Zamorano Labbé, Felipe E. (2019) Detector de neutrones basado en silicio con alto nivel de rechazo a fotones gamma y aplicación en radioterapia / Silicon-based neutron detector with high level of gamma rejection and radiotherapy application. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 18Mb |
Resumen en español
La demanda por instrumentos de detección y dosimetría de neutrones en campos mixtos de radiación es cada vez mayor. En el ambiente clínico, para los tratamientos de radioterapia con aceleradores lineales con energía sobre 10 MV, se producen neutrones vía reacciones (y,n) . Es importante estudiar el impacto de estos desde un punto de vista de la protección radiológica del paciente y las dosis secundarias que aumentan la posibilidades de desarrollar cáncer radioinducido. Usando la tecnología de semiconductores 3D ultra delgados recientemente desarrollados por el Instituto de Microelectrónica de Barcelona (IMB-CNM), el Laboratorio de Bajas Temperaturas del CAB (Centro Atómico Bariloche, Argentina), fabricó una cadena de detección compuesto por un detector U3DTHIN 20 µm, capa convertidora de neutrones BE-10 [Dosirad, 2019] enriquecida al 90%>, un amplificador compuesto por un Cremat CR-110-R2 Charge-sensitive-preamplifier, un Cremat CR-200-2 µs Gaussian-shapingamplifier, y un Cremat CR-210 Baseline-restoration-module [Cremat, 2019]; y un analizador de señales Amptek MCA 8000A [Amptek, 2019]. Se realizan varios experimentos para caracterizar la respuesta del detector ante fuentes conocidas como: una fuente 137"Cs, una fuente de 241"Am-Be moderado con distintos espesor de polietileno y un haz de neutrografía del CAB. La eficiencia de detección obtenida para fotones de 662 keV fue del orden de 10"-9. La eficiencia de detección para neutrones térmicos fue de 2,87± 0,15%, mientras que el factor de discriminación n/y fue de 2,2x10"7. Finalmente se hizo un mapeo de la distribución de flujo de neutrones térmicos por la sala de tratamientos y se evidenció como los neutrones forman “un mar” de neutrones térmicos que se comportan como un gas que se expande y distribuye homogéneamente. La tasa de dosis estimada en el interior de la sala de tratamientos fue de 28 µSv cada 100UM, mientras que en la puerta de entrada fue de 0,08 µSv cada 100UM.
Resumen en inglés
The demand for alternative neutron detection and dosimetry instruments has increased recently due to 3"He commercial restriction policys. In hospital environments, where radiation therapy treatments are done with linacs using beam energy above 10 MeV, neutrons are produced through reactions. From a radiological protection point of view, this is important to study because there is a growing concern of secondary cancer risk for patients undergoing treatments. Using the ultra-thin silicon 3D detector (U3DTHIN) technology recently developed by the Institute of Microelectronics of Barcelona (IMB-CNM), the Low Temperatures Laboratory of the Bariloche Atomic Center (CAB), developed a detection chain consisting of an U3DTHIN 20 m detector, neutron conversion layer BE-10 [Dosirad, 2019] enriched 90%>, an amplifier composed of a Cremat CR-110-R2 Charge-sensitive-preamplifier, a Cremat CR-200-2s Gaussianshaping- amplifier, and a Cremat CR-210 Baseline-restoration-module [Cremat,2019]; and an Amptek MCA 8000A signal analyzer. Several experiments were carried out to characterize the response of the detector to known sources as: a 137"Cs source, a 241"Am-Be source with different polyethylene moderator thicknesses and in the Neutron Imaging Facility of the RA6 Nuclear Research Reactor. The detection efficiency obtained for 662 keV photons was in the order of magnitud of 10"-9. The detection efficiency for thermal neutrons was 2,87±0.15%, while the discrimination factor n/y was 2,2x10"7. . Finally, a mapping of the thermal neutron flux distribution through the treatment room was accomplished and it was shown that thermal neutrons behave like a gas that expands and is homogeneously distributed. The estimated dose rate inside the treatment room was 28 µSv per 100MU, while at the entrance door it was 0,08 µSv per 100MU.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Radiotherapy; Radioterapia; Silicon; Silicio; Neutrons; Neutrones; Thermal neutrons; Neutrones térmicos; Linear accelerators; Aceleradores lineales; Neutron detectors; Detectores de neutrones |
