Desarrollo de dispositivos fotónicos basados en fibra óptica / Development of photonic devices based on fiber-optics

Fernández, Germán (2019) Desarrollo de dispositivos fotónicos basados en fibra óptica / Development of photonic devices based on fiber-optics. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
5Mb

Resumen en español

En esta tesis se presentan los modelos numéricos y la respuesta de las redes de Bragg (FBG, del inglés Fiber Bragg Grating ), grabadas en fibra óptica fotosensible, frente a variaciones de temperatura y deformaciones mecánicas. Además, se realizaron las mediciones de la sensibilidad de las redes de Bragg debidas a las variaciones de la temperatura y deformación mecánica, dado por su interés tanto en aplicaciones de sensores como para la estabilización de láseres y procesadores de señal. Luego se analizó la respuesta de los modos de orden superior de la cubierta frente a las variaciones de la temperatura y deformación mecánica. Está demostrado que los acoplamientos a los diferentes modos de la cubierta en fibras de telecomunicación presentan diferentes valores de sensibilidades. Específicamente, se analiza el acoplamiento de los modos propagados en la cubierta y se los compara con la respuesta del modo fundamental propagado dentro del núcleo de la fibra óptica.

Resumen en inglés

In this thesis Fiber Bragg grating written in photosensitive fiber optic are analyzed. Numerical models and the response of the FBG for temperature variations and mechanical deformations arepresented. In addition, analysis and measurements of the sensitivity of the FBG due to the temperature variations and mechanical deformation were performed, which are of great interest in sensor applications, lasers stabilization and photonic signal processors. The response of the higher order modes of the roof was then analyzed against temperature variations and mechanical deformation. It has been shown that there are a dependence of the cladding modes with the temperature and the mechanical deformation, being this dependence or sensibility different for each modes. A comparison between the higher order modes and the fundamental mode is performed.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:[Fiber bragg grating; Red de bragg en fibra óptica; Fiber optics sensors; Sensores en fibra óptica; Temperature fiber optics sensors; Sensor óptico de temperatura; Strain fiber optics sensors; Sensor óptico de deformación; Cladding mode coupling; Modos acoplados en la cubierta; Phase mask; Mascara de fase]
Referencias:[1] Govind P Agrawal, Fiber-Optic Communication Systems. Fourth Edition, (2011), Wiley. 1 [2] Costanzo Caso, P. A., Cuadrado Laborde, C., Duchowicz, R., & Sicre, E. (2008). Distortion in optical pulse equalization through phase modulation and dispersive transmission. Optics Communications, 281 (15-16), 4001-4007. 1 [3] Bulus Rossini, L. A., Costanzo Caso, P. A., Duchowicz, R., & Sicre, E. (2010). Optical pulse compression using the temporal Radon-Wigner transform. Optics Communications, 283 (12), 2529-2535. [4] Natoli, A., Bulus, L. A., & Costanzo, P. A.(2015). Optimization of the control of dispersion and nonlinear effects in WDM communication systems. In 2015 XVI Workshop on Information Processing and Control (RPIC) (pp. 1-6). [5] Pascual, J. P., Estrada, Y., Morbidel, L., & Costanzo, P. (2018). Dispersion compensation through digital filtering in an optical OOK modulation system. In 2018 IEEE Biennial Congress of Argentina (ARGENCON)(pp. 1-6). [6] Battocchio, E., Bulus, L., & Costanzo, P.(2015). Estimation of non-linear effects in optical fiber systems based on perturbation models. In 2015 XVI Workshop on Information Processing and Control (RPIC) (pp. 1-6). [7] Battocchio, E., Morrone, J. L., Bulus Rossini, L. A., Pascual, J. P., & Costanzo Caso, P. A. (2018). Linear and Non-Linear Compensation in High Capacity Optical Communication Systems. In 2018 IEEE Biennial Congress of Argentina (ARGENCON) (pp. 1-7). 1 [8] Jin, Y., Costanzo Caso, P. A., Granieri, S., & Siahmakoun, A. (2010). Photonic integrator for A/D conversion. In Optics and Photonics for Information Processing IV (Vol. 7797, p. 77970). 