Fenomenología de bosones pseudo Nambu-Goldstone a la escala del TeV. / Phenomenology of pseuno Nambu-Goldstone bosons at the TeV scale.

Davidovich, Iván A. (2018) Fenomenología de bosones pseudo Nambu-Goldstone a la escala del TeV. / Phenomenology of pseuno Nambu-Goldstone bosons at the TeV scale. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
10Mb

Resumen en español

En este trabajo de tesis se exploran distintos modelos en los cuales el bosón de Higgs es una partícula compuesta, un bosón pseudo Nambu-Goldstone proveniente de una ruptura espontánea de simetría en un nuevo sector de física fuertemente interactuante. Se comienza por realizar una introducción a los elementos necesarios para la construcción de este tipo de teorías. Luego, se procede a la construcción de un primer modelo basado en el patrón de ruptura de simetría SO(5)/SO(4), que permite resolver las discrepancias entre teoría y experimentos en las mediciones de la asimetría delante-atrás del quark bottom. En el mismo se introducen compañeros compuestos para el quark bottom utilizando las representaciones 4 y 16 de SO(5). Se obtienen expresiones analíticas que permiten entender las correcciones generadas para los acoplamientos Zbb y se realizan cálculos numéricos que verifican la precisión de estas expresiones y muestran la existencia de regiones en el espacio de parámetros del modelo donde el mismo da una resolución realista al problema planteado. En el segundo modelo a considerar se introduce una ruptura espontánea de simetría SU(6)xSO(5)/SU(3)_LxSU(3)_RxSO(4) en el nuevo sector de la teoría. Esto produce la aparición de nuevos bosones de Nambu-Goldstone, además del Higgs, uno de los cuales adquiere de forma dinámica un valor de expectación en el vacío. Esto permite dar masa a los quarks y relajar las cotas para la escala de las resonancias compuestas de la teoría impuestas por la física de sabor, provenientes del parámetro є"K y los momentos dipolares del neutrón. Por último, se construye un modelo compuesto basado en el patrón de ruptura de simetría SO(6)/SO(4)xSO(2). El mismo posee dos dobletes complejos de Higgs. El modelo se construye de forma tal que se obtiene una ruptura controlada de la simetría custodial. Se derivan aproximaciones analíticas para las masas de los bosones de Higgs del modelo, así como para las mezclas entre ellos y sus acoplamientos. Todos los modelos estudiados presentan una rica fenomenología que resulta relevante para las búsquedas experimentales en aceleradores actuales y futuros.¹

Resumen en inglés

In this thesis we explore different models in which the Higgs boson is a composite particle, a pseudo Nambu-Goldstone boson that arises from a spontaneous symmetry breaking in a new sector of strongly coupled physics. We begin by giving an introduction to the tools and ideas that are necessary for building this kind of theories. Then we construct our first model, based on an SO(5)/SO(4) symmetry breaking pattern, which manages to solve the discrepancies between theory and experimental measurements of the forward-backward asymmetry of the bottom quark. In this model we introduce bottom partners embedded in the 4 and 16 representations of SO(5). We obtain analytical expressions that shed a light on the different contributions that are present for the Zbb coupling. Through numerical calculations we verify the accuracy of these expressions and show the existence of regions in parameter space where the model provides a realistic solution for the problem at hand. In our second model, we consider an SU(6)xSO(5)/SU(3)_LxSU(3)_RxSO(4) symmetry