Optomecánica de un condesado de BOSE-EINSTEIN de polaritones en microcavidades ópticas / Cavity optomechanics with a polariton BOSE-EINSTEIN condensate

Chafatinos, Dimitri L. (2019) Optomecánica de un condesado de BOSE-EINSTEIN de polaritones en microcavidades ópticas / Cavity optomechanics with a polariton BOSE-EINSTEIN condensate. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
10Mb

Resumen en español

Las microcavidades ópticas con pozos cuánticos presentan acoplamiento fuerte excitón-fotón cuando el modo de cavidad esta sintonizado (o parcialmente sintonizado) con los niveles de energías excitónicas, dando lugar a nuevas cuasi-partículas llamadas polaritones. Estas al ser compuesto de partículas bosónicas (cuasi-bosónicas en el caso de los excitones), bajo ciertas condiciones del sistema, presentan una transición de fase llevando al estado polaritónico a la condensación de Bose-Einstein. Ademas, las microcavidades diseñadas con aleaciones GaAs, AlGaAs (para distintas concentraciones de Ga y Al) y AlAs, confinan a su vez vibraciones acústica en el rango de decenas y centenas de GHz. De modo que, llevando este sistema a la fase condensada, se pueden estudiar fenómenos optomecánicos en los que las vibraciones modulan, y son afectadas por el condensado de polaritones. En esta tesis se busca evidenciar la posibilidad de observación de estos fenómenos optomecánicos con retroacción dinámica, es decir, la modulación vibracional del condensado y su efecto en las vibraciones de cavidad. A continuación se presenta una breve discusión de los resultados obtenidos en este trabajo, que abren camino al estudio de sistemas híbridos excitados opticamente, en el régimen de acoplamiento acusto-optoelectrónico fuerte. Se analizaron las propiedades optoelectrónicas y optomecánicas de tres microcavidades con características diferentes, y objetivos de estudios distintas. La primera de ellas es una microcavidad plana compuesta por dos reflectores de Bragg (DBR, por sus siglas en ingles) de Al_10Ga_90As/Al_95Ga_05As con espesores λ/4, y una cavidad λ/2 de GaAs con dos pozos cuánticos (QW) de In05Ga95As ubicados en λ/8 y 3λ/8 dentro de la misma. Esta presenta la característica de tener gradiente de espesor, variando así la posición energética del modo de cavidad, pudiendo ser sintonizado con los niveles energéticos excitónicos. Ademas, el diseño de las posiciones espaciales de los QWs busca aumentar el acoplamiento optomecánico con las vibraciones de cavidad. Sobre ésta se analizo la fotoluminiscencia a temperaturas de 8 K, y la dispersión Raman a 78 K, siendo excitadas con un láser continuo. Para las mediciones de fotoluminiscencia se colectó la luz dispersada normal al plano de la muestra, y se utilizo excitación láser no resonante en 760 nm. Los resultados muestran que el sistema presenta tres niveles acoplados fuertemente (originados en el acople entre el modo óptico y los excitones de los dos QWs con espesor levemente diferentes), lo que da lugar al estudio de un sistema polaritónico para diferentes grados de acoplamientos (debido a la posibilidad de manipulación del cambio energético del modo de cavidad). Se midió el acoplamiento entre el modo de cavidad y los excitones, siendo de Ω = (5.51 ± 0.06) meV. Analizando el ancho energético del estado polaritónico de menor energía (LP), se logró estimar el ancho homogéneo del estado fotónico y excitónico, siendo ∆EC = (0.10 ± 0.02) meV y ∆EX = (0.71 ± 0.04) meV respectivamente, y se estimo el factor Q de la cavidad, siendo de Q ∼ 12000. Además, se midió el proceso Stokes y anti-Stokes en doble resonancia óptica (DOR) evidenciando la presencia de fonones acústicos de cavidad ∼ 59 GHz. Para esto, se uso una técnica experimental de ultra-alta resolución, basada en un arreglo tandem muestra/Fabry-Perot/espectrometro. La DOR se realizo con el estado polaritónico de cavidad LP en su carácter puramente fotónico. La segunda muestra es una microcavidad microestructurada compuesta por DBRs de Al_15Ga_65As/Al_45−80Ga_55−20As, y una cavidad de 3λ/2 de Al_30Ga_70As con 6 QWs de GaAs. La muestra presenta acoplamiento fuerte entre el modo de cavidad, a detuning levemente negativo (definido por la diferencia del modo de cavidad y el primer nivel excitónico desacoplados), con dos excitones originados en huecos pesados y livianos, respectivamente, para