Referencias: | [Amptek, 2019] : https://www.amptek.com/-/media/ametekamptek/documents/resources/mca8000a.pdf, accessed:2019-10 [Babcock, 1959] : R.V. Babcock, R.E. Davis, S.L. Ruby, K.H. Sun and E.D. Wolley. Coated semiconductor in tiny neutron detector. Nuleonics,1959. [Cremat, 2019] : https://www.cremat.com, accessed:2019-10. [Dahal, 2012] : R. Dahal, K. C. Huang, J. Clinton, N. LiCausi, J.-Q. Lu, Y Danon, and I Bhat. Self-powered micro-structured solid state neutron detector with very low leakage current and high efficiency. Applied Physics Letters, 100(24), 2012. [Dosirad, 2019] : https://dosirad.pagespro-orange.fr/DOC%20BN1-A.htm, accedded: 2019-10. [Esteban, 2006] : S.Esteban, C.Fleta, C.Guardiola, C.Jumilla, G.Pellegrini, et al. Microstructured silicon neutron detectors for security applications. Journal of Instrumentation, 2014. [Esteban, 2016] : S.Esteban. PhD Thesis: Development of advanced silicon sensors for neutron detection and microdosimetry, 2016. [Facure, 2004] : A. Facure, R.C. Falcao, A.X. Silva, V.R. Crispim, J.C. Vitorelli . A study of neutron spectra from medical linear accelerators, 2004. [Fleta, 2014] : C.Fleta, C.Guardiola, S.Esteban, C.Jumilla, G.Pellegrini, et al. Fabrication and nuclear reactor tests of ultra-thin 3D silicon neutron detectors, 2014. [Garcia, 2009] : F.García,G.Pelligrini,J.Balbuena,M.Lozano, R. Orava, and M. Ullan. A novel ultra-thin 3D de- tectorFor plasma diagnostics at JET and ITER tokamaks. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009. [Godovin Rajan, 2017] : Govinda Rajan. Radiation Safety in Radiation Oncology, 2017. [Guardiola, 2012] : C.Guardiola, C.Fleta, G.Pellegrini, F.Garcia, D.Quirion, et al. Ultra-thin 3D silicon sensors for neutron detection. Journal of Instrumentation, 2012. [Guardiola, 2013] : C.Guardiola, F.Gómez, C.Fleta, J.Rodríguez, D.Quirion, G.Pellegrini, & M.Lozano. Neutron measurements with ultra-thin 3D silicon sensors in a radiotherapy treatment room using a Siemens PRIMUS linac. Physics in Medicine & Biology, 2013. [Guardiola, 2016] : C.Guardiola. PhD Thesis: Novel silicon sensors for neutron detection, 2012. [Hoglund, 2012] : C. Hoglund, J. Birch, K. Andersen, T. Bigault, J. Buffet, J. Correa, et al. B4C thin films for neutron detection. Journal of Applied Physics, 2012. [Howell, 2009] : Howell, R. M., Kry, S. F., Burgett, E. , Hertel, N. E. and Followill, D. S., Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators. Med. Phys., 2009. [IAEA, 2019] : https://rpop.iaea.org/RPOP/RPoP/Content-es/InformationFor/HealthProfessionals/2_Radiotherapy/index.htm, accessed:2019-10. [JEFF, 2019] : https://www.oecd-nea.org/dbdata/jeff/,accessed: 2019-10 [Kohler, 2011] : M. Kohler, R. Bates, C. Fleta, K. Jakobs, M. Lozano, C. Parkes, et al. Comparative measurements of highly irradiated n-in-p and p-in- n 3D silicon strip detectors. Nuclear Instruments and Methods in Physics Research Section A: Acceler- ators, Spectrometers, Detectors and Associated Equipment, 2011. [Luszuki, 2001] : M Luszik-Bhadra. A prototype personal neutron dosemeter with one silicon diode. Radiation pro- tection dosimetry, 2001. [Marsh, 1995] : J.W.Marsh, D.J.Thomas, M. Burke. High resolution measurements of neutron energy spectra from Am-Be and Am-B neutron sources. Nucl. Instrum. Methods Phys. Res. A, 1995. [McGregor, 2001] : D.S. Mcgregor, R.T. Klann, H.K. Gersch, and J.D. Sanders. Designs for Thin-Film-Coated Semiconductor Thermal Neutron Detectors, 2001 . [McGregor, 2002] : D.S. McGregor, R.T. Klann, H.K. Gersch, E. Ariesanti, J.D. Sanders, and B. Vanderelzen. New surface morphology for low stress thin-film- coated thermal neutron detectors. IEEE Transactions on Nuclear Science, 2002. [McGregor, 2003] : D.S. McGregor, M.D. Hammig, Y.