Guerra Hernández, Luis A. (2019) Antenas ópticas en la nano y microescala. / Optical antennas at the nano and microscale. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 60Mb |
Resumen en español
Los resultados del presente trabajo de tesis doctoral sientan bases para la comprensión de fenómenos plasmónicos, asociados a la espectroscopia Raman amplificada por superficie (SERS) para el desarrollo de nuevos métodos de detección molecular. La sistemática de estudio consisti_o en evaluar la respuesta plasmonica y SERS de cinco tipos de sistemas metalicos nanoestructurados: i) superficies rugosas de Au, ii) cavidades esfericas de Au, iii) sistemas de film de Au (o Ag) sobre nanoesferas (AuFON o AgFON), iv) nanopartículas triangulares de Au (AuNPS) y v) un substrato comercial Klarite. En los sistemas mencionados se abordaron estudios del acoplamiento de la luz con plasmones, a través de mecanismos resonantes poco frecuentes en la literatura. Así mismo, se presentan resultados de modelados numéricos para comprender y reforzar la interpretación de los resultados experimentales. Se estableció también una correlación entre estos plasmones y la respuesta SERS de moléculas sonda absorbidas covalentemente en la superficie del sistema. En las superficies rugosas de Au, se presentan resultados de la respuesta SERS en función del grado de rugosidad para nanoestructuras con relajación natural de la rugosidad y congelada artificialmente. Esto se hizo mediante un control no del grado de rugosidad, desde valores muy pequeños a valores grandes. Este estudio de rugosidad finamente controlado se realizó como insumo para luego poder estudiar el efecto de la rugosidad en substratos plasmonicos ordenados, fabricados por métodos de litografía con esferas de látex. La inhibición de la relajación de la superficie se realizó con métodos químicos produciendo mayor señal SERS en comparación con las superficies relajadas. En los sistemas de cavidades con rugosidad superficial adaptada o incrementada se estudió el efecto de esta rugosidad sobre la eficiencia SERS. Se demostró que este sistema híbrido cavidad + rugosidad funciona como una antena sinérgica multiescala donde la cavidad esférica cumple la función de incrementar el modo plasmonico cerca de la superficie rugosa, permitiendo un mejor acoplamiento de la radiación del campo lejano, a campos cercanos mejorados localmente. Otro resultado en este sistema híbrido, está relacionado con el acoplamiento resonante selectivo de modos plasmonicos de cavidad tipo P y D con diferente distribución espacial. El modo D espacialmente más connado a la superficie que el modo P, conduce a una canalización más eficiente de la energía desde el campo lejano a campos cercanos en la superficie. Otro de los resultados de la tesis está direccionado a estudios resonantes en sistemas AuFON y AgFON. En estos evaluamos y correlacionamos la respuesta SERS de tres modos plasmonicos (etiquetamos como M3, M2 y M1) con medidas de la reactividad óptica y modelado numérico de la mejora del campo en la superficie. Fundamentamos que los mecanismos de amplificación debido a los plasmones y la resonancia metal-ligando (M-L), muestran una relación con la amplificación SERS. Del modelado numérico en estos mismos sistemas mostramos que los modos plasmonicos M2 y M1 presentan similar distribución espacial de campo eléctrico pero distinta intensificación. En el caso de los AuFON, el modo M1 de mayor intensificación de campo eléctrico que M2 contribuye mas al rendimiento SERS cuando se cruza con la resonancia M-L. En los sistemas de AgFON fue posible incrementar los límites de detección molecular diez veces en comparación con los sistemas de AuFON. Además, se evidencio una nueva resonancia plasmonica (poco relevante en sistemas de AuFON) que contribuye significativamente a la respuesta SERS, generando un nuevo maximo en dicha respuesta. Por otro lado, los sistemas de AuNPS muestran señales SERS muy bajas en comparación con los otros sistemas estudiados. Esta baja amplificación esta relacionada con que, la superficie cubierta por estas AuNPS es mucho menor que la superficie total del substrato implicada en el proceso SERS. Finalmente, un último resultado hace referencia al estudio comparativo de los cinco sistemas mencionados. De esta comparación el sistema AuFON, resulto de mejores características en cuanto a valores de intensidad y homogeneidad de la señal SERS respecto a los demás sistemas estudiados. En general, determinamos que la contribución a la señal SERS proviene de los mecanismos plasmonicos, la resonancia M-L y la rugosidad superficial del sistema. Con los estudios de la tesis surgen posibilidades de desarrollo de sistemas de detección ultrasensible de moléculas en forma cuantitativa.