temperaturas de < 10 K. De modo que el sistema presenta tres niveles polaritónicos. Ademas del confinamiento en una dimensión, presenta trampas de potenciales laterales del orden de 1-4 µm de tamaño espacial, lo que genera el confinamiento tridimensional de polaritones. Se estudio la fotoluminiscencia con experimentos de micro-fotoluminiscencia, bajo excitación no resonante en 760 nm, en trampas cuadradas de 3.2, 1.6 y 1.3 µm, en función de la potencia de excitación. Se evidencio la discretización de estados resuelto espacialmente para las distintas trampas, y se evidencio la transición de fase a la condensación de Bose-Einstein (BEC) para el estado de menor energía (LP). Se estudió el angostamiento del pico fundamental al ser condensado, y la intensificación no lineal en escala logarítmica, que demuestran la transición de fase al BEC. Bajo la técnica experimental de ultra-alta resolución, se midió el ancho verdadero del pico de luminiscencia correspondiente al estado condensado, encontrando así que los tiempos de coherencia máximas que alcanza el sistema en una trampa de 1.6 µm es de τcoh ≃ 520 ps. Además, se evidenciaron otras propiedades de estos sistemas, como ser el corrimiento a altas energías correspondiente al aumento de excitación láser, y la saturación del mismo debido al carácter fermiónico de las partículas excitónicas. También se encontró que la potencia umbral necesaria para llevar el sistema a su fase condensada, es menor mientras mas chicas sean las dimensiones de las trampas espacia- les, es decir, cuanto mayor sea el confinamiento espacial. También se estudio la trampa de 1.6 µm bajo excitacion pulsada no resonante. Los resultados muestran propiedades similares a bajas potencias, donde se observa la discretización del estado y el corrimiento a altas energías, análogo a lo encontrado con excitación continua. Sin embargo, a altas potencias, el sistema presenta un desdoblamiento del estado, permaneciendo uno de los picos a energía constante, y el otro presentando un corrimiento lineal con la potencia hacia altas energías. Si bien no se encontró una explicación concluyente a estos resultados, en la literatura se encuentra un articulo por el grupo de Yamamoto et. al., en donde se observan resultados similares, y presentan un modelado teórico en donde consideran el acoplamiento coherente fotón-electrón-hueco.[2] La última muestra es una microcavidad también microestructurada de los mismos componentes que la anterior, con la diferencia que los QW están diseñados en posiciones espaciales en donde se optimiza el acoplamiento optomecánico de vibraciones acústicas de 20 GHz. Sobre ésta se realizaron estudios acústicos de picosegundos con el motivo de estudiar la generación coherente óptica de estas vibraciones. Para esto se empleó una técnica experimental de reflectrometrıa diferencial ultrarrápida, en temperaturas de 80 y 5 K. En este caso, la excitación fue resonante y pulsada con láser de ancho espectral 1 ps, y frecuencia de repetición 80 MHz. Se estudiaron las vibraciones de cavidad de 20 GHz bajo la excitación pulsada a diferentes grados de sintonización del pulso láser con los niveles polaritonicos de cavidad. Los resultados muestran que las intensidades medidas de las vibraciones dependen del grado de sintonización, siendo óptimas en la cercanía de la sintonización máxima con algún modo polaritónico. También se muestra que los tiempos de vida de las vibraciones superan los 10 ns, mientras que la dinámica de relajación de los estados polaritónicos es de 1-3 ns. Por ultimo, al final del tercer capitulo, se presentan un estudio reciente sobre la segunda muestra acá presentada, en donde en el experimento de micro-fotoluminiscencia y el estado en su fase de mayor coherencia, presenta bandas laterales para valores energéticos de multiplos de 20 GHz respecto al pico del condensado. Lo que puede ser la primera evidencia de un sistema híbrido excitado opticamente, en el cual se presenta el acoplamiento acusto-optoelectrónico fuerte. Esto abre caminos a trabajos futuros en el entendimiento y estudio de BEC modulados con vibraciones de decenas de GHz generado opticamente, pudiendo presentar no-linealidades en la respuesta vibracional del sistema, como ser el enfriamiento mecánico por excitación láser (cooling ) o la auto-estimulación de vibraciones (self-oscillation).

