Adragna, Celeste (2019) Implementación de braquiterapia adaptativa guiada por imágenes de resonancia magnética nuclear en pacientes con cáncer ginecológicos / Implementation of image guided apative brachytherapy using magnetic resonance imaging on gynecological cancer patients. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 20Mb |
Resumen en español
La braquiterapia es fundamental en el tratamiento de cáncer ginecológico. El uso de imágenes en asistencia de la planificacion ha evolucionado de 2-D a 3-D, incluyendo tomografía y resonancia magnética. En el presente se trabajo sobre la transición en FUESMEN desde tratamientos con planificación basada en imágenes planares hacia una braquiterapia con alta tasa de dosis guiada por Resonancia Magnética. La puesta en marcha de esta técnica requiere controles de calidad previos a su implementación que aseguren que la planificacion y entrega del tratamiento sean correctos. Con este fin se realizaron pruebas sobre las imágenes de resonancia, incluyendo la caracterizacion de los aplicadores en el resonador a utilizar y un estudio de distorsión y artefactos, así como pruebas sobre el Sistema de Planificacion de Tratamientos. Para poder implementar dichos controles se diseñaron y elaboraron dos fantomas específicos. Ademas se hicieron controles para dosimetría de fuentes, con una intercomparación de la cámara de pozo con otra institucion. Las distintas pruebas permitieron establecer una base para poder implementar de manera adecuada la Braquiterapia HDR guiada por imágenes 3-D en el servicio, abarcando aspectos clínicos, uso del planificador, protocolos de imagen, y procedimientos para controles de calidad. Por otro lado, con la resonancia se pueden definir y delimitar órganos a riesgo y volumen blanco y evaluar el volumen tumoral grueso, a diferencia del enfoque convencional de planificación 2-D ortogonal que se emplea aun en FUESMEN. Para reflejar el impacto que tiene esto en las distribuciones de dosis, se realizaron planificaciones 3-D de casos clínicos, comparando las dosimetrías obtenidas contra las resultantes de una planificación basada en puntos (2-D). En estos casos se demostró una mejor protección de estructuras críticas mientras que se sigue cumpliendo con la prescripción de dosis al volumen blanco. Esto gracias a que la optimización de la planificación y el análisis de los Histogramas Dosis-Volumen permitieron adaptar la forma de pera de las isodosis típicas a las características individuales del tumor y anatomía particular de los órganos en riesgo.
Resumen en inglés
Brachytherapy is essential in the treatment of gynecological cancer. The use of images in assistance of treatment planning has evolved from 2-D to 3-D, including tomography and magnetic resonance imaging (MRI). This work is focused in the transition from planar images based plannifications towards a high dose rate MRI guided brachytherapy in FUESMEN. Quality controls prior to the implementation of this technique are required in order to assure that treatment planning and delivery are correct. To this end, tests were performed on the resonance images, including the characterization of the applicators in the resonator to be used and a study of distortion and artifacts, as well as tests on the Treatment Planning System. In order to implement these controls, two specic phantoms were designed and developed. In addition, controls were made for source dosimetry, with an inter-comparison of the well chamber with another institution. The different tests allowed to establish a foundation on which high dose rate 3-D guided brachytherapy could be safely implemented in the service; covering clinical aspects, use of the planning system, image protocols, and procedures for quality controls. On the other hand, with magnetic resonance imaging, organs at risk and target can be dened and delimited, as well as an evaluation of the gross tumor volume, unlike the conventional 2-D planning approach that is still used in FUESMEN. In order to reffect the impact on dose distributions, 3-D planning of clinical cases was performed, comparing the dosimetries obtained against those resulting from a point-based planning (2-D). In these cases a better protection of critical structures was demonstrated, while still achieving the desired dose prescription to the target volume. This resulted from the planning optimization and Dose-Volume Histograms analysis, that allowed adaptation of the typical pear-shaped isodoses to the individual characteristics of the tumor and anatomy of the organs at risk.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Magnetic resonance; Resonancia magnética; Quality control; Control de calidad; [Adaptive brachytherapy; Braquiterapia adaptativa; 3-D planning; Planificación 3-D; High dose rate; Alta tasa de dosis] |