Resumen en inglés
The results presented on this Ph. D. thesis lay the foundation for the comprehension of plasmonic phenomena, associated with Surface Enhancement Raman Spectroscopy (SERS) for the development of new molecular detection methods. The study methodology consisted of evaluating the plasmonic response and SERS of five variety of nanostructured metallic systems: i) Au rough surface, ii) Au spherical cavities, iii) Au (orAg) film over nanospheres (AuFON or AgFON) systems, iv) Au triangular nanoparticles (AuNPS) and v) a commercial Klarite substrate. For the mentioned systems, studies of light coupling with plasmons were performed through resonant mechanisms, which are not frequently found in the literature. Likewise, numerical model results are presented for better comprehension and further interpretation of the experimental results. Also, it was stablished a correlation between these plasmons and the SERS response of probe molecules covalently attached to the surface of the system. For the Au rough surfaces, the SERS response is studied as a function of the degree of roughness. This is done for the nanostructures with natural relaxation of the roughness and for surfaces in which the relaxation is artificially freezed. This was done by fine control of the degree of roughness, from very small values to large values. This study of finely controlled roughness was performed as an input to then be able to study the effect of roughness in ordered plasmonic substrates, manufactured by lithography methods with latex spheres. The surface relaxation of the relaxation is stopped by means of chemical methods, producing a higher SERS signal in comparison to the relaxed surfaces. In the system of cavities with adapted superfficial roughness, it was studied the effect of this roughness on the SERS efficiency. It was demonstrated that the hybrid system cavity + roughness works as a synergic multiscale antenna, where the spherical cavity has the function of efficiently collecting the far field radiation, channelling the laser light, and enhancing the plasmonic mode close to the rough surface, allowing for a better coupling of the far field radiation, to the near field enhanced locally by roughness. An additional result of this hybrid system is related to the selective resonant coupling of plasmonic modes P and D with different spatial distribution. The mode D, with larger projection to the surface than mode P, conducts to a more efficient energy canalization rom the far field to near fields where the molecules reside. Another remarkable result of the present thesis is directed to resonant studies in AuFON and AgFON systems. For these substrates, we evaluated and correlated the SERS response of the three observed plasmonic modes (labeled as M3, M2 and M1) with optical reectivity measurements and numerical modelling for the improvement of the surface field. We demonstrate that the amplification mechanisms due both to the plasmons and the metal-ligand (M-L) resonance, show an association with the SERS intensity. From the numerical modelling of this system we show that the plasmonics modes M2 and M1 present a similar spatial distribution of the electric field but different intensification. For the case of the AuFON, the M1 mode, of higher intensification of electric field than M2, contributes more to the SERS efficiency and specifically when the resonance M-L is crossed. In AgFON systems, it was possible to enhance the detection limits up to ten times in comparison to the AuFON systems. Furthermore, a new plasmonic resonance at shorter wavelengths was evidenced (with no relevance in AuFON systems) that significantly contributes to the SERS response. On the other hand, AuNPS systems show very low SERS signals compared to the other studied systems. This low ampliffication is related to the fact that the covered surface is much smaller than the total surface of the substrate implied in the SERS process. Finally, the last result refers to the comparative study of the five mentioned systems. From this comparison, we conclude that the AuFON system shows the best characteristics referred to the intensity and homogeneity of the SERS signal, with respect to the other analyzed systems. In general, we determined that the contribution to the SERS signal comes from the combination of plasmonic mechanisms, the M-L resonance and the superfficial roughness of the system. From the studies performed in this thesis emerge valuable information of the development of improved ultrasensitive detection systems, for the quantitative detection of molecules.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Raman spectroscopy; Espectroscopía raman; [Plasmonics; Plasmónica; Optical Antennas; Antenas ópticas; Sers] |