Resumen en inglés

Optical microcavities with quantum wells exhibit strong exciton-photon coupling when the cavity mode is tuned (or partially tuned) to exciton energy levels, giving rise to new quasi-particles called polaritons. These being composed of bosonic particles (quasi-bosonic in the case of excitons), under certain system conditions, present a phase transition leading to the polaritonic state of Bose-Einstein condensation. In addition, microcavities designed with AlGaAs alloys (for different concentrations of Ga and Al) in turn confine acoustic vibrations in the range of tens and hundreds of GHz. Thus, by taking this system to the condensed phase, optomechanical phenomena can be studied in which vibrations modulate and are affected by the condensate of polaritons. In this thesis we seek to evidence the possibility of observing these optomechanical phenomena with dynamic feedback, i.e. the vibrational modulation of the condensate and its effect on cavity vibrations. The following is a brief discussion of the results obtained in this work, which open the way to the study of optically excited hybrid systems in the strong acousto-optoelectronic coupling regime. The optoelectronic and optomechanical properties of three microcavities with dif- ferent characteristics and objectives of different studies were analyzed. The first is a flat microcavity composed of two Bragg reflectors (DBR) of Al_10Ga_90As/Al_95Ga_05As with thicknesses λ/4, and a lambda/2 GaAs cavity with two quantum wells (QW) of In_05Ga_95As located in lambda/8 and 3λ/8 inside it. It has the characteristic of having a thickness gradient, thus varying the energetic position of the cavity mode, being able to be tuned to the excitonic energetic levels. In addition, the design of the spatial positions of the QWs seeks to increase the optomechanical coupling with cavity vibra- tions. The photoluminescence at temperatures of 8 K and the Raman dispersion at 78 K were analyzed on this cavity and excited with a continuous laser. For the photolu- minescence measurements, the scattered light normal to the plane of the sample was collected, and non-resonant laser excitation was used at 760 nm. The results show that the system has three strongly coupled levels (originated in the coupling between the optical mode and the excitons of the two QWs with slightly different thickness), which results in the study of a polaritonic system for different degrees of couplings (due to the possibility of manipulation of the energy change of the cavity mode). The coupling between the cavity mode and the excitons was measured, being Ω = (5.51 ± 0.06) meV. Analyzing the energetic width of the lowest energy polaritonic state (LP), it was possible to estimate the homogeneous width of the photonic and excitonic state, being ∆EC = (0.10 ± 0.02) meV and ∆EX = (0.71 ± 0.04) meV respectively, and the cavity Q factor was estimated, being Q ∼ 12000. In addition, the Stokes and anti-Stokes process was measured in double optical resonance (DOR) evidencing the presence of cavity acoustic phonons ∼ 59 GHz. For this, an ultra-high resolution experimental technique was used, based on a tandem sample/Fabry-Perot/spectrometer array. The DOR was performed with the polaritonic state of the LP cavity in its purely photonic character. The second sample is a microstructured microcavity composed of DBRs of Al_15Ga_65As/Al_45−80Ga_55− and a 3λ/2 cavity of Al_30Ga_70As with 6 QWs of GaAs. The sample shows strong coupling between the cavity mode, a slightly negative detuning (defined by the difference between the cavity mode and the first decoupled exciton level), with two excitons originating in heavy and light voids, respectively, for temperatures of < 10K. So the system has three polaritonic levels. In addition to confinement in one dimension, it presents lateral potential traps of the order of 1-4 µm spatial size, which