann, E. H., Vontobel, P., Santisteban, J. R. Energy-selective neutron transmission imaging at a pulsed source. Nuclear Ins-truments and Methods in Physics Research Section A: Accelerators, Spectrome-ters, Detectors and Associated Equipment, 578 (2), 421-434, 2007. 2 [30] Santisteban, J. R., Edwards, L., Fitzpatrick, M. E., Steuwer, A., Withers, P. J., Daymond, M. R., et al. Strain imaging by bragg edge neutron transmission. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 481 (1-3), 765-768, 2002. 2 [31] Cox, B., Rudling, P. Hydriding mechanisms and impact on fuel performance. Advanced Nuclear Technology for ZIRAT52000, 2000. 2 [32] Ritchie, I., Coleman, C., Roth, M., Grigoriev, V. Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors. International Atomic Energy Agency, Vienna, Austria, 2004. 4, 17 [33] Kerr, M., Daymond, M., Holt, R., Almer, J., Sta_ord, S., Colas, K. Fracture of a minority phase at a stress concentration observed with synchrotron x-ray diffraction. Scripta Materialia, 61 (10), 939-942, 2009. 4 [34] Kerr, M., Daymond, M., Holt, R., Almer, J., Staford, S. Observation of growth of a precipitate at a stress concentration by synchrotron x-ray diffraction. Scripta Materialia, 62 (6), 341-344, 2010. 4 [35] Zanellato, O., Preuss, M., Buere, J.-Y., Ribeiro, F., Steuwer, A., Desquines, J., et al. Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in zircaloy-4. Journal of Nuclear Materials, 420 (1-3), 537-547, 2012. 4 [36] Vizcaino, P., Santisteban, J. R., Alvarez, M. V., Banchik, A., Almer, J. Effect of crystallite orientation and external stress on hydride precipitation and dissolution in zr2. 5% nb. Journal of Nuclear Materials, 447 (1-3), 82-93, 2014. 4 [37] Heuser, B. J., King, J. S., Chen, W. Sans measurements of deuteride (hydride) formation in single crystal pd. Journal of alloys and compounds, 292 (1-2), 134-147, 1999. 5 [38] Chen, W., Heuser, B. J., King, J. S. Small-angle neutron scattering investigation of deuteride (hydride) precipitation and decomposition in single-crystal pd. Journal of applied crystallography, 33 (3-1), 442-446, 2000. 5 [39] Zeilinger, A., Pochman, W. New method for the measurement of hydrogen diffusion in metals. Journal of Applied Physics, 47 (12), 5478-5479, 1976. 5, 45 [40] Yasuda, R., Nakata, M., Matsubayashi, M., Harada, K., Hatakeyama, Y., Amano, H. Application of hydrogen analysis by neutron imaging plate method to zircaloy cladding tubes. Journal of nuclear materials, 320 (3), 223-230, 2003. 5, 45 [41] Granada, J., Santisteban, J., Mayer, R. Non-destructive determination of very low hydrogen content in metals with the use of neutron techniques. Physica B: Condensed Matter, 213, 1005-1007, 1995. 5, 45 [42] Beyer, K., Kannengieer, T., Griesche, A., Schillinger, B. Study of hydrogen effusion in austenitic stainless steel by time-resolved in-situ measurements using neutrón radiography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651 (1),211-215, 2011. 5, 45 [43] Furrer, A., Yvon, K., Anderson, I., on Neutron Scattering (2: 1994: Zuoz), S. S. Neutron scattering from hydrogen in materials: proceedings of the Second Summer School on Neutron Scattering, Zuoz, Switzerland, 14-20 August 1994. World Scientific, 1994. 5 [44] Jinchuk, D. Energía nucleoelectrica. Sitio web de la Comisión Nacional de Energía Atómica. Disponible en: http://www. cnea. gov. ar/xxi/temasnucleares/energianucleoelectrica/Energia-nucleoelectrica. pdf [consultado el 16 de junio de 2013], 2003. 9 [45] Krishnan, R., Asundi, M. Zirconium alloys in nuclear technology. Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences, 4 (1), 41-56, 1981. 12 [46] Azevedo, C. Selection of fuel cladding material for nuclear frassion reactors. En-gineering Failure Analysis, 18 (8), 1943-1962, 2011. 12 [47] Miller, G. Metallurgy of the rarer metals-2, zirconium. London, Butter-worths, 1957. 12 [48] Brown, P., Curti, E., Grambow, B. Chemical thermodynamics series, vol. 8: Chemical thermodynamics of zirconium, oecdnea, 2005. 12 [49] Burgers, W., Van Amstel, J. P. Electronoptical observation of metal surfaces: Iii. crystal growth and allotropic transition in zirconium. Physica, 5 (4), 305-312, 1938. 12 [50] Massih, A. R., Andersson, T., Witt, P., Dahlback, M., Limback, M. E_ect of quenching rate on the -to- phase transformation structure in zirconium alloy. Journal of Nuclear Materials, 322 (2-3), 138-151, 2003. 13 [51] Martín Rengel, M. _A. Integridad estructural de vainas de combustible nuclear en condiciones de almacenamiento temporal en seco. Tesis Doctoral, Universidad Politecnica de Madrid, 2009. 13, 15 [52] Bradbrook, J., Lorimer, G., Ridley, N. The precipitation of zirconium hydride in zirconium and zircaloy-2. Journal of Nuclear Materials, 42 (2), 142-160, 1972. 14 [53] Barrow, L., Barrow, A., Almer, J., Daymond, M. The zr20nb{h phase diagram and the characterisation of hydrides in beta-zr. Journal of Nuclear Materials, 442 (1-3), 292-297, 2013. 15 [54] Cox, B. Hydrogen uptake during oxidation of zirconium alloys. Journal of alloys and compounds, 256 (1-2), 244-246, 1997. 15 [55] Martin, S., Rees, A. Interpretation of the solubility of hydrogen in zirconium. Transactions of the Faraday Society, 50, 343-352, 1954. 15 [56] Clayton, J. Cladding corrosion and hydriding in irradiated defected zircaloy fuel rods. Corrosion, 45 (12), 996-1002, 1989. 15 [57] Blackmur, M. S. The Precipitation of Hydrides in Zirconium Alloys. Tesis Doctoral, The University of Manchester (United Kingdom), 2015. 16, 17 [58] Cox, B. Environmentally-induced cracking of zirconium alloys|a review. Journal of Nuclear Materials, 170 (1), 1-23, 1990. 17 [59] Efsing, P., Pettersson, K. Delayed hydride cracking in irradiated zircaloy cladding. En: Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM International, 2000. 17 [60] Puls, M., Simpson, L. Hydride-induced crack growth in zirconium alloys. Fracture Problems and Solutions in the Energy Industry, pags. 13-25, 1981. 17 [61] Dutton, R., Nuttall, K., Puls, M., Simpson, L. Mechanisms of hydrogen induced delayed cracking in hydride forming materials. Metallurgical Transactions A, 8 (10), 1553-1562, 1977. 17, 19 [62] Simpson, C., Ells, C. Delayed hydrogen embrittlement in zr-2.5 wt% nb. Journal of nuclear materials, 52 (2), 289-295, 1974. 19 [63] Vesterlund, G., Anderson, E. T. Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors, 1984. US Patent 4,450,016. 20 [64] Cheadle, B., Aldridge, S. The transformation and age hardening behaviour of zr-19 wt% nb. Journal of Nuclear Materials, 47, 255-258, 1973. 21 [65] Mampe, W., Ageron, P., Bates, C., Pendlebury, J., Steyerl, A. Neutron lifetime measured with stored ultracold neutrons. Physical Review Letters, 63 (6), 593, 1989. 23 [66] Reuss, P. Neutron physics. EDP sciences, 2012. 24 [67] Lamarsh, J. R., Baratta, A. J. Introduction to nuclear engineering, tomo 3. Prentice Hall Upper Saddle River, NJ, 2001. 25 [68] Lehmann, E., Kaestner, A., Josic, L., Hartmann, S., Mannes, D. Imaging with cold neutrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651 (1), 161-165, 2011. 