Rojas López, José A. (2019) Dosimetría in vivo con el uso de OSL nanodot en radioterapia con intensidad modulada / In vivo dosimetry with the use of OSL nanodot in intensity modulated radiotherapy. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 16Mb |
Resumen en español
El mayor grado de conformidad de la distribución de la dosis en los volumenes objetivo (planning target volume, PTV) y la reducción de dosis en los órganos de riesgo (organat risk, OAR) en la técnica de radioterapia de intensidad modulada (IMRT) con filtros compensadores (6 MV), conlleva un mayor grado de susceptibilidad debido a las incertidumbres espaciales inter e intra-fraccion. La dosimetría in vivo ha mostrado ser adecuada para la verificación y mejora en la precisión de la dosis dispensada. En particular, la dosimetría intracavitaria es la única que mide directamente la dosis en el PTV o en OAR. El objetivo de este trabajo consiste en realizar la dosimetría in vivo intracavitaria usando dosimetros OSL nanoDot en IMRT con ltros compensadores. Se realizo la dosimetría in vivo intracavitaria en 56 pacientes (dos dosmetros por paciente, 112 mediciones) en tratamientos de IMRT con patologías: de recto (9), de cuello uterino (6), de próstata (22), de cabeza-cuello (18) y tumor retroperitoneal (1). En todos los casos se comparo la respuesta del OSL nanoDot con el sistema de planificación de tratamiento (TPS) MIRS v.5.1 (NUCLEMED S.A., Argentina) que cuenta con un algoritmo semi-empírico integrador de scatter. Los casos se clasificaron como PTV y OARs (en zonas de alto gradiente y de dosis bajas). Por medio del límite de confianza denido por Palta et al. [1], fue posible obtener los niveles de acción (NA) para los casos estudiados. En los casos de PTV, el recto y cuello uterino tienen NA del 7% y en cabeza-cuello el 9 %. Estos valores concordaron con reportes internacionales en los que se sugiere un NA del 7% para dosimetría en IMRT. En los casos de OAR, el recto (en tratamientos de próstata) y cabeza-cuello tuvieron NA del 27% y 12 %, respetivamente. En los 10 casos estudiados en la zona de dosis bajas fuera del campo, se mostraron subestimaciones por parte del TPS MIRS de hasta el 87.7 %. Esto sugiere ampliar la investigación en virtud de los factores asociados a los efectos biológicos, ya que muchas veces los TPS tienen limitaciones para calcular la dosis en estas zonas, especialmente con el advenimiento de nuevas tecnologías, las cuales pueden causar dosis mayores fuera de los bordes de campo.
Resumen en inglés
The degree of complexity of the dose distribution at the target volumes (PTV) and the dose reduction at organs at risk (OAR) in intensity modulated radiotherapy technique (IMRT) with compensator filters (6 MV), entails a greater degree of susceptibility due to inter and intra-fractional spatial uncertainties. In vivo dosimetry has shown to be appropiate for verification and improvement in the accurate measurement of imparted dose. In particular, intracavitary dosimetry is the only technique that directly measures the dose at PTV or OAR. The objective of this work is to perform intracavitary in vivo dosimetry using OSL nanoDot dosimeters in IMRT with compensator filters. In vivo intracavitary dosimetry was carried out in 56 patients (two dosimeters per patient, 112 measurements) in IMRT treatments with following pathologies: rectum (9), cervix (6), prostate (22), head-and-neck (18) and retroperitoneal tumor (1). In all cases, the response of the OSL nanoDot was compared with the calculated doses of treatment planication system (TPS) MIRS v.5.1 (NUCLEMED S.A., Argentina) which has a semi-empirical algorithm scatter integrator. Cases