generates three-dimensional confinement of polaritons. Photoluminescence was studied with microphotoluminescence experiments, under non-resonant excitation in 760 nm, in square traps of 3.2, 1.6 and 1.3 µm, depending on the excitation power. The discretization of spatially resolved states for the different traps was evidenced, and the phase transition to Bose-Einstein condensation (BEC) for the lower energy state (LP) was evidenced. The narrowing of the fundamental peak when condensed and the nonlinear intensifi- cation in logarithmic scale were studied, demonstrating the transition from phase to BEC. Under the ultra-high resolution experimental technique, the true width of the luminescence peak corresponding to the condensed state was measured, thus finding that the maximum coherence times reached by the system in a 1.6 τcoh ≃ 520 ps trap is τcoh ≃ 520 ps. In addition, other properties of these systems were evidenced, such as the shift to high energies corresponding to the increase of laser excitation, and the saturation of the same due to the fermionic character of the exciton particles. It was also found that the threshold power necessary to bring the system to its condensed phase is lower the smaller the dimensions of the space traps, that is, the greater the spatial confinement. The 1.6 µm trap under non-resonant pulsed excitation was also studied. The results show similar properties at low powers, where the discretization of the state and the shift to high energies is observed, analogous to that found with continuous excitation. However, at high powers, the system presents a split of the state, with one of the peaks remaining at constant energy, and the other presenting a linear shift with the power towards high energies. Although no conclusive explanation to these results was found, in the literature there is an article by the group of Yamamoto et. al., where similar results are observed, and present a theoretical model where they consider the coherent coupling photon-electron-hole.[2] The last sample is a microstructured microcavity of the same components as the previous one, with the difference that the QW are designed in spatial positions where the optomechanical coupling of acoustic vibrations of 20 GHz is optimized. Acoustic studies of picoseconds were carried out on it in order to study the coherent optical generation of these vibrations. For this, an experimental technique of ultra-fast dif- ferential reflectrometry was used, in temperatures of 80 and 5 K. In this case, the excitation was resonant and pulsed with laser of spectral width 1 ps, and repetition frequency 80 MHz. The cavity vibrations of 20 GHz under the pulsed excitation were studied at different degrees of tuning of the laser pulse with the polaritonic levels of the cavity. The results show that the measured intensities of the vibrations depend on the degree of tuning, being optimal in the vicinity of the maximum tuning with some polaritonic mode. It is also shown that the lifetimes of vibrations exceed 10 ns, while the relaxation dynamics of polaritonic states is 1-3 ns. Finally, at the end of the third chapter, a recent study is presented on the second sample presented here, where in the microphotoluminescence experiment and the state in its most coherent phase, presents lateral bands for energy values of multiples of 20 GHz with respect to the peak of the condensate. This may be the first evidence of an optically excited hybrid system, in which the strong acousto-optoelectronic coupling is presented. This opens the way for future work in the understanding and study of BEC modulated with optically generated tens of GHz vibrations, which may present non-linearities in the vibrational response of the system, such as mechanical cooling by laser excitation or self-stimulation ( or self-oscillation) of vibrations.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Polaritions: Polaritones; [Optomechanics; Optomecánica; Condensation; Condensado; Polariton; Polaritón; Microcavity; Microcavidades; Acustic-optoelectronic coupling; Acople acusto-optolectrónico]