Referencias: | [1] GLOBOCAN 2018, Cervical Cancer fact sheets. URL https://gco.iarc.fr/ today/fact-sheets-populations-argentina. xxi [2] Viswanathan, A. N., Thomadsen, B., Committee, A. B. S. C. C. R., et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy, 11 (1), 33-46, 2012. xxi, 11 [3] Tanderup, K., Eifel, P. J., Yashar, C. M., Potter, R., Grigsby, P. W. Curative radiation therapy for locally advanced cervical cancer: brachytherapy is NOT optional. International Journal of Radiation Oncology Biology Physics, 88 (3), 537-539, 2014. xxi, 1 [4] Mayr, N. A., Magnotta, V. A., Ehrhardt, J. C., Wheeler, J. A., Sorosky, J. I., Wen, B.-C., et al. Usefulness of tumor volumetry by magnetic resonance imaging in assessing response to radiation therapy in carcinoma of the uterine cervix. International Journal of Radiation Oncology Biology Physics, 35 (5), 915-924, 1996. xxii [5] Viswanathan, A. N., Kirisits, C., Erickson, B., Potter, R. Gynecologic radiation therapy. Springer, 2011. xxii, xxii, 10, 11, 12, 13, 14 [6] Haie-Meder, C., Potter, R., Van Limbergen, E., Briot, E., De Brabandere, M., Dimopoulos, J., et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group(I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiotherapy and Oncology, 74 (3), 235-245, 2005. xxii, 5, 11, 15, 17, 84 [7] Potter, R., Haie-Meder, C., Van Limbergen, E., Barillot, I., De Brabandere, M., Dimopoulos, J., et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy|3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiotherapy and Oncology, 78 (1), 67-77, 2006. xxii, 9, 18, 84 [8] Hellebust, T. P., Kirisits, C., Berger, D., Pérez-Calatayud, J., De Brabandere, M., De Leeuw, A., et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiotherapy and Oncology, 96 (2), 153-160, 2010. xxii, 28 [9] Dimopoulos, J. C., Petrow, P., Tanderup, K., Petric, P., Berger, D., Kirisits, C., et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiotherapy and Oncology, 103 (1), 113-122, 2012. xxii, 13, 19, 28, 82 [10] Lindegaard, J. C., Fokdal, L. U., Nielsen, S. K., Juul-Christensen, J., Tanderup, K. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncologica, 52 (7), 1510-1519, 2013. xxii [11] Potter, R., Georg, P., Dimopoulos, J. C., Grimm, M., Berger, D., Nesvacil, N., et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiotherapy and Oncology, 100 (1), 116-123, 2011. xxii, xxii, 11, 12, 80 [12] Dale, R. G., Jones, B. The clinical radiobiology of brachytherapy. The British journal of radiology, 71 (845), 465-483, 1998. 3, 13 [13] Kubo, H. D., Glasgow, G. P., Pethel, T. D., Thomadsen, B. R., Williamson, J. F. High dose-rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Medical physics, 25 (4), 375-403, 1998. 3, 65, 107 [14] Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects. No 1040 en TECDOC Series. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 1998. URL https://www.iaea.org/publications/5337. 71, 107 [15] Implementation of Microsource High Dose Rate (mHDR) Brachytherapy in Developing Countries. No 1257 en TECDOC Series. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2001. URL https://www.iaea.org/publications/6282. 3, 107 [16] Implementation of High Dose Rate Brachytherapy in Limited Resource Settings. No 30 en Human Health Series. Vienna: nternational Atomic Energy Agency, 2015. URL https://www.iaea.org/publications/10355. 3, 6 [17] Pecorelli, S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. International Journal of Gynecology & Obstetrics, 105 (2), 103-104, 2009. 5 [18] International Commission on Radiation Units and Measurements. Report 89: Prescribing, recording, and reporting brachytherapy for cancer of the cervix. Journal of the International Commission on Radiation Units and Measurements, 13 (1-2), 48, 2016. URL https://doi.org/10.1093/jicru/ndw042. 5, 10, 12, 15, 16, 17 [19] Nag, S., Erickson, B., Thomadsen, B., Orton, C., Demanes, J. D., Petereit, D., et al. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the cervix. International Journal of Radiation Oncology Biology Physics, 48 (1), 201-211, 2000. 6, 9 [20] Suntharalingam, N., Podgorsak, E., Tolli, H. Brachytherapy: physical and clinical aspects. Podgorsak EB. Radiation Oncology Physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency, pags. 451-84, 2005. 