were classied as PTV and OARs (in high dose gradient and low dose regions). It was possible to obtain the action levels (AL) for the studied cases through the confidence limit dened by Palta et al. [1]. For cases as PTV, rectum and cervix, the AL was 7% and 9% for head-and-neck. These values were consistent with international reports suggesting an AL of 7% for IMRT dosimetry. By the other hand, such as OAR, AL were 27% and 12% for rectum and head-and-neck, respectively. Higher AL in prostate treatments was associated to the presence of the detector in a high dose gradient region. At the low dose out-of-the-treatment eld region, dosimetric underestimation by the TPS MIRS was up to 87.7%. This suggests to continue the research in virtue of related factors with biological effects, since many times TPS has limitations to calculate dose in these regions, especially with the advent of new technologies such as IGRT, IMRT, VMAT, among others.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Dosimetry; Dosimetría; Radiotherapy; Radioterapia; [Intensity modulated radiotherapy; Radioterapia de intensidad modulada; Optically stimulated luminescence; Luminiscencia estimulada ópticamente; Intracavitary in vivo dosimetry; Dosimetría in vivo intracavitaria; Uncertainty; Incertidumbre; Low dose; Baja dosis; Level of action; Nivel de acción] |
Referencias: | [1] Palta, J., Kim, S., Li, J., Liu, C. Tolerance Limits and Action Levels for Planning and Delivery of IMRT. Intensity-Modulated Radiation Therapy: The State of Art. Medical Physics Publishing, pag. 593-612, 2003. xxiii, xxv, 3 [2] Kahn, F. M. The Physics of Radiation Therapy. 5a editon. Philadelphia, USA: Lippincott Williams and Wilkins, 2014. 1, 9 [3] Thwaites, D. Accuracy Required and Achievable in Radiotherapy Dosimetry: Have Modern Technology and Techniques Changed our Views? Journal of Physics: Conference Series, 444 (1), 2013. 1 [4] Van Dyk, J., Battista, J. J., Bauman, G. S. Accuracy Considerations in Modern Radiation Oncology: An Update. En: Medical Physics, tomo 39, pag. 4644. 2012. 1, 4, 13, 14, 64 [5] IAEA. Accuracy Requeriments and Uncertanties in Radiotherapy. Inf. Tec. 3, International Atomic Energy Agency, Vienna, 2016. 2, 3, 15, 71 [6] Nordstrom, F. Quality Assurance in Radiotherapy: Development and Evaluation of New Tools for Improved Patient Safety in External Beam Therapy. Lund, Sweden: Lund University, 2012. 2 [7] Alvarez, G. D. Desarrollo de un modelo de cálculo para dosimetría in vivo en haces de fotones conformados de alta energía. Maestría en física médica, Instituto Balseiro, 12 2004. 3 [8] Aguero, H. Dosimetría in vivo of axis. Maestría en física médica, Instituto Balseiro, 12 2005. [9] Gonzales, V. E. Dosimetría in vivo con el uso de OSL nanoDot. Maestría en física médica, Instituto Balseiro, 12 2016. 17, 18, 22, 26, 27, 68 [10] Noreña, P. T. Dosimetría interna con el uso de OSL nanoDot. Maestría en física médica, Instituto Balseiro, 12 2016. 3, 17, 18, 22, 26, 27, 44, 68 [11] Patente de invención: Método de fabricación de filtros moduladores metálicos y filtro obtenido con el mismo. Registrada en abril de 2012 bajo Acta Nro P-2012-01-01316. Titulares: FUESMEN 95 %, CNEA 5 %. Inventor: Darío Esteban Sanz. Título de patente definitivo. AR 086102 concedido en abril de 2015 por el Instituto Nacional de la Propiedad Industrial. Secretaría de Industria y Comercio.3 [12] Ezzell, G. A., Burmeister, J. W., Dogan, N., Losasso, T. J., Mechalakos, J. G., Mihailidis, D., et al. IMRT Commissioning: Multiple Institution Planning and Dosimetry Comparisons, a Report from AAPM Task Group 119. Medical Physics, 36 (11), 5359-5373, 2009. 