Referencias: | [1] Leveque, G., Martin, O. J. Optimization of nite diffraction gratings for the excitation of surface plasmons. Journal of Applied Physics, 100 (12), 124301, 2006. v, 9 [2] Kelf, T., Sugawara, Y., Cole, R., Baumberg, J., Abdelsalam, M., Cintra, S., et al. Localized and delocalized plasmons in metallic nanovoids. Physical Review B, 74 (24), 245415, 2006. v, vi, 3, 11, 12, 13, 42, 46, 49, 50, 67, 86 [3] Tognalli, N. G. Nanoestructuras metálicas para espectroscopía SERS de sistemas biomiméticos y de sensado. Tesis Doctoral, Instituto Balseiro, 2008. vii, 11, 13, 17, 19, 20, 23, 24, 35, 36, 86 [4] Perney, N., Baumberg, J. J., Zoorob, M. E., Charlton, M. D., Mahnkopf, S., Netti, C. M. Tuning localized plasmons in nanostructured substrates for surfaceenhanced Raman scattering. Opt. Express, 14 (2), 847-857, 2006. xii, 3, 61, 62, 63 [5] Netti, M. C., Zoorob, M., Charlton, M. D., Aylie, P., Mahnkopf, S., Stopford, P., et al. Probing molecules by surface-enhanced Raman spectroscopy. En: Biomedical Vibrational Spectroscopy III: Advances in Research and Industry, tomo 6093, pag. 60930F. International Society for Optics and Photonics, 2006. xii, 3, 19, 20, 63, 64 [6] Tognalli, N. G., Cortes, E., Hernandez-Nieves, A. D., Carro, P., Usaj, G., Balseiro, C. A., et al. From single to multiple Ag-layer modication of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism. ACS Nano, 5 (7), 5433-5443, 2011. xiii, 2, 18, 19, 38, 75, 76, 86, 87, 98, 101, 108, 112 [7] Palik, E. D. Handbook of Optical constants of solids (academic, orlando, 1985). Google Scholar, pags. 286-297. xviii, 112, 113, 126 [8] D3 technologies. URL https://www.d3technologies.co.uk. xx, 64 [9] Ma, W.-q., Fang, Y., Hao, G.-l., Wang, W.-g. Adsorption behaviors of 4- mercaptobenzoic acid on silver and gold films. Chinese Journal of Chemical Physics, 23 (6), 659-663, 2010. xx, 69, 70 [10] Pople, J., et al. Gaussian 03, Revision B. 05. Gaussian, Inc., Pittsburgh, PA, 2003. xx, 69, 70 [11] Maier, S. A. Plasmonics, Fundamentals and Applications. Berlin: Springer, 2007. 1 [12] Atwater, H. A. The promise of plasmonics. Scientic American, 296 (4), 56-62, 2007. 1 [13] Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., et al. Nanostructured plasmonic sensors. Chemical Reviews, 108 (2), 494-521, 2008. 1 [14] Murray, W. A., Barnes, W. L. Plasmonic materials. Advanced Materials, 19 (22), 3771-3782, 2007. 1, 2 [15] Campion, A., Kambhampati, P. Surface-enhanced Raman scattering. Chemical Society Reviews, 27 (4), 241-250, 1998. 1, 15 [16] Xu, H., Bjerneld, E. J., Kall, M., Borjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters, 83 (21), 4357, 1999. 1, 15 [17] Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., Feld, M. S. Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 14 (18), R597, 2002. 1, 15, 17, 19 [18] Fleischmann, M., Hendra, P. J., McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 26 (2), 163-166, 1974. 1, 15, 16, 80 [19] Le Ru, E. C., Etchegoin, P. G. Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Amsterdam: Elsevier, 2009. 1, 3, 5, 7, 8, 9, 10, 11, 16, 17, 126, 127 [20] Aroca, R. Surface-enhanced vibrational spectroscopy. John Wiley & Sons, 2006. 1, 19 [21] Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys., 57 (3), 783, 1985. 2, 17, 18 [22] Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 36 (6-7), 485-496, 2005. 1 [23] Otto, A. Surface-enhanced Raman scattering:\Classical" and \Chemical" origins. En: Light scattering in solids IV, tomo 54, pags. 289-418. Springer, 1984. 2, 17, 18, 19 [24] Le Ru, E. C., Blackie, E., Meyer, M., Etchegoin, P. G. SERS enhancement factors: a comprehensive study. Journal of Physical Chemistry B, 111 (37), 13794-13803, 2007. 2, 18, 115 [25] Meyer, S. A., Auguie, B., Le Ru, E. C., Etchegoin, P. G. Combined SPR and SERS microscopy in the Kretschmann configuration. J. Phys. Chem. A, 116 (3), 1000-1007, 2012. 2 [26] Tognalli, N. G., Scodeller, P., Flexer, V., Szamocki, R., Ricci, A., Tagliazucchi, M., et al. Redox molecule based SERS sensors. Phys. Chem. Chem. Phys., 11, 7412-7423, 2009. 2, 3, 68 [27] Tognalli, N. G., Fainstein, A., Calvo, E. J., Abdelsalam, M., Bartlett, P. N. IncidentWavelength Resolved Resonant SERS on Au Sphere Segment Void (SSV) Arrays. J. Phys. Chem. C, 116 (5), 3414-3420, 2012. 3, 19, 38, 42, 46, 52, 67, 86, 101 [28] Lacharmoise, P., Tognalli, N., Goni, A., Alonso, M., Fainstein, A., Cole, R., et al. Imaging optical near fields at metallic nanoscale voids. Phys. Rev. B, 78 (12), 2008. 19, 67, 86 [29] Abdelsalam, M., Bartlett, P. N., Russell, A. E., Baumberg, J. J., Calvo, E. J., Tognalli, N. G., et al. Quantitative electrochemical SERS of avin at a structured silver surface. Langmuir, 24 (13), 7018-7023, 2008. [30] Scodeller, P., Flexer, V., Szamocki, R., Calvo, E. J., Tognalli, N., Troiani, H., et al. Wired-enzyme core-Shell Au nanoparticle biosensor. J. Am. Chem. Soc., 130 (38), 12690-12697, 2008. 3, 68 [31] Cortes, E., Tognalli, N. G., Fainstein, A., Vela, M. E., Salvarezza, R. C. Agmodied Au nanocavity SERS substrates. Physical Chemistry Chemical Physics, 11 (34), 7469-7475, 2009. 2, 19, 85, 108, 112 [32] Sow, I., Grand, J., Levi, G., Aubard, J., Felidj, N., Tinguely, J.-C., et al. Revisiting Surface-Enhanced Raman Scattering on Realistic Lithographic Gold Nanostripes. J. Phys. Chem. C, 117 (48), 25650-25658, 2013. 3, 67, 83 [33] Trugler, A., Tinguely, J.-C., Jakopic, G., Hohenester, U., Krenn, J. R., Hohenau, A. Near-field and SERS enhancement from rough plasmonic nanoparticles. Physical Review B, 89 (16), 165409, 2014. 3, 67, 83 [34] Kern, A. M., Martin, O. J. F. Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures. Nano Lett., 11 (2), 482-487, 2011. 3, 67 [35] Kern, A. M., Meixner, A. J., Martin, O. J. F. Molecule-Dependent Plasmonic Enhancement of Fluorescence and Raman Scattering near Realistic Nanostructures. ACS Nano, 6 (11), 9828-9836, 2012. 3, 67 [36] Huang, F. M., Wilding, D., Speed, J. D., Russell, A. E., Bartlett, P. N., Baumberg, J. J. Dressing Plasmons in Particle-in-Cavity Architectures. Nano Lett., 11 (3), 1221-1226, 2011. 3, 68, 83, 85, 91, 93 [37] Guo, K., Xiao, R., Zhang, X., Wang, C., Liu, Q., Rong, Z., et al. Silver nanopartical over AuFON substrate for enhanced Raman readout and their application in pesticide monitoring. Molecules, 20 (4), 6299-6309, 2015. 