Referencias:[1] Mollow, B. Power spectrum of light scattered by two-level systems. Physical Review, 188 (5), 1969. xvii, 85, 86 [2] Horikiri, T., Yamaguchi, M., Kamide, K., Matsuo, Y., Byrnes, T., Ishida, N., et al. High-energy side-peak emission of exciton-polariton condensates in high density regime. Scientic reports, 6, 25655, 2016. xxiii, xxvii, 55 [3] Abbott, B., Jawahar, S., Lockerbie, N., Tokmakov, K. Ligo scientic collaboration and virgo collaboration (2016) gw150914: first results from the search for binary black hole coalescence with advanced ligo. physical review d, 93 (12). issn 1550-2368. PHYSICAL REVIEW D Phys Rev D, 93, 122003, 2016. xxix, xxxi [4] Blatt, R., Roos, C. F. Quantum simulations with trapped ions. Nature Physics, 8 (4), 277, 2012. xxix [5] Purdy, T. P., Brooks, D., Botter, T., Brahms, N., Ma, Z.-Y., Stamper-Kurn, D. M. Tunable cavity optomechanics with ultracold atoms. Physical review letters, 105 (13), 133602, 2010. xxix [6] Restrepo, J., Ciuti, C., Favero, I. Single-polariton optomechanics. Physical review letters, 112 (1), 013601, 2014. xxix, xxx [7] Aspelmeyer, M., Kippenberg, T. J., Marquardt, F. Cavity optomechanics. Reviews of Modern Physics, 86 (4), 1391, 2014. xxix, xxx, xxxi, xxxi, xxxii [8] O'Connell, A. D., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lenander, M., Lucero, E., et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464 (7289), 697, 2010. xxxi, xxxi, xxxii, 27 [9] Chan, J., Alegre, T. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Groblacher, S., et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478 (7367), 89, 2011. xxix, 27 [10] Jain, V., Gieseler, J., Moritz, C., Dellago, C., Quidant, R., Novotny, L. Direct measurement of photon recoil from a levitated nanoparticle. Physical review letters, 116 (24), 243601, 2016. xxix [11] Ding, L., Baker, C., Senellart, P., Lemaitre, A., Ducci, S., Leo, G., et al. High frequency gaas nano-optomechanical disk resonator. Physical review letters, 105 (26), 263903, 2010. xxix [12] Eicheneld, M., Chan, J., Camacho, R. M., Vahala, K. J., Painter, O. Optomechanical crystals. Nature, 462 (7269), 78, 2009. xxxi, xxxii [13] Van Laer, R., Kuyken, B., Van Thourhout, D., Baets, R. Interaction between light and highly conned hypersound in a silicon photonic nanowire. Nature Photonics, 9 (3), 199, 2015. xxix [14] Weisbuch, C., Nishioka, M., Ishikawa, A., Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters, 69 (23), 3314, 1992. xxx, xxx [15] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong opticalmechanical coupling in a vertical gaas/alas microcavity for subterahertz phonons and near-infrared light. Physical review letters, 110 (3), 037403, 2013. xxx, xxxi, 59 [16] Anguiano, S., Bruchhausen, A. E., Jusserand, B., Favero, I., Lamberti, F., Lanco, L., et al. Micropillar resonators for optomechanics in the extremely high 19-95- ghz frequency range. Physical review letters, 118 (26), 263901, 2017. xxx, xxxi, 59 [17] Kuznetsov, A. S., Helgers, P. L., Biermann, K., Santos, P. V. Quantum connement of exciton-polaritons in a structured (al, ga) as microcavity. Physical Review B, 97 (19), 195309, 2018. xxx, xxxi, xxxiii, 26, 32, 34, 35, 37, 42, 46, 47, 92 [18] Somaschi, N., Giesz, V., De Santis, L., Loredo, J., Almeida, M. P., Hornecker, G., et al. Near-optimal single-photon sources in the solid state. Nature Photonics, 10 (5), 340, 2016. xxxi [19] Bajoni, D., Senellart, P., Wertz, E., Sagnes, I., Miard, A., Lematre, A., et al. Polariton laser using single micropillar gaas- gaalas semiconductor cavities. Physical review letters, 100 (4), 047401, 2008. xxxi [20] Jacqmin, T., Carusotto, I., Sagnes, I., Abbarchi, M., Solnyshkov, D., Malpuech, G., et al. Direct observation of dirac cones and a atband in a honeycomb lattice for polaritons. Physical review letters, 112 (11), 116402, 2014. xxxi [21] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong opticalmechanical coupling in a vertical gaas/alas microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett., 110, 037403, Jan 2013. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.037403. xxxi, 59 [22] Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., Heidmann, A. Radiationpressure cooling and optomechanical instability of a micromirror. Nature, 444 (7115), 71, 2006. xxxi, xxxi, xxxii, 27 [23] Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M., Cicak, K., et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475 (7356), 359, 2011. [24] Peterson, R., Purdy, T., Kampel, N., Andrews, R., Yu, P.-L., Lehnert, K., et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Physical review letters, 116 (6), 063601, 2016. xxxi, xxxi, xxxii, 27 [25] Jacobs, K., Tittonen, I., Wiseman, H., Schiller, S. Quantum noise in the position measurement of a cavity mirror undergoing brownian motion. Physical Review A, 60 (1), 538, 1999. xxxi [26] Schwab, K. C., Roukes, M. L. Putting mechanics into quantum mechanics. Physics Today, 58 (7), 36-42, 2005. xxxi [27] Pascual Winter, M. F. Generación de detección óptica de fonones coherentes en nanoestructuras. Tesis Doctoral, Universidad Nacional de Cuyo, 2009. xxxii, 60, 61, 62, 63 [28] Jusserand, B., Poddubny, A., Poshakinskiy, A., Fainstein, A., Lemaitre, A. Polariton resonances for ultrastrong coupling cavity optomechanics in gaas/alas multiple quantum wells. Physical review letters, 115 (26), 267402, 2015. xxxii, 59 [29] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J., et al. Bose-einstein condensation of exciton polaritons. Nature, 443 (7110), 409, 2006. xxxiii, xxxiii, 13, 26, 32 [30] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L., West, K. Bose-einstein condensation of microcavity polaritons in a trap. Science, 316 (5827), 1007-1010, 2007. xxxiii, 26, 32, 34 [31] Amo, A., Lefrere, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., et al. Super fluidity of polaritons in semiconductor microcavities. Nature Physics, 5 (11), 805, 2009. xxxiii, 26 [32] Kurizki, G., Bertet, P., Kubo, Y., Milmer, K., Petrosyan, D., Rabl, P., et al. Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences, 112 (13), 3866-3873, 2015. xxxiii [33] Tonks, L., Langmuir, I. Oscillations in ionized gases. Phys. Rev., 33, 195-210, Feb 1929. 1 [34] Tolpygo, K. B. Physical properties of a rock salt lattice made up of deformable ions. J. Exp. Theor. Phys., 20, 497-509, 1950. 1 [35] Huang, K. Lattice vibrations and optical waves in ionic crystals. Nature, 167 (4254), 779-780, 1951. 1 [36] Pines, D., Bohm, D. A collective description of electron interactions: Ii. collective vs individual particle aspects of the interactions. Physical Review, 85 (2), 338, 1952. 1 [37] Frohlich, H., Pelzer, H. Plasma oscillations and energy loss of charged particles in solids. Proceedings of the Physical Society. Section A, 68 (6), 525, 1955. 1 [38] Ritchie, R., Eldridge, H. Optical emission from irradiated foils. i. Physical Review, 126 (6), 1935, 1962. 1 [39] Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reection. Zeitschrift fur Physik A Hadrons and nuclei, 216 (4), 398-410, 1968. 1 [40] Bose, S. N. Plancks gesetz und lichtquantenhypothese, 1924. 1, 25 [41] Einstein, A. Quantentheorie des einatomigen idealen gases. SB Preuss. Akad. Wiss. phys.-math. Klasse, 1924. 1, 25 [42] Bruchhausen, A. Raman amplication en nanostructurted sistems. PhD Thesis, 2008. 2, 4, 11, 12, 65 [43] Burstein, E., Weisbuch, C. Conned Electrons and Photons: New Physics and Applications. 1995. 3 [44] Cardona, M., Peter, Y. Y. Fundamentals of semiconductors. Springer, 2005. 