6 [21] Kirisits, C., Lang, S., Dimopoulos, J., Berger, D., Georg, D., Potter, R. The vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. International Journal of Radiation Oncology Biology Physics, 65 (2), 624-630, 2006. 6, 102 [22] Walter, F., Maihofer, C., Schuttrumpf, L., Well, J., Burges, A., Ertl-Wagner, B., et al. Combined intracavitary and interstitial brachytherapy of cervical cancer using the novel hybrid applicator venezia: Clinical feasibility and initial results. Brachytherapy, 17 (5), 775-781, 2018. 6, 102 [23] International Commission on Radiation Units and Measurements. Report 38: Dose and volume specication for reporting intracavitary therapy in gynecology . Journal of the International Commission on Radiation Units and Measurements, 20 (1), NP-NP, 04 2016. URL https://doi.org/10.1093/jicru/os20.1. Report38. 7, 8, 9 [24] Kehwar, T., Goyal, M. High Dose Rate Brachytherapy of Carcinoma of the Cervix: Applicability of Various Dosimetry Systems and Guidelines in the Dose Prescription and Treatment Planning. Austin J Radiat Oncol & Cancer., 2 (1), 2016. 8, 10 [25] The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy. No 12 en Human Health Reports. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2015. URL https://www.iaea.org/publications/10705. 9, 10, 79 [26] Nag, S., Cardenes, H., Chang, S., Das, I. J., Erickson, B., Ibbott, G. S., et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. International Journal of Radiation Oncology Biology Physics, 60 (4), 1160-1172, 2004. 11, 13 [27] Potter, R., Tanderup, K., Kirisits, C., de Leeuw, A., Kirchheiner, K., Nout, R., et al. The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clinical and translational radiation oncology, 9, 48-60, 2018. 11, 12, 18, 84, 85 [28] Albuquerque, K., Hrycushko, B. A., Harkenrider, M. M., Mayadev, J., Klopp, A., Beriwal, S., et al. Compendium of fractionation choices for gynecologic HDR brachytherapy|An American Brachytherapy Society Task Group Report. Brachytherapy, 2019. 11, 12, 81 [29] de Andrade Carvalho, H., Mendez, L. C., Stuart, S. R., Guimaraes, R. G. R., Ramos, C. C. A., de Paula, L. A., et al. Implementation of image-guided brachytherapy (IGBT) for patients with uterine cervix cancer: a tumor volume kinetics approach. Journal of contemporary brachytherapy, 8 (4), 301, 2016. 12 [30] Zwahlen, D., Jezioranski, J., Chan, P., Haider, M. A., Cho, Y.-B., Yeung, I., et al. Magnetic resonance imaging-guided intracavitary brachytherapy for cancer of the cervix. International Journal of Radiation Oncology Biology Physics, 74 (4), 1157-1164, 2009. 12, 102 [31] Lang, S., Kirisits, C., Dimopoulos, J., Georg, D., Potter, R. Treatment planning for MRI assisted brachytherapy of gynecologic malignancies based on total dose constraints. International Journal of Radiation Oncology Biology Physics, 69 (2), 619-627, 2007. 13, 79, 80 [32] Richart, J., Carmona-Meseguer, V., García-Martínez, T., Herreros, A., Otal, A., Pellejero, S., et al. Review of strategies for mri based reconstruction of endocavitary and interstitial applicators in brachytherapy of cervical cancer. Reports of Practical Oncology & Radiotherapy, 23 (6), 547-561, 2018. 15 [33] Haack, S., Nielsen, S. K., Lindegaard, J. C., Gelineck, J., Tanderup, K. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiotherapy and Oncology, 91 (2), 187-193, 2009. 22, 29, 30 [34] Perez-Calatayud, J., Fernández, R. C., Martínez, T. G., Martínez, A. H., Pellejero, S. P., Sancho, J. R., et al. Consideraciones prácticas en la implementación de la resonancia magnética en la planicación en braquiterapia ginecológica de cérvix. Revista de Física Médica, 19 (2), 2018. 15, 28, 107 [35] Kim, Y., Muruganandham, M., Modrick, J. M., Bayouth, J. E. Evaluation of artifacts and distortions of titanium applicators on 3.0-Tesla MRI: feasibility of titanium applicators in MRI-guided brachytherapy for gynecological cancer. International Journal of Radiation Oncology Biology Physics, 80 (3), 947-955, 2011. 22, 29, 30 [36] Soliman, A. S., Elzibak, A., Easton, H., Kim, J. Y., Han, D. Y., Sagholi, H., et al. Quantitative MRI assessment of a novel direction modulated brachytherapy tandem applicator for cervical cancer at 1.5 T. Radiotherapy and Oncology, 120 (3), 500-506, 2016. 22, 30, 31 [37] Kirisits, C., Siebert, F.-A., Baltas, D., De Brabandere, M., Hellebust, T. P., Berger, D., et al. Accuracy of volume and dvh parameters determined with different brachytherapy treatment planning systems. Radiotherapy and oncology, 84 (3), 290-297, 2007. 