3, 99 [38] Dick, L. A., McFarland, A. D., Haynes, C. L., Van Duyne, R. P. Metal lm over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B, 106 (4), 853-860, 2002. 3, 20, 28, 53, 54, 99 [39] Perney, N., De Abajo, F. G., Baumberg, J., Tang, A., Netti, M., Charlton, M., et al. Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. Physical Review B, 76 (3), 035426, 2007. 3, 19, 63, 67, 85, 86, 87 [40] Jensen, T. R., Malinsky, M. D., Haynes, C. L., Van Duyne, R. P. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. The Journal of Physical Chemistry B, 104 (45), 10549-10556, 2000. 3 [41] Yonzon, C. R., Jeoung, E., Zou, S., Schatz, G. C., Mrksich, M., Van Duyne, R. P. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. Journal of the American Chemical Society, 126 (39), 12669-12676, 2004. 3, 115 [42] Salvarezza, R., Arvia, A. A modern approach to surface roughness applied to electrochemical systems. En: Modern Aspects of Electrochemistry, pags. 289-373. Springer, 1996. 3, 29, 32 [43] Bartlett, P. N., Baumberg, J. J., Birkin, P. R., Ghanem, M. A., Nett, M. C. Highly ordered macroporous gold and platinum lms formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres. Chem. Mater, 14, 2199-2208, 2002. 3, 34 [44] Cintra, S., Abdelsalam, M. E., Bartlett, P. N., Baumberg, J. J., Kelf, T. A., Sugawara, Y., et al. Sculpted substrates for SERS. Faraday Discussions, 132, 191-199, 2006. [45] Mahajan, S., Abdelsalam, M., Suguwara, Y., Cintra, S., Russell, A., Baumberg, J., et al. Tuning plasmons on nano-structured substrates for NIR-SERS. Physical Chemistry Chemical Physics, 9 (1), 104-109, 2007. [46] Baumberg, J. J., Kelf, T. A., Sugawara, Y., Cintra, S., Abdelsalam, M. E., Bartlett, P. N., et al. Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Letters, 5 (11), 2262-2267, 2005. 3 [47] Alexander, T. A. Applications of surface-enhanced Raman spectroscopy (SERS) for biosensing: an analysis of reproducible commercially available substrates. En: Smart Medical and Biomedical Sensor Technology III, tomo 6007, pag. 600703. International Society for Optics and Photonics, 2005. 3, 19, 20 [48] Alexander, T. A. Development of methodology based on commercialized SERSactive substrates for rapid discrimination of Poxviridae virions. Analytical Che- mistry, 80 (8), 2817-2825, 2008. [49] Alexander, T. A., Le, D. M. Characterization of a commercialized SERS-active substrate and its application to the identication of intact Bacillus endospores. Applied Optics, 46 (18), 3878-3890, 2007. 3, 19, 20 [50] Maier, S. A. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007. 3, 5, 6, 7, 9, 10 [51] Auguie, B. Optical properties of gold nanostructures. Tesis Doctoral, University of Exeter, 2009. 7 [52] Pines, D. Collective energy losses in solids. Rev. Mod. Phys., 28, 184-199, 1956. 7 [53] Jackson, J. D. 3ra edicion. En: Classical Electrodynamics. ed. Wiley, New York, 1999. 7, 14 [54] Sambles, J., Bradbery, G., Yang, F. Optical excitation of surface plasmons: an introduction. Contemporary Physics, 32 (3), 173-183, 1991. 7 [55] Barker Jr, A. Optical measurements of surface plasmons in gold. Physical Review B, 8 (12), 5418, 1973. 8 [56] Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988. 8 [57] Yannopapas, V., Stefanou, N. Optical excitation of coupled waveguide-particle plasmon modes: A theoretical analysis. Phys. Rev. B, 69, 012408, 2004. 8 [58] Hecht, E., Zajac, A. Optics. Addison-Wesley Pub. Co, 2001. 8 [59] Hennessy, K., Badolato, A., Petro, P., Hu, E. Positioning photonic crystal cavities to single InAs quantum dots. Photonics and Nanostructures-Fundamentals and Applications, 2 (2), 65-72, 2004. 9 [60] Yamamoto, N., Noda, S., Sasaki, A. New realization method for threedimensional photonic crystal in the optical wavelength region: experimental consideration. Japanese Journal of Applied Physics, 36 (3S), 1907, 1997. 9 [61] Teperik, T., Popov, V., de Abajo, F. G. Radiative decay of plasmons in a metallic nanoshell. Physical Review B, 69 (15), 155402, 2004. 9 [62] Novotny, L., Van Hulst, N. Antennas for light. Nat. Photonics, 5 (2), 83-90, 2011. 11, 81 [63] Kosako, T., Kadoya, Y., Hofmann, H. F. Directional control of light by a nanooptical Yagi-Uda antenna. Nat. Photonics, 4 (5), 312-315, 2010. [64] Dregely, D., Taubert, R., Dorfmuller, J., Vogelgesang, R., Kern, K., Giessen, H. 3D optical Yagi-Uda nanoantenna array. Nat. Commun., 2, 267, 2011. 11, 81 [65] Cole, R. M., Baumberg, J. J., García de Abajo, F., Mahajan, S., Abdelsalam, M., Bartlett, P. N. Understanding plasmons in nanoscale voids. Nano Letters, 7, 2094-2100, 2007. 13, 46, 50, 67, 86 [66] Kelf, T. A., Sugawara, Y., Baumberg, J. J., Abdelsalam, M., Bartlett, P. N. Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. Physical Review Letters, 95, 116802, 2005. 13, 46, 51 [67] Cao, Y. C., Jin, R., Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297 (5586), 1536-1540, 2002. 15 [68] Szymanski, H. A. Raman spectroscopy: theory and practice. Springer Science & Business Media, 2012. 15, 16 [69] Li, W.-H., Li, X.-Y., Yu, N.-T. Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study. Chemical Physics Letters, 312 (1), 28-36, 1999. 16 [70] Creighton, J. A., Blatchford, C. G., Albrecht, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 75, 790-798, 1979. 16, 19 [71] Moskovits, M., Suh, J. Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. The Journal of Physical Chemistry, 88 (23), 5526-5530, 1984. 