1 [9] Costanzo Caso, P. A., Siahmakoun, A., & Granieri, S. (2011). Optical leaky integrator with inverted and noninverted accumulation. Microwave and Optical Technology Letters, 53 (9), 2034-2037. [10] Cuadrado Laborde, C., Costanzo Caso, P. A., Duchowicz, R., & Sicre, E. E. (2006). Pulse propagation analysis based on the temporal Radon Wigner transform. Optics communications, 266 (1), 32-38. 1 [11] Rabal, S., Bulus Rossini, L. A., & Costanzo Caso, P. A. (2017). Control strategy of true time delay lines. Fiber and Integrated Optics, 36 (1-2), 38-58. 1 [12] Costanzo Caso, P. A., Rabal, H. S., Paulucci, E., Giordana, A., & Bulus Rossini, L. A. (2012). Practical Impairments in FBG-Based True Time Delays. In Latin America Optics and Photonics Conference. 1 [13] Costanzo Caso, P. A., Gehl, M., Granieri, S., & Siahmakoun, A. (2010). Optical bistable switching with symmetrically configured SOAs in reverse bias. Microwave and Optical Technology Letters, 52 (12), 2753-2759. 1 [14] Siahmakoun, A., Constanzo Caso, P., & Reeves, E. (2012). Photonic asynchronous delta-sigma modulator system for analog-to-digital conversion. Microwave and Optical Technology Letters, 54 (5), 1287-1292. 1 [15] Reeves, E., Costanzo Caso, P., & Siahmakoun, A. (2015). Theoretical study and demonstration of photonic asynchronous first-order delta-sigma modulator for converting analog input to NRZ binary output. Microwave and Optical Technology Letters, 57 (3), 574-578. 1 [16] Rajan, G. (2015).Optical fiber sensors: advanced techniques and applications. CRC press. 1, 7, 8, 9, 11, 12 [17] Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied physics letters, 32 (10), 647-649. 2, 13, 14 [18] Paulucci, E., Lambert C., Costanzo Caso, P. A., Russo N., Duchowicz R.(2007). Análisis de filtros basados en redes de Bragg grabadas en fibras ópticas, Actas de XII Reunión de Procesamiento de la Información y Control (RPIC), Rio Gallegos, Argentina. 2 [19] Paulucci E., Sicre E., Costanzo Caso P. A., Duchowicz R. (2009). Multiplexació-n/Demultiplexación de señales WDM mediante filtros de realimentación distribuida, Actas de XIII Reunión de Procesamiento de la Información y Control (RPIC), Rosario, Argentina. 2 [20] Lambert C., Paulucci E., Costanzo Caso P. A., Russo N., Duchowicz R. (2008). Ecualización de la ganancia de un EDFA empleando un filtro acusto-óptico sintonizable, Actas de XXI Congreso Argentino de Control Automático (AADECA) , Bs.As., Argentina. 2 [21] Fernández, M. P., Costanzo, P. A., & Bulus, L. A. (2017). False detections in an optical coding-based PON monitoring scheme. IEEE Photonics Technology Letters, 29 (10), 802-805. 2 [22] Fernández, M. P., Costanzo, P. A., & Bulus, L. A. (2015). Design and performance evalauation of an optical coding scheme for PON monitoring. In 2015 XVI Workshop on Information Processing and Control (RPIC) (pp. 1-6). 2 [23] Gholamzadeh, B., & Nabovati, H. (2008). Fiber optic sensors. World Academy of Science, Engineering and Technology, 42 (3), 335-340. 2 [24] Stanc lie, A., Esposito, F., Ranjan, R., Bleotu, P., Campopiano, S., Iadicicco, A., & Sporea, D. (2017). Arcinduced Long Period Gratings in standard and speciality optical fibers under mixed neutron-gamma irradiation. Scientific reports, 7 (1), 15845. 3 [25] Bulus, L. A., Costanzo, P. A., Paulucci, E., Duchowicz, R., & Sicre, E. (2014). Phase and amplitude measurements for high bandwidth optical signals.Optical Fiber Technology, 20 (4), 403-408. 9 [26] Pardo P., Jodor, G. F., Peuriot, A. L., Santiago, G. D., & Slezak, V. B. (2013). Interferómetro de sagnac con fibra óptica para determinación de velocidades angulares. In ANALES AFA (Vol. 10, No. 1). 11 [27] Costanzo Caso, P. A., Jin, Y., Granieri, S., & Siahmakoun, A. (2011). Optical bistability in a nonlinear SOA-based fiber ring resonator. Journal of Nonlinear Optical Physics & Materials, 20 (03), 281-292. 12 [28] Barturen, M., Abadía, N., Milano, J., Costanzo, P. A., & Plant, D. V. (2018). Manipulation of extinction features in frequency combs through the usage of graphene. Optics express, 26 (12), 15490-15502. 12 [29] Meltz, G., Morey, W., & Glenn, W. H. (1989). Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics letters, 14 (15), 823-825. 13 [30] Fernández, M. P., Bulus, L. A., & Costanzo, P. A. (2019). Method for real-time measurement of the nonlinear refractive index. AIP Journal of Applied Physics, 126, 093104. 