breaking for the new sector of the theory. This causes the appearance of new Nambu- Goldstone bosons, besides the Higgs, one of which acquires a non-zero vacuum expectation value dynamically. This gives masses to the quarks and relaxes the bounds imposed by flavor physics through the є"K parameter and the neutron dipole moments to the allowed masses for the composite resonances of the theory. Lastly, we consider a model built upon the SO(6)/SO(4)xSO(2) symmetry breaking pattern. This provides two complex Higgs doublets. The model is built in such a way that we obtain a controlled breaking of custodial symmetry.We provide analytical approximations for the masses of the Higgs bosons, as well as their mixings and couplings. All of the models built here have a rich phenomenology which is relevant for experimental searches in both current and future accelerators.²

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Bosons; Bosones; [Bosón de Higgs; Nambu-Goldstone]
Referencias:[1] C. Patrignani et al. [Particle Data Group], “Review of Particle Physics,” Chin. Phys. C 40, no. 10, 100001 (2016). doi:10.1088/1674-1137/40/10/100001 [2] M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina and L. Silvestrini, “Update of the electroweak precision fit, interplay with Higgs-boson signal strengths and model-independent constraints on new physics,” arXiv:1410.6940 [hep-ph]. [3] G. Aad et al. [ATLAS Collaboration], “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214 [hep-ex]]. [4] S. Chatrchyan et al. [CMS Collaboration], “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235 [hep-ex]]. [5] P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571, A16 (2014) doi:10.1051/0004-6361/201321591 [ar- Xiv:1303.5076 [astro-ph.CO]]. [6] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, “Neutrino mass and mixing parameters: A Short review,” hep-ph/0506307. [7] B. Kayser, “Neutrino Oscillation Physics,” doi:10.5170/CERN-2014-003.107 ar- Xiv:1206.4325 [hep-ph]. [8] M. Shaposhnikov, “Is there a new physics between electroweak and Planck scales?,” ar- Xiv:0708.3550 [hep-th]. [9] G. F. Giudice, “Naturally Speaking: The Naturalness Criterion and Physics at the LHC,” en “Kane, Gordon (ed.), Pierce, Aaron (ed.): Perspectives on LHC physics” 155-178 doi:10.1142/9789812779762-0010 [arXiv:0801.2562 [hep-ph]]. [10] G. Panico and A.Wulzer, “The Composite Nambu-Goldstone Higgs,” Lect. Notes Phys. 913, pp.1 (2016) doi:10.1007/978-3-319-22617-0 [arXiv:1506.01961 [hep-ph]]. [11] W. A. Bardeen, “On naturalness in the standard model,” FERMILAB-CONF-95-391-T. [12] H. Aoki and S. Iso, “Revisiting the Naturalness Problem – Who is afraid of quadratic divergences? –,” Phys. Rev. D 86, 013001 (2012) doi:10.1103/PhysRevD.86.013001 [ar-Xiv:1201.0857 [hep-ph]]. [13] M. Farina, D. Pappadopulo and A. Strumia, “A modified naturalness principle and its experimental tests,” JHEP 1308, 022 (2013) doi:10.1007/JHEP08(2013)022 [arXiv:1303.7244 [hep-ph]]. [14] J. D. Clarke and P. Cox, “Naturalness made easy: two-loop naturalness bounds on minimal SM extensions,” JHEP 1702, 129 (2017) doi:10.1007/JHEP02(2017)129 [arXiv:1607.07446 [hep-ph]]; J. D. Clarke, Tesis Doctoral, “Physics Beyond the Standard Model”, ARC, CoEPP, Universidad de Melbourne, Australia, 2016; J. D. Clarke realiza también una discusión muy interesante sobre los Problemas de Naturalidad y de la Jerarquía en su blog personal: http://syymmetries.blogspot.no/2017/06/naturalness-pragmatists-guide.html?m=1 . [15] M. E. Peskin y D. V. Schroeder, “An Introduction to quantum field theory”, ISBN 9780201503975, Addison-Wesley, Reading, USA, 1995. [16] G. 