17 [72] Joo, S.-W., Kim, Y.-S. Surface-enhanced Raman scattering study of benzyl mercaptide and benzyl isocyanide on gold and silver nanocolloid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234 (1), 117-122, 2004. 17 [73] Otto, A., Mrozek, I., Grabhorn, H., Akemann, W. Surface-enhanced Raman scattering. Journal of Physics: Condensed Matter, 4 (5), 1143, 1992. 17 [74] Bohren, C. F., Human, D. R. Absorption and scattering of light by small particles. John Wiley & Sons, 2008. 17 [75] Kambhampati, P., Child, C., Foster, M. C., Campion, A. On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. The Journal of chemical physics, 108 (12), 5013-5026, 1998. 18 [76] Kneipp, K.,Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 78 (9), 1667, 1997. 18 [77] Wu, D.-Y., Liu, X.-M., Duan, S., Xu, X., Ren, B., Lin, S.-H., et al. Chemical enhancement effects in SERS spectra: A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. The Journal of Physical Chemistry C, 112 (11), 4195-4204, 2008. [78] Kneipp, B., Kneipp, H., Itzkan, I., Dasari, R. R., Feld, M. S. Surface-enhanced Raman scattering (SERS)- a tool for single molecule detection in solution. In Ch. Zander, J. Enderlein, and R. A. Kellar, editors, Single Molecule Detection in Solution, Wiley-Velt, 2002. 18 [79] Vericat, C., Benitez, G., Vela, M., Salvarezza, R., Tognalli, N., Fainstein, A. Restricted surface mobility of thiolate-covered metal surfaces: A simple strategy to produce high-area functionalized surfaces. Langmuir, 23 (3), 1152-1159, 2007. 19, 23, 30, 31, 68, 72 [80] Wang, D.-S., Kerker, M. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Physical Review B, 24 (4), 1777, 1981. 19 [81] Nie, S., Emory, S. R. Probing single molecules and single nanoparticles by surfaceenhanced Raman scattering. Science, 275 (5303), 1102-1106, 1997. [82] Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 99 (10), 2957- 2976, 1999. 19 [83] Yang, X., Zhou, S., Wang, D., He, J., Zhou, J., Li, X., et al. Light trapping enhancement in a thin lm with 2D conformal periodic hexagonal arrays. Nanoscale Research Letters, 10 (1), 284, 2015. 19, 20, 55 [84] Wang, J., Zhou, F., Duan, G., Li, Y., Liu, G., Su, F., et al. A controlled Ag-Au bimetallic nanoshelled microsphere array and its improved surface-enhanced Raman scattering effect. RSC Advances, 4 (17), 8758-8763, 2014. [85] Zhang, X., Van Duyne, R. P. Optimized silver lm over nanosphere surfaces for the biowarfare agent detection based on surface-enhanced Raman spectroscopy. MRS Online Proceedings Library Archive, 876, 2005. 20 [86] Haynes, C. L., Van Duyne, R. P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, 2001. 20 [87] Pieranski, P. Two-dimensional interfacial colloidal crystals. Physical Review Letters, 45 (7), 569, 1980. 20 [88] Hulteen, J. C., Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13 (3), 1553-1558, 1995. 19, 20, 54, 99 [89] Haes, A. J., Haynes, C. L., McFarland, A. D., Schatz, G. C., Van Duyne, R. P., Zou, S. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bulletin, 30 (5), 368-375, 2005. 20, 118 [90] Greeneltch, N. G., Blaber, M. G., Henry, A.-I., Schatz, G. C., Van Duyne, R. P. Immobilized nanorod assemblies: fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates. Analytical Chemistry, 85 (4), 2297-2303, 2013. 20, 59, 100, 109, 112 [91] Masango, S. S., Hackler, R. A., Large, N., Henry, A.-I., McAnally, M. O., Schatz, G. C., et al. High-resolution distance dependence study of surface-enhanced Raman scattering enabled by atomic layer deposition. Nano Letters, 16 (7), 4251-4259, 2016. 59, 100, 109, 112 [92] Fang, Y., Seong, N.-H., Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 321 (5887), 388-392, 2008. 20, 99 [93] Bartlett, P. N., Birkin, P. R., Ghanem, M. A. Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem. Commun., (17), 1671-1672, 2000. 20, 46, 85 [94] Oklejas, V., Harris, J. M. Potential-dependent surface-enhanced Raman scattering from adsorbed thiocyanate for characterizing silver surfaces with improved reproducibility. Applied Spectroscopy, 58 (8), 945-951, 2004. 20 [95] Brolo, A. G., Germain, P., Hager, G. Investigation of the adsorption of lcysteine on a polycrystalline silver electrode by surface-enhanced Raman scattering (SERS) and surface-enhanced second harmonic generation (SESHG). The Journal of Physical Chemistry B, 106 (23), 5982-5987, 2002. [96] Corio, P., Temperini, M. L., Santos, P. S., Rubim, J. C. Contribution of the charge transfer mechanism to the surface-enhanced Raman scattering of the binuclear Ion complex [Fe2 ((Bpe)(CN) 10] 6-Adsorbed on a silver electrode in different solvents. Langmuir, 15 (7), 2500-2507, 1999. [97] Sant'Ana, A. C., Santos, P. S., Temperini, M. L. The adsorption of squaric acid and its derived species on silver and gold surfaces studied by SERS. Journal of Electroanalytical Chemistry, 571 (2), 247-254, 2004. [98] de Sousa, J. R., Parente, M. M. V., Diogenes, I. C. N., Lopes, L. G. F., de Lima Neto, P., Temperini, M. L. A., et al. A correlation study between the conformation of the 1, 4-dithiane SAM on gold and its performance to assess the heterogeneous electron-transfer reactions. Journal of Electroanalytical Chemistry, 566 (2), 443-449, 2004. 20 [99] Cortes, E. Construccion y propiedades de sistemas moleculares ensamblados sobre superficies lisas, nanoestructuradas y nanopartículas. Tesis Doctoral, Facultad de Ciencias Exactas, 2013. 