25 [69] Knoll, G. F. Radiation detection and measurement. John Wiley & Sons, 2010. 26, 28 [70] Arai, M., Crawford, K. Neutron sources and facilities. En: Neutron Imaging and Applications, p_ags. 13{30. Springer, 2009. 26, 27, 28 [71] Kardjilov, N., Manke, I., Hilger, A., Williams, S., Strobl, M., Woracek, R., et al. Neutron bragg-edge mapping of weld seams. International Journal of Materials Research, 103 (2), 151-154, 2012. 29 [72] Hartmut, K., Ernst, K. Photographic detection of slowly moving neutrons, 1940. US Patent 2,186,757. 29 [73] Thewlis, J. Neutron radiography. British Journal of Applied Physics, 7 (10), 345, 1956. 29 [74] Domanus, J., Bayon, G., Harms, A., Greim, L., Leeang, H., Markgraf, J., et al. Practical neutron radiography. EUR(Luxembourg), 1992. 33 [75] van Loef, E. New organic scintillators for neutron detection. Inf. tec., Radiation Monitoring Devices, Inc. Watertown United States, 2016. 34 [76] Lehmann, E., Frei, G., Kuhne, G., Boillat, P. The micro-setup for neutron imaging: A major step forward to improve the spatial resolution. Nuclear Instru-ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 576 (2-3), 389-396, 2007. 36 [77] Guanes, F. A. M., Blaumann, H., Sanchez, F. A. Caracterización y optimización de la facilidad de radiografía con neutrones on-line del reactor ra-6. Proyecto integrador de Ingeniería Nuclear. Instituto Balseiro, Argentina, 2007. 36 [78] Wiza, J. L., et al. Microchannel plate detectors. Nucl. Instrum. Methods, 162 (1-3), 587-601, 1979. 37 [79] Tremsin, A. S., Feller, W. B., Downing, R. G. E_ciency optimization of microchannel plate (mcp) neutron imaging detectors. i. square channels with 10b doping. Nuclear Instruments and Methods in Physics Research Section A: Accele-rators, Spectrometers, Detectors and Associated Equipment, 539 (1-2), 278-311, 2005. 38 [80] Calzada, E., Gruenauer, F., Muhlbauer, M., Schillinger, B., Schulz, M. New design for the antares-ii facility for neutron imaging at frm ii. Nuclear Instru-ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605 (1-2), 50-53, 2009. 38 [81] Tremsin, A., Dangendorf, V., Tittelmeier, K., Schillinger, B., Schulz, M., Lerche, M., et al. Time-resolved neutron imaging at antares cold neutron beamline. Journal of Instrumentation, 10 (07), P07008, 2015. 38, 43 [82] Schulz, M., Schillinger, B. Antares:cold neutron radiography and tomography facility. urlhttps://www.mlz-garching.de/antares. 39 [83] Grunzweig, C., Mannes, D., Kaestner, A., Schmid, F., Vontobel, P., Hovind, J., et al. Progress in industrial applications using modern neutron imaging techniques. Physics Procedia, 43, 231-242, 2013. 40 [84] Kaestner, A., Hartmann, S., Kuhne, G., Frei, G., Grunzweig, C., Josic, L., et al. Icon: Imaging with cold neutrons. urlhttps:// https://www.psi.ch/sinq/icon/. 40 [85] Bariloche, C. A. Reactor argentino ra-6. urlhttps:// https://www.cab.cnea.gov.ar/index.php/ofertatecnologica/equipamiento/reactor-ra6. 40 [86] Santisteban, J., Daymond, M., James, J., Edwards, L. Engin-x: a third-generation neutron strain scanner. Journal of Applied Crystallography, 39 (6), 812-825, 2006. 43 [87] Tremsin, A., McPhate, J., Vallerga, J., Siegmund, O., Hull, J., Feller, W., et al. Detection e_ciency, spatial and timing resolution of thermal and cold neutrón counting mcp detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 604 (1-2), 140-143, 2009. 43 [88] Kabra, S. Engin-x: a dedicated engineering science facility at isis. urlhttps://https:// https://www.isis.stfc.ac.uk/Pages/Engin-X.aspx. 43 [89] Lehmann, E., Vontobel, P., Kardjilov, N. Hydrogen distribution measurements by neutrons. Applied Radiation and Isotopes, 61 (4), 503-509, 2004. 