23, 64 [38] Sierra, N. M. Construcción de un fatoma antropomórco de pelvis para el control de calidad en los tratamientos de IMRT con compensadores. Maestría en física médica, Universidad Nacional de Cuyo, Instituto Balseiro., 2016. 23 [39] Price, R. R., Axel, L., Morgan, T., Newman, R., Perman, W., Schneiders, N., et al. AAPM Report No 28: Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Medical physics, 17 (2), 287-295, 1990. 25, 48 [40] Jackson, E. F., Bronskill, M., Drost, D., Och, J., Pooley, R., Sobol, W., et al. AAPM Report No 100: Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. American Association of Physicists in Medicine, 2010. 25, 27 [41] American Society for Testing and Materials (ASTM). ASTM F2119-07 Standard test method for evaluation of MR image artifacts from passive implants, 2007. 29, 32 [42] Heinrich, A., Guttler, F. V., Schlesies, F., Aschenbach, R., Eckardt, N., Teichgraber, U. K. In vitro stent assessment by MRI: visibility of lumen and artifacts for 27 modern stents. Biomedical Engineering/Biomedizinische Technik, 62 (6), 565-573, 2017. 30 [43] ImageJ. URL https://imagej.nih.gov/ij/index.html. 30 [44] 3D Slicer. URL https://www.slicer.org/. 33 [45] Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. No 430 en Technical Reports Series. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2004. URL https://www.iaea.org/publications/6974. 34, 37 [46] Ballester, F., Puchades, V., Lluch, J., Serrano-Andrés, M., Limami, Y., Pérez-Calatayud, J., et al. Monte-Carlo dosimetry of the HDR 12i and Plus sources. Medical physics, 28 (12), 2586-2591, 2001. 34, 35 [47] Ballester, F., Puchades, V., Lluch, J., Serrano-Andrés, M., Limami, Y., Pérez-Calatayud, J., et al. Erratum:\Technical note: Monte-Carlo dosimetry of the HDR 12i and Plus sources"[Med. Phys. 28, 2586-2591 (2001)]. Medical Physics, 31 (8), 2372-2372, 2004. [48] Perez-Calatayud, J., Ballester, F., Das, R. K., DeWerd, L. A., Ibbott, G. S., Meigooni, A. S., et al. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO. Medical physics, 39 (5), 2904-2929, 2012. 34, 36, 46 [49] Rivard, M. J., Coursey, B. M., DeWerd, L. A., Hanson, W. F., Saiful Huq, M., Ibbott, G. S., et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Medical physics, 31 (3), 633-674, 2004. 43, 65 [50] Lliso, F., Pérez-Calatayud, J., Carmona, V., Ballester, F., Puchades, V., Granero, D. Fitted dosimetric parameters of high dose-rate sources according to the AAPM TG43 formalism. Medical physics, 30 (4), 651-654, 2003. 45, 46 [51] Aspectos fsicos de la garantía de calidad en radioterapia: protocolo de control de calidad. No 1151 en TECDOC Series. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2000. URL https://www.iaea.org/es/publications/5928. 67, 71, 73, 75, 78, 108, 112 [52] Calibration of Photon and Beta Ray Sources Used in Brachytherapy. No 1274 en TECDOC Series. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2002. URL https://www.iaea.org/publications/6474. 67, 70, 71, 73, 74, 75 [53] Venselaar, J., Pérez-Calatayud, J. A practical guide to quality control of brachytherapy equipment, ESTRO booklet No. 8. Brussels: European Society for Therapeutic Radiology and Oncology, 2004. 67, 108, 109, 111 [54] Firestone, R. B., Shirley, V. S. Table of isotopes, 2 volume set. Wiley-VCH. ISBN 0-471-33056-6 pp. 3168, pag. 3168, 1998. 69, 70 [55] Williamson, J. F. Integration of IMRT and brachytherapy. En: Image-Guided IMRT, pags. 423-437. Springer, 2006. 79 [56] Harmon, G., Diak, A., Shea, S. M., Yacoub, J. H., Small Jr, W., Harkenrider, M. M. Point A vs. HR-CTV D90 in MRI-based cervical brachytherapy of small and large lesions. Brachytherapy, 15 (6), 825-831, 2016. 102 [57] Petric, P., Fokdal, L., Hansen, A., Nielsen, S., Tanderup, K., Lindegaard, J. Oc-0175 3d-printed tandem-needle-template for image guided adaptive brachytherapy in cervical cancer. Radiotherapy and Oncology, 133, S87, 04 2019. 102 [58] Nath, R., Anderson, L. L., Meli, J. A., Olch, A. J., Stitt, J. A., Williamson, J. F. Code of practice for brachytherapy physics: report of the aapm radiation therapy committee task group no. 56. Medical physics, 24 (10), 1557-1598, 1997. 108, 112 |
Materias: | Medicina > Radioterapia |
Divisiones: | FUESMEN |
Código ID: | 893 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 09 Abr 2021 11:20 |
Última Modificación: | 12 Abr 2021 11:42 |
Personal del repositorio solamente: página de control del documento