23 [100] C. Alonso, J. M. V. A. J. A. L. V. A. B., R. C. Salvarezza, Baro., A. M. The evaluation of surface diffution coefficients of gold and paladium atoms at electrochemical interfaces from combined STM-SEM imaging and electrochemical techniques. J. Electrochem. Soc., 137, 2161, 1990. 23 [101] Aramata, A. Underpotential deposition on single-crystal metals. Modern Aspects of Electrochemistry, Plenum Press, New York, 31, 181-250, 1997. 72 [102] Vela, M., Zerbino, J., Arvia, A. Ellipsometric study of hydrous gold oxide layers and gold surfaces resulting from their electroreduction. Thin Solid Films, 233 (1- 2), 82-85, 1993. 30, 33 [103] Macchi, C., Somoza, A., Mariazzi, S., Brusa, R., Vericat, C., Vela, M., et al. Characterization of high area nanostructured gold surfaces by slow positron depth proling. physica status solidi (c), 6 (11), 2585-2588, 2009. 23, 30, 33 [104] Roozing, G. informe de practica: Design of Planetary System to resolve lm thickness variation in Film Deposition. Tesis Doctoral, University of Twente, 2014. 25 [105] Lee, K.-S., El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. The Journal of Physical Chemistry B, 110 (39), 19220-19225, 2006. 26 [106] Murphy, C. J., Sau, T. K., Gole, A., Orendor, C. J. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. Mrs Bulletin, 30 (5), 349-355, 2005. 26 [107] Horacos, I., Fernandez, R., Gomez-Rodriguez, J., Colchero, J., Gomez-Herrero, J., Baro, A. Wsxm: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum, 78 (1), 013705-10, 2007. 27 [108] Gwyddion: an open-source software for SPM data analysis. URL http://gwyddion.net/. 27, 81 [109] Litorja, M., Haynes, C. L., Haes, A. J., Jensen, T. R., Van Duyne, R. P. Surfaceenhanced Raman scattering detected temperature programmed desorption: optical properties, nanostructure, and stability of silver lm over SiO2 nanosphere surfaces. The Journal of Physical Chemistry B, 105 (29), 6907-6915, 2001. 28 [110] Ehrlich, G., Hudda, F. Atomic view of surface self-diusion: Tungsten on Tungsten. The Journal of Chemical Physics, 44 (3), 1039-1049, 1966. 33, 73 [111] Mullins, W. W. Theory of thermal grooving. Journal of Applied Physics, 28 (3), 333-339, 1957. 34, 73 [112] Mullins, W. W. Flattening of a nearly plane solid surface due to capillarity. Journal of Applied Physics, 30 (1), 77-83, 1959. 34, 73 [113] Love, J. C., Estro, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 105 (4), 1103-1170, 2005. 36, 128 [114] Bain, C. D., Evall, J., Whitesides, G. M. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. Journal of the American Chemical Society, 111 (18), 7155-7164, 1989. 36, 128 [115] Schreiber, F. Structure and growth of self-assembling monolayers. Progress in Surface Science, 65 (5), 151-257, 2000. 36 [116] Vericat, C., Vela, M., Salvarezza, R. Self-assembled monolayers of alkanethiols on Au (111): surface structures, defects and dynamics. Physical Chemistry Chemical Physics, 7 (18), 3258-3268, 2005. 36, 128, 129 [117] Bagotsky, V. S. Fundamentals of electrochemistry, tomo 44. John Wiley & Sons, 2005. 39 [118] Roduner, E. Size matters: why nanomaterials are dierent. Chemical Society Reviews, 35 (7), 583-592, 2006. 44 [119] Kan, C., Zhu, X.,Wang, G. Single-crystalline gold microplates: synthesis, characterization, and thermal stability. The Journal of Physical Chemistry B, 110 (10), 4651-4656, 2006. 44 [120] Kolska, Z., Svorck, V., Siegel, J. Size-dependent density of gold nano-clusters and nano-layers deposited on solid surface. Collection of Czechoslovak Chemical Communications, 75 (5), 517-525, 2010. 44 [121] Bartlett, B. J. C. S. . A. M., P. Optical properties of nanostructured metal films. Faraday Discuss., 125, 117-132, 2003. 46 [122] Watts, R. A., Sambles, J. R. Polarization conversion from blazed diffraction gratings. Journal of Modern Optics, 44 (6), 1231-1241, 1997. 49 [123] Hicks, E. M., Zhang, X., Zou, S., Lyandres, O., Spears, K. G., Schatz, G. C., et al. Plasmonic properties of lm over nanowell surfaces fabricated by nanosphere lithography. The Journal of Physical Chemistry B, 109 (47), 22351-22358, 2005. 53, 118 [124] Zhang, X., Yonzon, C. R., Van Duyne, R. P. Nanosphere lithography fabricated plasmonic materials and their applications. Journal of Materials Research, 21 (5), 1083-1092, 2006. 55, 99 [125] Willets, K. A., Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58, 267-297, 2007. 53, 55 [126] Sato, K., Shikida, M., Yamashiro, T., Tsunekawa, M., Ito, S. Roughening of single-crystal silicon surface etched by KOH water solution. Sensors and Actua- tors A: Physical, 73 (1), 122-130, 1999. 61 [127] Oo, S. Z. Design, fabrication and optimization of large area chemical sensor based on Surface-enhanced Raman Scattering (SERS) mechanism. Tesis Doctoral, University of Southampton, 2015. 61 [128] Mahajan, S., Cole, R. M., Soares, B. F., Pelfrey, S. H., Russell, A. E., Baumberg, J. J., et al. Relating sers intensity to specic plasmon modes on sphere segment void surfaces. The Journal of Physical Chemistry C, 113 (21), 9284-9289, 2009. 67 [129] Yan, J., Han, X., He, J., Kang, L., Zhang, B., Du, Y., et al. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. ACS Applied Materials & Interfaces, 4 (5), 2752-2756, 2012. 69 [130] Michota, A., Bukowska, J. Surface-enhanced Raman scattering (SERS) of 4- mercaptobenzoic acid on silver and gold substrates. Journal of Raman Spectros- copy, 34 (1), 21-25, 2003. 69 [131] Rost, M. In situ real-time observation of thin lm deposition: roughening, zeno effect, grain boundary crossing barrier, and steering. Physical Review Letters, 99 (26), 266101, 2007. 