14 [31] Moreno, J. L., Bulus, L. A., Morbidel, L., & Costanzo, P. A., (2019). Simple method to measure the fiber optic nonlinear coeficient using a Sagnac interferometer. In 2019 XVIII Workshop on Information Processing and Control (RPIC) (pp. 99- 104). 14 [32] Hongzhi, J., & Yulin, L. (2000). First-and second-order diraction characteristics of fiber Bragg gratings. Optics communications, 178 (4-6), 339-343. 15 [33] Erdogan, T. (1997). Fiber grating spectra. Journal of lightwave technology, 15 (8), 1277-1294. viii, 16, 22, 29 [34] Kogelnik, H. (1976). Filter response of nonuniform almost-periodic structures. Bell System Technical Journal, 55 (1), 109-126. 17 [35] Yariv, A. (1973). Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 9 (9), 919-933. 18 [36] Byron, K. C., Sugden, K., Bricheno, T., & Bennion, I. (1993). Fabrication of chirped Bragg gratings in photosensitive fibre. Electronics letters, 29 (18), 1659-1660. 21 [37] Mora, J., Villatoro, J., Diez, A., Cruz, J. L., & Andres, M. V. (2002). Tunable chirp in Bragg gratings written in tapered core fibers. Optics communications, 210 (1-2), 51-55. 21 [38] Eggleton, B. J., Slusher, R. E., de Sterke, C. M., Krug, P. A., & Sipe, J. E. (1996). Bragg grating solitons.Physical Review Letters, 76 (10), 1627. 21 [39] Farries, M. C., Sugden, K., Reid, D. C. J., Bennion, I., Molony, A., & Goodwin, M. J. (1994). Very broad refrection bandwidth (44 nm) chirped fibre gratings and narrow bandpass filters produced by the use of an amplitude mask. Electronics Letters, 30 (11), 891-892. 21 [40] Mizrahi, V., & Sipe, J. E. (1993). Optical properties of photosensitive fiber phase gratings. Journal of lightwave technology, 11 (10), 1513-1517. 22 [41] Matsuhara, M., & Hill, K. O. (1974). Optical-waveguide band-rejection filters: Design.Applied Optics, 13 (12), 2886-2888. 22 [42] Kashyap, R. (2009). Fiber bragg gratings. Academic press. 24, 26, 34 [43] Bilodeau, F. C., Malo, B. Y., Albert, J., Johnson, D. C., & Hill, K. O. (1996). U.S. Patent No. 5,495,548. Washington, DC: U.S. Patent and Trademark Office. 25 [44] Potter Jr, B. G., & Simmons-Potter, K. (2000). Photosensitive point defects in optical glasses: Science and applications.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 166, 771-781. 25 [45] Atkins, R. M., & Mizrahi, V. (1992). Observations of changes in UV absorption bands of singlemode germanosilicate core optical fibres on writing and thermally erasing refractive index gratings.Electronics letters, 28 (18), 1743-1744. 26 [46] Lemaire, P. J., Atkins, R. M., Mizrahi, V., & Reed, W. A. (1993). High pressure H/sub 2/loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO/sub 2/doped optical fibres. Electronics Letters, 29 (13), 1191-1193. 26 [47] Grattan, K. T. V., & Sun, T. (2000). Fiber optic sensor technology: an overview. Sensors and Actuators A: Physical, 82 (1-3), 40-61. 31 [48] Othonos, A. (1997). Fiber bragg gratings. Review of scientific instruments, 68 (12), 4309-4341. 32, 35, 36 [49] Dong, B., Zhao, Q., Zhao, L., Jin, L., Miao, Y., Liao, T., & Zeng, X. (2008). Simultaneous measurement of temperature and force based on a special-strain-functionchirped FBG. Sensors and Actuators A: Physical, 147 (1), 169-172. 33, 38 [50] Baker, S. R., Rourke, H. N., Baker, V., & Goodchild, D. (1997). Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber. Journal of Lightwave Technology, 15 (8), 1470-1477. 34 [51] Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., & Vengsarkar, A. M. (1996). Hybrid fiber Bragg grating/long period fiber grating sensor for strain/- temperature discrimination. IEEE Photonics Technology Letters, 8 (9), 1223-1225. [52] Bandyopadhyay, S., Canning, J., Stevenson, M., & Cook, K. (2008). Ultrahightemperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm. Optics letters, 33 (16), 1917-1919. [53] Rogers, J. A., Eggleton, B. J., & Kuo, P. (1999). Temperature stabilised operation of tunable fibre grating devices that use distributed on-fibre thin film heaters. Electronics Letters, 35 (23), 2052-2053. 34 [54] Shu, X., Liu, Y., Zhao, D., Gwandu, B., Floreani, F., Zhang, L., & Bennion, I. (2002). Dependence of temperature and strain coeficients on fiber grating type and its application to simultaneous temperature and strain measurement. Optics letters, 27 (9), 701-703. 