3, 4, 16, 19, 75 [13] Sanchez-Doblado, F., Hartmann, G. H., Pena, J., Capote, R., Paiusco, M., Rhein, B., et al. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verication. International Journal of Radiation Oncology - Biology - Physics, 68 (1), 301-310, may 2007. 3 [14] Edwards, C. R., Hamer, E., Mountford, P. J., Moloney, A. J. An Update Survey of UK in vivo Radiotherapy Dosimetry Practice. The British Journal of Radiology, 80, 1011-1014, 2007. 3 [15] Akselrod, M. S., Batter-Jensen, L., McKeever, S. W. S. Optically Stimulated Luminescence and its Use in Medical Dosimetry. Radiation Measurements, 41, S78-S99, 2007. 8, 66 [16] Hu, B. Optically stimulated luminescence (OSL) and its applcations in radiation therapy dosimetry. Tesis Doctoral, Wollongong University, 2010. 8, 26, 66 [17] National Cancer Institute. cancer.gov. Ultima visita: 2019-10-21. 10 [18] Sociedad Española de Oncología Médica. https://seom.org. Ultima visita: 2019-10-06. 10 [19] Organización Mundial de la Salud. who.int/topics/cancer/es/.Ultima visita: 2019-10-21. 11, 12 [20] American Cancer Society. cancer.org. Ultima visita: 2019-10-21. 11 [21] Schiappacasse, L. E., Marsiglia, H. Movimientos de órganos y del paciente. Oncología (Barcelona), 27, 35-37, 06 2004. URL http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0378-48352004000600006&nrm=iso. 12, 59, 60 [22] Balter, J. M., Sandler, H. M., Lam, K., Bree, R. L., Lichter, A. S., Haken, R. K. T. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. International Journal of Radiation Oncology*Biology*Physics, 31 (1), 113 - 118, 1995. 12, 60 [23] Taylor, J. R. An Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements. 2a editon. California, USA: University Science Books, 1997. 13, 14 [24] Taylor, B. N., Kuyatt, C. E. Guidelines for evaluating and expressing the uncertainty of NIST measurement results. Inf. Tec. 1297, National Institute of Standards and Technology, Gaithersburg, USA, 9 1994. 14 [25] JCGM. Evaluation of Measurement Data | Guide to the Expression of Uncertainty in Measurement. Joint Committee for Guides in Metrology, 2008. 15 [26] Wambersie, J., A. Dutreix, Dutreix, A. Dosimetric Precision Required in radiotherapy. Consequences of the Choice and Performance Required of Detectors. Radiology, 52, 94-104, 1969. 15 [27] Kry, S. F., Alvarez, P., Cygler, J. E., DeWerd, L. A., Howell, R. M., Meeks, S., et al. AAPM TG 191 Clinical Use of Luminescent Dosimeters: TLDs and OSLDs. Medical Physics, 2019. 16 [28] Kerns, J. R., Kry, S. F., Sahoo, N., Followill, D. S., Ibbott, G. S. Angular Dependence of the nanoDot OSL Dosimeter. Medical Physics, 38 (7), 3955-3962, 2011. 17, 66, 68 [29] Yukihara, E. G., Mardirossian, M., Mirzasadeghi, S., Guduru. Evaluation of Al2O3:C Optically Stimulated Luminescence (OSL) Dosimeters for Passive Dosimetry of High-Energy Photon and Electron Beams in Radiotherapy. Medical Physics, 35 (1), 260-269, 2008. 17, 29 [30] Viamonte, A. R., Buckley, L. A., Cherpack, A., Cygler, E. J. Radiotherapy Dosimetry Using a Commercial OSL System. Medical Physics, 35, 1261-1266, 2008. 17, 27, 44, 45, 47 [31] Schembri, V., Heijmen, J. M. Optically Stimulated Luminescence OSL of Carbon-Doped Aluminum Oxide (Al2O3:C) for Film Dosimetry in Radiotherapy. Medical Physics, 34, 2113-2118, 2007. 17, 23, 26, 45, 66 [32] IAEA. Absorbed Dose Determination in External Beam Radiotherapy: an International Code of Practice for Dosimetry Based on Standards of Absorbed Dose toWater. Inf. Tec. 398, International Atomic Energy Agency, Vienna, 2000. 21 [33] Nascimento, L. F., Hornos, Y. M. M. Proposal of a Brazilian Accreditation Program for Personal Dosimetry Using OSL. Radiation Measurements, 45, 51-59, 2010. 