't Hooft, en Proc. of 1979 Cargèse Institute on Recent Developments in Gauge Theories, p. 135, Plenum Press, New York 1980. [17] L. Susskind, “Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory,” Phys. Rev. D 20, 2619 (1979). doi:10.1103/PhysRevD.20.2619 [18] W. A. Bardeen, C. T. Hill and M. Lindner, “Minimal Dynamical Symmetry Breaking of the Standard Model,” Phys. Rev. D 41, 1647 (1990). doi:10.1103/PhysRevD.41.1647 [19] D. B. Kaplan and H. Georgi, “SU(2) X U(1) Breaking By Vacuum Misalignment,” Phys. Lett. B 136 (1984) 183. “Composite Higgs Scalars,” B 136, 187 (1984); H. Georgi, D. B. Kaplan and P. Galison, “Calculation Of The Composite Higgs Mass,” Phys. Lett. B 143, 152 (1984); H. Georgi and D. B. Kaplan, “Composite Higgs And Custodial SU(2),” Phys. Lett. B 145, 216 (1984); M. J. Dugan, H. Georgi and D. B. Kaplan, “Anatomy Of A Composite Higgs Model,” Nucl. Phys. B 254, 299 (1985). [20] K. Agashe, R. Contino and A. Pomarol, “The Minimal composite Higgs model,” Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089]. [21] S. De Curtis, M. Redi and A. Tesi, “The 4D Composite Higgs,” JHEP 1204 (2012) 042 [arXiv:1110.1613 [hep-ph]]. [22] M. Carena, L. Da Rold and E. Pontón, “Minimal Composite Higgs Models at the LHC,” JHEP 1406 (2014) 159 [arXiv:1402.2987 [hep-ph]]. [23] S. R. Coleman, J. Wess and B. Zumino, “Structure of phenomenological Lagrangians. 1.,” Phys. Rev. 177 (1969) 2239; C. G. Callan, Jr., S. R. Coleman, J.Wess and B. Zumino, “Structure of phenomenological Lagrangians. 2.,” Phys. Rev. 177 (1969) 2247. [24] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, “Electroweak symmetry breaking after LEP-1 and LEP-2,” Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040]. [25] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B 72, 461 (1974). doi:10.1016/0550-3213(74)90154-0 [26] R. Contino, L. Da Rold and A. Pomarol, “Light custodians in natural composite Higgs models,” Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048]. [27] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, “The Strongly-Interacting Light Higgs,” JHEP 0706 (2007) 045 [hep-ph/0703164]. [28] D. B. Kaplan, “Flavor at SSC energies: A New mechanism for dynamically generated fermion masses,” Nucl. Phys. B 365 (1991) 259. doi:10.1016/S0550-3213(05)80021-5 [29] R. Contino and A. Pomarol, “Holography for fermions,” JHEP 0411 (2004) 058 doi:10.1088/1126-6708/2004/11/058 [hep-th/0406257]. [30] L. Da Rold, “Anarchy with linear and bilinear interactions,” JHEP 1710, 120 (2017) doi:10.1007/JHEP10(2017)120 [arXiv:1708.08515 [hep-ph]]. [31] Y. Grossman and M. Neubert, “Neutrino masses and mixings in nonfactorizable geometry,” Phys. Lett. B 474 (2000) 361 doi:10.1016/S0370-2693(00)00054-X [hep-ph/9912408]. [32] T. Gherghetta and A. Pomarol, “Bulk fields and supersymmetry in a slice of AdS,” Nucl. Phys. B 586 (2000) 141 doi:10.1016/S0550-3213(00)00392-8 [hep-ph/0003129]. [33] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, “A Custodial symmetry for Zb anti-b,” Phys. Lett. B 641 (2006) 62 [hep-ph/0605341]. [34] G. Panico, M. Redi, A. Tesi and A. Wulzer, “On the Tuning and the Mass of the Composite Higgs,” JHEP 1303 (2013) 051 [arXiv:1210.7114 [hep-ph]]. [35] M. Serone, “Holographic Methods and Gauge-Higgs Unification in Flat Extra Dimensions,” New J. Phys. 12 (2010) 075013 [arXiv:0909.5619 [hep-ph]]. [36] D. Pappadopulo, A. Thamm and R. Torre, “A minimally tuned composite Higgs model from an extra dimension,” JHEP 1307 (2013) 058 [arXiv:1303.3062 [hep-ph]]. [37] G. Panico