34 [55] Simpson, A. G., Kalli, K., Zhou, K., Zhang, L., & Bennion, I. (2004). Formation of type IA fibre Bragg gratings in germanosilicate optical fibre. Electronics Letters, 40 (3), 163-164. 34 [56] Riant, I., & Poumellec, B. (1998). Thermal decay of gratings written in hydrogenloaded germanosilicate fibres. Electronics Letters, 34(16), 1603-1604. 34 [57] Archambault, J. L., Reekie, L., & Russell, P. S. J. (1993). 100 % reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses. Electronics Letters, 29 (5), 453-455. 34 [58] Xu, M. G., Archambault, J. L., Reekie, L., & Dakin, J. P. (1994). Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors. Electronics letters, 30 (13), 1085-1087. 37, 38 [59] Kim, S., Kwon, J., Kim, S., & Lee, B. (2000). Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube. IEEE Photonics Technology Letters, 12 (6), 678-680. 38 [60] Kang, S. C., Kim, S. Y., Lee, S. B., Kwon, S. W., Choi, S. S., & Lee, B. (1998). Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator. IEEE Photonics Technology Letters, 10 (10), 1461-1463. 38 [61] Cavaleiro, P. M., Araujo, F. M., Ferreira, L. A., Santos, J. L., & Farahi, F. (1999). Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers. IEEE Photonics Technology Letters, 11 (12), 1635-1637. 38 [62] Shu, X., Zhang, L., & Bennion, I. (2002). Sensitivity characteristics of long-period fiber gratings. Journal of Lightwave Technology, 20 (2), 255-266. 38 [63] Sudo, M., Nakai, M., Himeno, K., Suzaki, S., Wada, A., & Yamauchi, R. (1997, October). Simultaneous measurement of temperature and strain using PANDA fiber grating. In Optical Fiber Sensors (p. OWC7). Optical Society of America. 38 [64] Dupray, V. (2000). Novel UV post-processed fibre Bragg grating sensor for temperature and strain measurements. In Fourteenth International Conference on Optical Fiber Sensors(Vol. 4185, p. 41855N). International Society for Optics and Photonics. 38 [65] Guan, B. O., Tam, H. Y., Tao, X. M., & Dong, X. Y. (2000). Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Letters, 12 (6), 675-677. 38 [66] Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection. Optics letters, 18 (1), 72-74. 39 [67] Melle, S. M., Liu, K., & Measures, R. M. (1992). A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technology Letters, 4 (5), 516-518. 40 [68] Fernández, M. P., Bulus, L. A., & Costanzo, P. A.(2019). PON Monitoring Technique Using Single-FBG Encoders andWavelength-to-Time Mapping. IEEE Photonics Technology Letters 31 (21),1745 - 1748. [69] Fernández, M. P., Bulus Rossini, L. A., Cruz, J. L., Andrés, M. V. & Costanzo Caso, P. A. (2019). High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters. Optics Express 27 (23),1-9. 40 [70] Zhang, C., Xu, J., Chui, P. C., &Wong, K. K. (2013). Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation. Scientific reports, 3, 2064. 43 [71] Huber, D. R. (1992). U.S. Patent No. 5,134,620. Washington, DC: U.S. Patent and Trademark Office. 45 [72] Chen, C., Xiong, L., Caucheteur, C., Mégret, P., & Albert, J. (2006, October). Differential strain sensitivity of higher order cladding modes in weakly tilted fiber Bragg gratings. In Photonic Applications for Aerospace, Transportation, and Harsh Environments (Vol. 6379, p. 63790). 54 [73] Gonzalez Reyna, M. A., Alvarado Mendez, E., Estudillo Ayala, J. M., Vargas Rodriguez, E., Sosa Morales, M. E., Sierra Hernandez, J. M., ... & Rojas-Laguna, R. (2015). Laser temperature sensor based on a fiber Bragg grating.IEEE Photonics Technology Letters, 27 (11), 1141-1144. 56 [74] Fernández, G.R., Bulus Rossini, L.A. & Costanzo Caso, P.A. (2018). Sensor de Fibra Óptica Integrado Fabry-Perot para Medir Contaminantes en Agua, Actas XXVI Jornadas de Jóvenes Investigadores AUGM, Mendoza, Argentina. págs. 15. 60 [75] Fernández, G.R, Cruz, J.L., Andrés, M.V. & Costanzo Caso, P.A. (2019). Thermal and mechanical sensitivity of cladding resonances in bragg gratings made in boron codoped germanosilicate fibers,RIAO/OPTILAS, Cancún, México. 60
Materias:Ingeniería en telecomunicaciones > Comunicaciones ópticas
Ingeniería en telecomunicaciones > Sensores ópticos
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
Código ID:898
Depositado Por:Tamara Cárcamo
Depositado En:31 Mar 2021 08:08
Última Modificación:12 Abr 2021 12:10

Personal del repositorio solamente: página de control del documento