45 [90] Whittemore, W., McReynolds, A. E_ects of chemical binding on the neutrón cross section of hydrogen. Physical Review, 113 (3), 806, 1959. 47, 48 [91] Grosse, M., Steinbrueck, M., Kaestner, A. Wavelength dependent neutron transmission and radiography investigations of the high temperature behaviour of materials applied in nuclear fuel and control rod claddings. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651 (1), 315-319, 2011. 47 [92] Fermi, E., Sturm, W., Sachs, R. The transmission of slow neutrons through microcrystalline materials. Physical Review, 71 (9), 589, 1947. 48, 156 [93] Woracek, R., Santisteban, J., Fedrigo, A., Strobl, M. Di_raction in neutron imaging| a review. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 141-158, 2018. 49 [94] Carpenter, G. The dilatational mis_t of zirconium hydrides precipitated in zirconium. Journal of Nuclear Materials, 48 (3), 264-266, 1973. 49 [95] Puls, M. P. The effect of hydrogen and hydrides on the integrity of zirconium alloy components: delayed hydride cracking. Springer Science, Business Media, 2012. 51 [96] Crank, J., et al. The mathematics of di_usion. Oxford university press, 1979. 57, 84, 87 [97] Silicon, H., Copper. Methods of chemical analysis of zirconium and zirconium alloys. ASTM E146-83. 57 [98] Green, L., Bickel, G., Leeson, P., James, M., Lamarche, T., Michel, H. A hot vacuum extraction mass spectrometric system for determination of h and d in zirconium. En: AECL Report No. 11342, pags. 95{99. 1996. 57 [99] Couet, A., Motta, A. T., Comstock, R. J., Paul, R. L. Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys. Journal of Nuclear Materials, 425 (1-3), 211-217, 2012. 57 [100] Harada, M., Wakamatsu, R. The effect of hydrogen on the transition behavior of the corrosion rate of zirconium alloys. En: Zirconium in the Nuclear Industry: 15th International Symposium. ASTM International, 2009. 57 [101] Wiese, H. Fractionated Determination of Hydrogen in Corroded Zirconium Alloys. Tesis Doctoral, Ph. D. thesis, Paul Scherrer Institute, Villigen, 1999. 57 [102] Ells, C. Hydride precipitates in zirconium alloys. Journal of Nuclear Materials, 28 (2), 129-151, 1968. 58 [103] Grosse, M., Roessger, C., Stuckert, J., Steinbrueck, M., Kaestner, A., Kardjilov, N., et al. Neutron imaging investigations of the secondary hydriding of nuclear fuel cladding alloys during loss of coolant accidents. Physics Procedia, 69, 436-444, 2015. 71, 164 [104] Slattery, G. The terminal solubility of hydrogen in zirconium alloys between 30 and 400 c. J. Inst. Met., 95, 43, 1967. 91, 95 [105] Sawatzky, A., Wilkins, B. Hydrogen solubility in zirconium alloys determined by thermal diffusion. Journal of Nuclear Materials, 22 (3), 304-310, 1967. 91, 95 [106] Cann, C., Atrens, A. A metallographic study of the terminal solubility of hydrogen in zirconium at low hydrogen concentrations. Journal of Nuclear Materials, 88 (1), 42-50, 1980. 93, 95 [107] Slattery, G. The terminal solubility of hydrogen in the zirconium/2 at% chromium/0.16 at% iron alloy. Journal of Nuclear Materials, 32 (1), 30-38, 1969. 93, 95 [108] Erickson, W., Hardie, D. The inuence of alloying elements on the terminal solubility of hydrogen in _-zirconium. Journal of Nuclear Materials, 13 (2), 254-262, 1964. 93, 95 [109] Pan, Z., Ritchie, I., Puls, M. The terminal solid solubility of hydrogen and deuterium in zr-2.5 nb alloys. Journal of nuclear materials, 228 (2), 227-237, 1996. 