22 [34] Pillai, S. Efficacy of Reusing NanoDot OSL Dosimeters Using Optical Bleaching. Master of science in medical physics, Oregon State University, 6 2015. 23 [35] Markey, B. G., Colyott, L. E., McKeever, W. S. Time-Resolved Optically Stimulated Luminescence from-Al2O3:C. Radiation Measurements, 24, 457-463, 1995. 24, 25 [36] Jursinic, P. A. Characterization of Optically Stimulated Luminescent Dosimeters, OSLDs, for Clinical Dosimetric Measurements. Medical Physics, 12, 4594-4604, 2007. 24, 25, 26 [37] Landauer InLight System. www.osldosimetry.com/inlight/. Ultima visita: 2019-08-19. 25 [38] Better-Jensen, L., McKeever, S. W. S. Optically Stimulated Luminescence Dosimetry Using Natural and Synthetic Materials. Radiation Protection Dosimetry, 65, 273-280, 1996. 26 [39] Zhuang, A. H., Olch, A. J. Validation of OSLD and a Treatment Planning System for Surface Dose Determination in IMRT Treatments. Medical Physics, 41, 081720-1-8, 07 2014. 26 [40] Batter-Jensen, L., Banerjee, D., Jungner, H., Murray, A. S. Retrospective Assessment of Enviromental Dose Rates Using Optically Stimulated Luminiscence from Al2O3:C and Quartz. Radiation Protection Dosimetry, 84, 573-542, 1999. 28, 46, 66 [41] McKeever, S. W. S., Akselrod, M. S. Radiation Dosimetry Using Pulsed Optically Stimulated Luminescence of Al2O3:C. Radiation Protection Dosimetry, 84, 317-320, 1999. 28 [42] Bordy, J. M., Bessieres, E., d'Agostino, C., Domingo, F., d'Errico, A., di Fulvio, Z., et al. Radiotherapy out-of-eld Dosimetry: Experimental and Computational Results for Photons in a Water Tank. Radiation Measurements, 63, 29-34, 2013. 32, 67 [43] Howell, R. M., Scarboro, S. B., Taddei, P. J., Krishnan, S., Kry, S. F., Newhauser, W. D. Methodology for Determining Doses to in-eld, out-of-eld an Partially in-field organs for Late Effects Studies in Photon Radiotherapy. Physics in Medicine Biology, 55 (23), 7009-7023, 2010. 32 [44] Tariq, M., Gomez, C., Riegel, C. Dosimetric Impact of Placement Errors in Optically Stimulated Luminescent in vivo Dosimetry in Radiotherapy. Physics and Imaging in Radiation Oncology, 11, 63-68, 2019. 35 [45] Magne, S., de Carlan, L., Sorel, S., Isambert, A., Bridier, A. (eds.). Multichannel OSL Dosimetry for Dose Verication in Radiotherapy. International Society of Radiology. 46, 66 [46] Huang, J. Y., Followill, D. S., Wang, X. A., Kry, S. F. Accuracy and Sources of Error of out-of Field Dose Calculations by a Commercial Treatment Planning System for Intensity-Modulated Radiation Therapy Treatments. Journal of Applied Clinical Medical Physics, 14 (2), 2013. 55, 64 [47] Howell, R. M., Scarboro, S. B., Kry, S. F., Yaldo, D. Z. Accuracy of out-of-field Dose Calculations by a Commercial Treatment Planning System. Physics in Medicine Biology, 55 (23), 2010. 55, 64 [48] The Royal College of Radiologists, S., of Radiographers, C. On target: Ensuring geometric accuracy in radiotherapy. Institute of Physics and Engineering in Medicine, London, 11 2008. 59, 69, 75 [49] Hayashi, N., Obata, Y., Uchiyama, Y., Mori, Y., Hashizume, C., Kobayashi, T. Assessment of spatial uncertainties in the radiotherapy process with the novalis system. International Journal of Radiation Oncology, Biology and Physics, 7 (2). 59, 69 [50] Stroom, J. C., Heijmen, B. J. M. Geometrical Uncertainties, Radiotherapy Planning Margins, and the ICRU-62 Report. Radiotherapy and Oncology, 64, 75-83, 2002. 68 |
Materias: | Medicina > Radioterapia |
Divisiones: | FUESMEN |
Código ID: | 892 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 09 Abr 2021 10:56 |
Última Modificación: | 12 Abr 2021 12:00 |
Personal del repositorio solamente: página de control del documento