and A. Wulzer, “The Discrete Composite Higgs Model,” JHEP 1109 (2011) 135 [arXiv:1106.2719 [hep-ph]]. [38] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973). doi:10.1103/PhysRevD.7.1888 [39] R. Contino, T. Kramer, M. Son and R. Sundrum, “Warped/Composite Phenomenology Simplified,” JHEP 0705 (2007) 074 [arXiv:hep-ph/0612180]. [40] A. Pomarol, “EWSB scenarios at 2004,” PoS JHW 2004, 011 (2005). [41] E. Alvarez, L. Da Rold, J. Mazzitelli and A. Szynkman, “Graviton resonance phenomenology and a pNGB Higgs at the LHC,” arXiv:1610.08451 [hep-ph]. [42] M. Montull, F. Riva, E. Salvioni and R. Torre, “Higgs Couplings in Composite Models,” Phys. Rev. D 88 (2013) 095006 doi:10.1103/PhysRevD.88.095006 [arXiv:1308.0559 [hep-ph]]. [43] D. Choudhury, T. M. P. Tait and C. E. M. Wagner, “Beautiful mirrors and precision electroweak data,” Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097]. [44] L. Da Rold, “Solving the Ab FB anomaly in natural composite models,” JHEP 1102 (2011) 034 [arXiv:1009.2392 [hep-ph]]. [45] E. Alvarez, L. Da Rold and A. Szynkman, “A composite Higgs model analysis of forwardbackward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC,” JHEP 1105 (2011) 070 [arXiv:1011.6557 [hep-ph]]. [46] A. Djouadi, G. Moreau and F. Richard, “Resolving the Ab FB puzzle in an extra dimensional model with an extended gauge structure,” Nucl. Phys. B 773 (2007) 43 [arXiv:hepph/0610173]. [47] C. Bouchart and G. Moreau, “The precision electroweak data in warped extra-dimension models,” Nucl. Phys. B 810 (2009) 66 [arXiv:0807.4461 [hep-ph]]. [48] M. S. Carena, E. Ponton, J. Santiago and C. E. M. Wagner, “Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2),” Nucl. Phys. B 759 (2006) 202 [hepph/ 0607106]. [49] M. S. Carena, E. Ponton, J. Santiago and C. E. M. Wagner, “Electroweak constraints on warped models with custodial symmetry,” Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055]. [50] J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A.Wulzer, “The Other Natural Two Higgs Doublet Model,” Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403 [hep-ph]]. [51] K. Agashe and R. Contino, “Composite Higgs-Mediated FCNC,” Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542 [hep-ph]]. [52] K. Agashe and G. Servant, “Warped unification, proton stability and dark matter,” Phys. Rev. Lett. 93 (2004) 231805 [hep-ph/0403143]. [53] K. Agashe and R. Contino, “The Minimal composite Higgs model and electroweak precision tests,” Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164]. [54] A. M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B 774, 533 (2017) doi:10.1016/j.physletb.2017.09.083 [arXiv:1705.09171 [hep-ex]]. [55] C. Anastasiou, E. Furlan and J. Santiago, “Realistic Composite Higgs Models,” Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117 [hep-ph]]. [56] R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, “Radiative correction effects of a very heavy top,” Phys. Lett. B 288, 95 (1992) [Phys. Lett. B 312, 511 (1993)] [hepph/9205238]. [57] J. F. Oliver, J. Papavassiliou and A. Santamaria, “Universal extra dimensions and Z —>banti-b,” Phys. Rev. D 67 (2003) 056002 [hep ph/0212391]. [58] R. S. Chivukula, A. Farzinnia, R. Foadi and E. H. Simmons, “Custodial Isospin Violation in the Lee-Wick Standard Model,” Phys. Rev. D 81 (2010) 095015 [arXiv:1002.0343 [hep-ph]]. [59] T. Abe, R. S. Chivukula, N. D. Christensen, K. Hsieh, S. Matsuzaki, E. H. Simmons and M. Tanabashi, “Z —>b anti-b and Chiral Currents in Higgsless Models,” Phys. Rev. D 79 (2009) 075016 [arXiv:0902.3910 [hep-ph]]. [60] C. Grojean, O. Matsedonskyi and G. Panico, “Light top partners and precision physics,” JHEP 1310 (2013) 160 [arXiv:1306.4655 [hep-ph]]. [61] K. Kumar, W. Shepherd, T. M. P. Tait and R. Vega-Morales, “Beautiful Mirrors at the LHC,” JHEP 1008 (2010) 052 [arXiv:1004.4895 [hep-ph]]. [62] E. Álvarez, L. Da Rold and J. I. Sanchez Vietto, “Single production of an exotic bottom partner at LHC,” JHEP 1402 (2014) 010 [arXiv:1311.2077 [hep-ph]]. [63] J. A. Aguilar-Saavedra, “Identifying top partners at LHC,” JHEP 0911 (2009) 030 [ar-Xiv:0907.3155 [hep-ph]]. [64] K. Agashe, G. Perez and A. Soni, “Flavor structure of warped extra dimension models,” Phys. Rev. D 71 (2005) 016002 doi:10.1103/PhysRevD.71.016002 [hep-ph/0408134]. [65] C. Csaki, A. Falkowski and A. Weiler, “The Flavor of the Composite Pseudo-Goldstone Higgs,” JHEP 0809 (2008) 008 doi:10.1088/1126-6708/2008/09/008 [arXiv:0804.1954 [hepph]]. [66] M. Redi and A. Weiler, “Flavor and CP Invariant Composite Higgs Models,” JHEP 1111 (2011) 108 doi:10.1007/JHEP11(2011)108 [arXiv:1106.6357 [hep-ph]]. [67] C. Delaunay, O. Gedalia, S. J. Lee, G. Perez and E. Pontón, “Ultra Visible Warped Model from Flavor Triviality and Improved Naturalness,” Phys. Rev. D 83 (2011) 115003 doi:10.1103/PhysRevD.83.115003 [arXiv:1007.0243 [hep-ph]]. [68] G. Panico and A. Pomarol, “Flavor hierarchies from dynamical scales,” JHEP 1607 (2016) 097 doi:10.1007/JHEP07(2016)097 [arXiv:1603.06609 [hep-ph]]. [69] M. Bauer, R. Malm and M. Neubert, “A Solution to the Flavor Problem of Warped Extra-Dimension Models,” Phys. Rev. Lett. 108 (2012) 081603 doi:10.1103/PhysRevLett.108.081603 [arXiv:1110.0471 [hep-ph]]. [70] L. Da Rold, C. Delaunay, C. Grojean and G. Perez, “Up Asymmetries From Exhilarated Composite Flavor Structures,” JHEP 1302, 149 (2013) doi:10.1007/JHEP02(2013)149 [ar- Xiv:1208.1499 [hep-ph]]. [71] K. Agashe, A. Azatov and L. Zhu, “Flavor Violation Tests of Warped/Composite SM in the Two-Site Approach,” Phys. Rev. D 79 (2009) 056006 doi:10.1103/PhysRevD.79.056006 [ar- Xiv:0810.1016 [hep-ph]]. [72] C. Delaunay, J. F. Kamenik, G. Perez and L. Randall, “Charming CP Violation and Dipole Operators from RS Flavor Anarchy,” JHEP 1301 (2013) 027 doi:10.1007/JHEP01(2013)027 [arXiv:1207.0474 [hep-ph]]. [73] M. König, M. Neubert and D. M. Straub, “Dipole operator constraints on composite Higgs models,” Eur. Phys. J. C 74 (2014) 2945 [arXiv:1403.2756 [hep-ph]]. [74] A. Azatov and J. Galloway, “Light Custodians and Higgs Physics in Composite Models,” Phys. Rev. D 85 (2012) 055013 doi:10.1103/PhysRevD.85.055013 [arXiv:1110.5646 [hepph]]. [75] G. Aad et al. [ATLAS Collaboration], “Search for Scalar Diphoton Resonances in the Mass Range 65 - 600 GeV with the ATLAS Detector in pp Collision Data at ps = 8 TeV ,” Phys. Rev. Lett. 113 (2014) no.17, 171801 doi:10.1103/PhysRevLett.113.171801 [arXiv:1407.6583 [hep-ex]]. [76] CMS-PAS-HIG-14-037, CMS Collaboration. [77] L. E. Ibanez and V. Martin-Lozano, “A Megaxion at 750 GeV as a First Hint of Low Scale String Theory,” JHEP 1607 (2016) 021 doi:10.1007/JHEP07(2016)021 [arXiv:1512.08777 [hep-ph]]. [78] A. Herraez and L. E. Ibanez, “An Axion-induced SM/MSSM Higgs Landscape and the Weak Gravity Conjecture,” JHEP 1702 (2017) 109 doi:10.1007/JHEP02(2017)109 [ar-Xiv:1610.08836 [hep-th]]. [79] G. Aad et al. [ATLAS Collaboration], “Search for new phenomena in the dijet mass distributionusing p - p collision data at ps = 8 TeV with the ATLAS detector,” Phys. Rev. D 91 (2015) no.5, 052007 doi:10.1103/PhysRevD.91.052007 [arXiv:1407.1376 [hep-ex]]. [80] V. Khachatryan et