73 [132] Karim, S., Toimil-Molares, M., Balogh, A., Ensinger, W., Cornelius, T., Khan, E., et al. Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology, 17 (24), 5954, 2006. 73 [133] Sun, Y., Mayers, B., Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 3 (5), 675- 679, 2003. 73 [134] Andreasen, G., Schilardi, P., Azzaroni, O., Salvarezza, R. Thermal annealing of patterned metal surfaces. Langmuir, 18 (26), 10430-10434, 2002. 74 [135] Haynes, C. L., Yonzon, C. R., Zhang, X., Van Duyne, R. P. Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc., 36 (6-7), 471-484, 2005. 80 [136] McQuillan, A. J. The discovery of surface-enhanced Raman scattering. Notes Rec. R. Soc., 63 (1), 105-109, 2009. [137] Douketis, C., Haslett, T. L., Wang, Z., Moskovits, M., Iannotta, S. Self-affne silver films and surface-enhanced Raman scattering: Linking spectroscopy to morphology. J. Chem. Phys., 113 (24), 11315, 2000. 80, 81 [138] Moskovits, M. How the localized surface plasmon became linked with surfaceenhanced Raman spectroscopy. Notes Rec. R. Soc., 66 (2), 195-203, 2012. 80 [139] Brown, R. J. C., Wang, J., Milton, M. J. T. Electromagnetic modelling of Raman enhancement from nanoscale structures as a means to predict the eficacy of SERS substrates. J. Nanomater., 2007, 1-10, 2007. 80 [140] Wang, H., Goodrich, G. P., Tam, F., Oubre, C., Nordlander, P., Halas, N. J. Controlled texturing modies the surface topography and plasmonic properties of Au nanoshells. J. Phys. Chem. B, 109 (22), 11083-11087, 2005. 80 [141] Rodríguez-Fernandez, J., Funston, A. M., Perez-Juste, J., Alvarez-Puebla, R. A., Liz-Marzan, L. M., Mulvaney, P. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys., 11 (28), 5909, 2009. [142] Brolo, A. G., Irish, D. E., Szymanski, G., Lipkowski, J. Relationship between SERS intensity and both surface coverage and morphology for pyrazine adsorbed on a polycrystalline gold electrode. Langmuir, 14 (2), 517-527, 1998. 80, 81 [143] García-Vidal, F. J., Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett., 77 (6), 1163, 1996. 81, 106 [144] Li, K., Stockman, M. I., Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Physical Review Letters, 91 (22), 227402, 2003. 83, 85 [145] Speed, J. D., Johnson, R. P., Hugall, J. T., Lal, N. N., Bartlett, P. N., Baumberg, J. J., et al. SERS from molecules bridging the gap of particle-in-cavity structures. Chemical Communications, 47 (22), 6335-6337, 2011. 91, 93 [146] Trugler, A., Tinguely, J.-C., Krenn, J. R., Hohenau, A., Hohenester, U. Influence of surface roughness on the optical properties of plasmonic nanoparticles. Physical Review B, 83 (8), 081412, 2011. 89 [147] Peyskens, F., Wuytens, P., Raza, A., Van Dorpe, P., Baets, R. Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna. Nanophotonics, 2018. [148] Verma, P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chemical Reviews, 117 (9), 6447-6466, 2017. 85 [149] Lordan, F., Rice, J. H., Jose, B., Forster, R. J., Keyes, T. E. Site selective surface enhanced Raman on nanostructured cavities. Applied Physics Letters, 99 (3), 033104, 2011. 86 [150] Macias, G., Alba, M., Marsal, L. F., Mihi, A. Surface roughness boosts the sers performance of imprinted plasmonic architectures. Journal of Materials Chemistry C, 4 (18), 3970-3975, 2016. 89 [151] Lee, C., Robertson, C. S., Nguyen, A. H., Kahraman, M., Wachsmann-Hogiu, S. Thickness of a metallic lm, in addition to its roughness, plays a signicant role in SERS activity. Scientic Reports, 5, 11644, 2015. 89 [152] Comsol Multiphysics software,. URL https://www.comsol.com/comsol-multiphysics. 91, 98, 103 [153] Johnson, P. B., Christy, R. W. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379, 1972. 92, 104, 126 [154] Li, K., Hogan, N. J., Kale, M. J., Halas, N. J., Nordlander, P., Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna{ reactor plasmonic photocatalysis. Nano Letters, 17 (6), 3710{3717, 2017. 97 [155] Zhang, C., Zhao, H., Zhou, L., Schlather, A. E., Dong, L., McClain, M. J., et al. Al-Pd nanodisk heterodimers as antenna{reactor photocatalysts. Nano Letters, 16 (10), 6677-6682, 2016. 97 [156] FS Andrade, G., Brolo, A. G., Temperini, M. L. Comparison of SERS performances of co and Ni ultrathin films over silver to electrochemically activated Co and Ni electrodes. The Journal of Physical Chemistry C, 112 (39), 15348-15355, 2008. 98 [157] Wang, Y., Song, W., Ruan, W., Yang, J., Zhao, B., Lombardi, J. R. SERS spectroscopy used to study an adsorbate on a nanoscale thin lm of CuO coated with Ag. The Journal of Physical Chemistry C, 113 (19), 8065-8069, 2009. [158] Ji, N., Ruan, W., Wang, C., Lu, Z., Zhao, B. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference. Langmuir, 25 (19), 11869-11873, 2009. 98 [159] Hering, K., Cialla, D., Ackermann, K., Dorfer, T., Moller, R., Schneidewind, H., et al. SERS: a versatile tool in chemical and biochemical diagnostics. Analytical and Bioanalytical Chemistry, 390 (1), 113-124, 2008. 98, 115 [160] Zhang, X., Whitney, A. V., Zhao, J., Hicks, E. M., Van Duyne, R. P. Advances in contemporary nanosphere lithographic techniques. Journal of Nanoscience and Nanotechnology, 6 (7), 1920-1934, 2006. 99 [161] Zhang, X., Young, M. A., Lyandres, O., Van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 127 (12), 4484-4489, 2005. 109 [162] Jensen, T. R., Duval, M. L., Kelly, K. L., Lazarides, A. A., Schatz, G. C., Van Duyne, R. P. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. The Journal of Physical Chemistry B, 103 (45), 9846-9853, 1999. 99 [163] Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., Van Duyne, R. P. SERS: Materials, applications, and the future. Materials today, 15 (1-2), 16-25, 2012. 99 [164] Zhu, Z., Li, Q., Bai, B., Fan, S. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering. Nanoscale Research Letters, 9 (1), 25, 2014. 99 [165] Wang, J. F., Wu, X. Z., Xiao, R., Dong, P. T., Wang, C. G. Performanceenhancing methods for Au lm over nanosphere surface-enhanced raman scattering substrate and melamine detection application. PloS one, 9 (6), e97976, 2014. 99 [166] Ewald, P. P. Introduction to the dynamical theory of X-ray difraction. Acta Crystallographica Section A, 25 (1), 103-108, 1969. 104 [167] Arnold, M. D., Blaber, M. G., Ford, M. J., Harris, N. Universal scaling of local plasmons in chains of metal spheres. Optics Express, 18 (7), 7528-7542, 2010. 105 [168] Harris, N., Arnold, M. D., Blaber, M. G., Ford, M. J. Plasmonic resonances of closely coupled gold nanosphere chains. The Journal of Physical Chemistry C, 113 (7), 2784-2791, 2009. 105 [169] Ascolani Yael, J. Nanoestructuras plasmonicas para SERS. Estudio de las propiedades fundamentales y su aplicacion para deteccion de glifosato. Tesis Doctoral, Universidad Nacional de Cuyo, 2012. 108 [170] Scholes, F., Bendavid, A., Glenn, F., Critchley, M., Davis, T., Sexton, B. Silicaovercoated substrates for detection of proteins by surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 39 (5), 673-678, 2008. 108 [171] Buchel, D., Mihalcea, C., Fukaya, T., Atoda, N., Tominaga, J., Kikukawa, T., et al. Sputtered silver oxide layers for surface-enhanced Raman spectroscopy. Applied Physics Letters, 79 (5), 620{622, 2001. 108 [172] Kurouski, D., Large, N., Chiang, N., Henry, A.-I., Seideman, T., Schatz, G. C., et al. Unraveling the near-and far-eld relationship of 2d surface-enhanced raman spectroscopy substrates using wavelength-scan surface-enhanced raman excitation spectroscopy. The Journal of Physical Chemistry C, 121 (27), 14737-14744, 2017. 109 [173] Greeneltch, N. G., Blaber, M. G., Schatz, G. C., Van Duyne, R. P. Plasmonsampled surface-enhanced raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (ex= 1064 nm) studies. The Journal of Physical Chemistry C, 117 (6), 2554-2558, 2012. 109 [174] Zhang, X., Zhao, J., Whitney, A. V., Elam, J. W., Van Duyne, R. P. Ultrastable substrates for surface-enhanced raman spectroscopy: Al2o3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. Journal of the American Chemical Society, 128 (31), 10304-10309, 2006. 109 [175] Shafer-Peltier, K. E., Haynes, C. L., Glucksberg, M. R., Van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced raman scattering. Journal of the American Chemical Society, 125 (2), 588-593, 2003. 109 [176] Stuart, D. A., Yonzon, C. R., Zhang, X., Lyandres, O., Shah, N. C., Glucksberg, M. R., et al. Glucose sensing using near-infrared surface-enhanced raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. Analytical Chemistry, 77 (13), 4013-4019, 2005. 109 [177] Canamares, M., Garcia-Ramos, J., Sanchez-Cortes, S., Castillejo, M., Oujja, M. Comparative SERS effectiveness of silver nanoparticles prepared by diferent methods: A study of the enhancement factor and the interfacial properties. Journal of Colloid and Interface Science, 326 (1), 103-109, 2008. 115 [178] Wu, H.-L., Tsai, H.-R., Hung, Y.-T., Lao, K.-U., Liao, C.-W., Chung, P.-J., et al. A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates. Inorganic chemistry, 50 (17), 8106-8111, 2011. 115 [179] Dinish, U., Yaw, F. C., Agarwal, A., Olivo, M. Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing. Biosensors and Bioelectronics, 26 (5), 1987-1992, 2011. 115 [180] Lin, X.-M., Cui, Y., Xu, Y.-H., Ren, B., Tian, Z.-Q. Surface-enhanced Raman spectroscopy: substrate-related issues. Analytical and Bioanalytical Chemistry, 394 (7), 1729-1745, 2009. 121 [181] Natan, M. J. Concluding remarks surface enhanced Raman scattering. Faraday Discussions, 132, 321-328, 2006. 121 [182] Etchegoin, P. G., Le Ru, E., Meyer, M. An analytic model for the optical properties of gold. The Journal of Chemical Physics, 125 (16), 164705, 2006. 126 [183] Bishnoi, S. W., Rozell, C. J., Levin, C. S., Gheith, M. K., Johnson, B. R., Johnson, D. H., et al. All-optical nanoscale pH meter. Nano Letters, 6 (8), 1687-1692, 2006. 128 [184] Kneipp, J., Kneipp, H., Wittig, B., Kneipp, K. Following the dynamics of pH in endosomes of live cells with SERS nanosensors. The Journal of Physical Chemistry C, 114 (16), 7421-7426, 2010. 128 [185] Laibinis, P. E., Whitesides, G. M. . omega.-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities. Journal of the American Chemical Society, 114 (6), 1990-1995, 1992. 128 [186] Nuzzo, R. G., Zegarski, B. R., Dubois, L. H. Fundamental studies of the chemisorption of organosulfur compounds on gold (111). implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society, 109 (3), 733-740, 1987. 128 [187] Sellers, H., Ulman, A., Shnidman, Y., Eilers, J. E. Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society, 115 (21), 9389-9401, 1993. 128 |
Materias: | Física > Óptica |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica |
Código ID: | 867 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 26 Feb 2021 14:25 |
Última Modificación: | 26 Feb 2021 14:27 |
Personal del repositorio solamente: página de control del documento