-H. Yang, H.K. Gersch, and R.T. Klann. Design considerations for thin film coated semiconductor thermal neutron detectors: basics regarding alpha particle emitting neutron reactive films. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003. [Mendicino, 2015] : R Mendicino, M Boscardin, S Carturan, G Dalla Betta, and M Dalla Palma. Nuclear Instruments and Methods in Physics Research A Characterization of 3D and planar Si diodes with different neutron converter materials. Nuclear Inst. and Methods in Physics Research, 2015. [Mumminov, 1987] : R. Muminov and L. Tsvang. High-efficiency semiconductor thermal- neutron detectors. Sovietic Atomic Energy, 1987. [Murphy, 2012] : J. Murphy, G. Kunnen, I. Mejia, et al. Optimizing diode thickness for thin-film solid state thermal neutron detectors. Applied Physics Letters, 2012 . [Naseri, 2010] : A.Naseri, A.Mesbahi. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams, 2010. [Nikolic, 2010] : R J Nikolic, A M Conway, R Radev, Q Shao, L Voss, T F Wang, J R Brewer, C L Cheung, L Fabris, C L Britton, and M N Ericson. Nine element Si-based pillar structured thermal neutron detector, 2010. [Nikolic, 2011] : R J Nikolic, Q Shao, L F Voss, A M Conway, R Radev, T F Wang, M Dar, N Deo, C L Cheung, L Fabris, C L Britton, and M N Ericson. Si pil- lar structured thermal neutron detectors: fabrication challenges and performance expectations, 2011. [NIST, 2019] : https://www.nist.gov/pml/stopping-power-range-tableselectrons- protons-and-helium-ions: accessed 2019-10 [Parkera, 1997] : S. Parkera, C. Kenneya, and J Segalb. 3D - A proposed new architecture for solid-state radiation detectors ,1997 . [Pellegrini, 2009] : G. Pellegrini, F. Garcia, J. Balbuena, E. Cabruja, M. Lozano, R. Orava, and M. Ullan. Fabrication and simulation of novel ultra-thin 3D silicon detec- tors. Nuclear Instruments and Methods in Physics Re- search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009. [Pena, 2005] : Pena J, Franco L, Gomez F, Iglesias A, Pardo J, Pombar M. Monte Carlo study of Siemens PRIMUS photoneutron production, 2005. [Podgorsak, 2005] : Podgorsak. Radiation oncology physics a handbook for teachers and students, 2005. [Sasaki, 1998] : M. Sasaki, T. Nakamura, N. Tsujimura, O. Ueda, and T. Suzuki. Development and characterization of real-time personal neutron dosemeter with two silicon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998. [Slavicek, 2012] : T. Slavicek, M. Kralik, D. Krapohl, S. Petersson, S. Pospisil. A thermal neutron detector based on planar silicon sensor with TiB2 coating, 2012. [Trkov, 2007] : Trkov, A. Nuclear reactions and physical models for neutron activation analysis. Co-ordinated research project, Reference Database for Neutron Activation Analysis, 2007. [Vega, 2012] : H.R. Vega-Carrillo, S.A. Martínez-Ovalle, A.M. Lallena, G.A. Mercado, J.L. Benites-Rengifo. Neutron and photon spectra in LINACs, 2012. [Wang, 2011] : Z. Wang and C. L. Morris. Multi-layer boron thin-film detectors for neutrons. In Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011. [Zanini, 2004] : A. Zanini, E. Durisi, F. Fasolo, C. Ongaro, L. Visca, U. Nastasi, et al. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems, 2004. |
Materias: | Medicina > Detección de neutrones en radioterapia |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Física médica |
Código ID: | 889 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Abr 2021 08:53 |
Última Modificación: | 12 Abr 2021 08:56 |
Personal del repositorio solamente: página de control del documento