al. [CMS Collaboration], “Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at ps = 8 TeV,” Phys. Rev. D 91 (2015) no.5, 052009 doi:10.1103/PhysRevD.91.052009 [arXiv:1501.04198 [hep-ex]]. [81] A. M. Sirunyan et al. [CMS Collaboration], “Search for dijet resonances in proton-proton collisions at sqrt(s) = 13 TeV and constraints on dark matter and other models,” Phys. Lett. B doi:10.1016/j.physletb.2017.02.012 [arXiv:1611.03568 [hep-ex]]. [82] R. Barbieri and G. F. Giudice, “Upper Bounds on Supersymmetric Particle Masses,” Nucl. Phys. B 306 (1988) 63. [83] G. W. Anderson and D. J. Castano, “Measures of fine tuning,” Phys. Lett. B 347, 300 (1995) [hep-ph/9409419]. [84] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept. 516, 1 (2012) doi:10.1016/j.physrep.2012.02.002 [arXiv:1106.0034 [hep-ph]]. [85] A. Djouadi, “The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model,” Phys. Rept. 459, 1 (2008) doi:10.1016/j.physrep.2007.10.005 [hep-ph/0503173]. [86] S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, “Perturbative unitarity bounds in composite two-Higgs doublet models,” Phys. Rev. D 94, no. 5, 055017 (2016) doi:10.1103/PhysRevD.94.055017 [arXiv:1602.06437 [hep-ph]]. [87] S. De Curtis, S. Moretti, K. Yagyu and E. Yildirim, “LHC Phenomenology of Composite 2-Higgs Doublet Models,” arXiv:1610.02687 [hep-ph]. [88] R. Barbieri, L. J. Hall and V. S. Rychkov, “Improved naturalness with a heavy Higgs: An Alternative road to LHC physics,” Phys. Rev. D 74, 015007 (2006) doi:10.1103/PhysRevD.74.015007 [hep-ph/0603188]. [89] B. Swiezewska and M. Krawczyk, Phys. Rev. D 88, no. 3, 035019 (2013) doi:10.1103/PhysRevD.88.035019 [arXiv:1212.4100 [hep-ph]]. [90] A. Ilnicka, M. Krawczyk and T. Robens, “Inert Doublet Model in light of LHC Run I and astrophysical data,” Phys. Rev. D 93, no. 5, 055026 (2016) doi:10.1103/PhysRevD.93.055026 [arXiv:1508.01671 [hep-ph]]. [91] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, “Parton distributions for the LHC,” Eur. Phys. J. C 63, 189 (2009) doi:10.1140/epjc/s10052-009-1072-5 [arXiv:0901.0002 [hepph]]. [92] CMS Collaboration [CMS Collaboration], “Search for a narrow heavy decaying to bottom quark pairs in the 13 TeV data sample,” CMS-PAS-HIG-16-025. [93] CMS Collaboration [CMS Collaboration], “Search for new diboson resonances in the dilepton + jets final state at ps = 13 TeV with 2016 data,” CMS-PAS-HIG-16-034. [94] CMS Collaboration [CMS Collaboration], “Measurements of properties of the Higgs boson and search for an additional resonance in the four-lepton final state at sqrt(s) = 13 TeV,” CMS-PAS-HIG-16-033. [95] CMS Collaboration [CMS Collaboration], “Search for high mass Higgs to WW with fully leptonic decays using 2015 data,” CMS-PAS-HIG-16-023. [96] V. Khachatryan et al. [CMS Collaboration], “Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in ?+??bb final states,” Phys. Lett. B 748, 221 (2015) doi:10.1016/j.physletb.2015.07.010 [arXiv:1504.04710 [hep-ex]]. [97] V. Shtabovenko, R. Mertig and F. Orellana, “New Developments in FeynCalc 9.0,” Comput. Phys. Commun. 207, 432 (2016) doi:10.1016/j.cpc.2016.06.008 [arXiv:1601.01167 [hepph]]. [98] R. Mertig, M. Bohm and A. Denner, “FEYN CALC: Computer algebraic calculation of Feynman amplitudes,” Comput. Phys. Commun. 64, 345 (1991). doi:10.1016/0010- 4655(91)90130-D
Materias:Física > Física de partículas
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:870
Depositado Por:Tamara Cárcamo
Depositado En:26 Feb 2021 12:37
Última Modificación:26 Feb 2021 12:37

Personal del repositorio solamente: página de control del documento