93, 95 [110] Fagundez, C., Vizcano, P., Bianchi, D., Banchik, A. Dilatometría del sistema zr-h. En: Proceedings of the Congress SAM/CONAMET. 2005. 93, 95 [111] Root, J., Fong, R. Neutron di_raction study of the precipitation and dissolution of hydrides in zr-2.5 nb pressure tube material. Journal of nuclear materials, 232 (1), 75-85, 1996. 93 [112] Khatamian, D., Root, J. Comparison of tssd results obtained by differential scanning calorimetry and neutron diffraction. Journal of Nuclear Materials, 372 (1), 106-113, 2008. 93, 94 [113] Fong, R., Spooner, S. Investigation of zirconium hydrides and hydrogen solubility limit in zr-2.5 nb alloy by small angle neutron scattering. Scripta metallurgica et materialia, 30 (5), 649-654, 1994. 93 [114] Khatamian, D., Pan, Z., Puls, M., Cann, C. Hydrogen solubility limits in excel, an experimental zirconium-based alloy. Journal of alloys and compounds, 231 (1-2), 488-493, 1995. 94 [115] Une, K., Ishimoto, S. Terminal solid solubility of hydrogen in unalloyed zirconium by differential scanning calorimetry. Journal of Nuclear Science and Technology, 41 (9), 949-952, 2004. 94, 95 [116] Une, K., Ishimoto, S. Dissolution and precipitation behavior of hydrides in zircaloy-2 and high fe zircaloy. Journal of Nuclear Materials, 322 (1), 66-72, 2003. 95 [117] McMinn, A., Darby, E. C., Schoffeld, J. S. The terminal solid solubility of hydrogen in zirconium alloys. En: Zirconium in the Nuclear Industry: Twelfth International Symposium, tomo 1354, pag. 173. ASTM International, 2000. 95 [118] McRae, G., Coleman, C., Nordin, H., Leitch, B., Hanlon, S. Di_usivity of hydrogen isotopes in the alpha phase of zirconium alloys interpreted with the Einstein ux equation. Journal of Nuclear Materials, 510, 337-347, 2018. 95, 143, 145 [119] MathWorks. Solve linear, quadratic, integer, and nonlinear optimization problems, 2018. 107 [120] Xu, F., Holt, R., Daymond, M., Rogge, R., Oliver, E. Development of internal strains in textured zircaloy-2 during uni-axial deformation. Materials Science and Engineering: A, 488 (1-2), 172-185, 2008. 111 [121] Xu, F., Holt, R., Daymond, M. Evidence for basal< a>-slip in zircaloy-2 at room temperature from polycrystalline modeling. Journal of Nuclear Materials, 373 (1-3), 217-225, 2008. 111 [122] Xu, F., Holt, R., Daymond, M. Modeling lattice strain evolution during uniaxial deformation of textured zircaloy-2. Acta Materialia, 56 (14), 3672-3687, 2008. 111 [123] Mareau, C., Daymond, M. R. Comparison of experimentally determined texture development in zircaloy-2 with predictions from a rate-dependent polycrystalline model. Materials Science and Engineering: A, 528 (29-30), 8676-8686, 2011. 111 [124] Von Dreele, R. Quantitative texture analysis by rietveld refranement. Journal of Applied Crystallography, 30 (4), 517-525, 1997. 113 [125] Lehmann, E., Schillinger, B., Kockelmann, W. Isis hosts neuwave-2 workshop on energy-selective neutron imaging, 2010. 152 [126] Lehmann, E. H. Neuwave-6: Progress and perspectives in neutron imaging. Neu-tron News, 25 (3), 12-13, 2014. 152 [127] Santisteban, J. R., Edwards, L., Stelmukh, V. Characterization of textured materials by tof transmission. Physica B: Condensed Matter, 385, 636-638, 2006. |
Materias: | Ingeniería > Neutrografía Ingeniería > Degradación de Hidrógeno por Circonio |
Divisiones: | Energía nuclear > Ingeniería nuclear > Física de neutrones |
Código ID: | 866 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 22 Mar 2021 10:08 |
Última Modificación: | 12 Abr 2021 12:32 |
Personal del repositorio solamente: página de control del documento