6, 7, 10 [45] Bastard, G., Mendez, E. E., Chang, L. L., Esaki, L. Exciton binding energy in quantum wells. Phys. Rev. B, 26, 1974-1979, Aug 1982. URL https://link.aps.org/doi/10.1103/PhysRevB.26.1974. 10 [46] Elliott, R. Intensity of optical absorption by excitons. Physical Review, 108 (6),1384, 1957. 11 [47] Loureno, S., Dias, I., Duarte, J., Laureto, E., Pocas, L., Toginho Filho, D., et al. Thermal expansion contribution to the temperature dependence of excitonic transitions in gaas and algaas. Brazilian journal of physics, 34 (2A), 517-525, 2004. 13 [48] Conversacion personal con M. Simonetto, Laboratorio de Fotonica y Opotelectronica, CNEA, 2018. 17, 19 [49] Vurgaftman, I., Meyer, J. ffa., Ram-Mohan, L. ffa. Band parameters for iii-v compound semiconductors and their alloys. Journal of applied physics, 89 (11), 5815, 2001. 19 [50] Rozas, G. Estudio raman de ultra-alta resolución de la dinámica de fonones acústicos confinados en cavidades. PhD Thesis, 2011. 20, 21, 38, 59, 63, 67, 69, 93 [51] Houdre, R., Stanley, R., Ilegems, M. Vacuum-eld rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system. Physical Review A, 53 (4), 2711, 1996. 21, 22 [52] Pau, S., Bjork, G., Cao, H., Hanamura, E., Yamamoto, Y. Theory of inhomogeneous microcavity polariton splitting. Solid state communications, 98 (9), 781-784, 1996. 21, 22 [53] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., Cornell, E. A. Observation of bose-einstein condensation in a dilute atomic vapor. science, pags. 198-201, 1995. 26 [54] Imamog, A., Ram, R., Pau, S., Yamamoto, Y., et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Physical Review A, 53 (6), 4250, 1996. 26 [55] Pau, S., Cao, H., Jacobson, J., Bjork, G., Yamamoto, Y., Imamoglu, A. Observation of a laserlike transition in a microcavity exciton polariton system. Physical Review A, 54 (3), R1789, 1996. 26 [56] Kira, M., Jahnke, F., Koch, S. W., Berger, J., Wick, D., Nelson Jr, T., et al. Quantum theory of nonlinear semiconductor microcavity luminescence explaining\boser" experiments. Physical review letters, 79 (25), 5170, 1997. 26 [57] Cao, H., Pau, S., Jacobson, J., Bjork, G., Yamamoto, Y., Imamoglu, A. Transition from a microcavity exciton polariton to a photon laser. Physical Review A, 55 (6), 4632, 1997. 26 [58] Deng, H., Weihs, G., Santori, C., Bloch, J., Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science, 298 (5591), 199-202, 2002. 26 [59] Wertz, E., Ferrier, L., Solnyshkov, D. D., Senellart, P., Bajoni, D., Miard, A., et al. Spontaneous formation of a polariton condensate in a planar gaas microcavity. Applied Physics Letters, 95 (5), 051108, 2009. 26 [60] Lerario, G., Fieramosca, A., Barachati, F., Ballarini, D., Daskalakis, K. S., Dominici, L., et al. Room-temperature super fluidity in a polariton condensate. Nature Physics, 13 (9), 837-841, Jun 2017. URL http://dx.doi.org/10.1038/nphys4147. 26 [61] Grudinin, I. S., Lee, H., Painter, O., Vahala, K. J. Phonon laser action in a tunable two-level system. Physical review letters, 104 (8), 083901, 2010. 27 [62] Griffin, A., Snoke, D. W., Stringari, S. Bose-einstein condensation. Cambridge University Press, 1996. 27, 28, 31 [63] Bogoliubov, N., Shirkov, D., Tolmachev, V. A new method in the superconductivity theory in akad. nauk. sssr moscow 1958. Fortschr. Physik, 6, 605, 1958. 28, 31 [64] Dalfovo, F., Giorgini, S., Pitaevskii, L., Stringari, S. Theory of trapped bosecondensed gases. Inf. tec., 1998. 29 [65] Landau, L. Theory of the super fluidity of helium ii. Physical Review, 60 (4), 356, 1941. 31 [66] Kosterlitz, J. M., Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics, 6 (7), 1181, 1973. 32 [67] Hadzibabic, Z., Kruger, P., Cheneau, M., Battelier, B., Dalibard, J. Berezinskii-kosterlitz-thouless crossover in a trapped atomic gas. Nature, 441 (7097), 1118, 2006. 32 [68] Byrnes, T., Kim, N. Y., Yamamoto, Y. Exciton{polariton condensates. Nature Physics, 10 (11), 803-813, 2014. 32, 34 [69] Deng, H., Haug, H., Yamamoto, Y. Exciton-polariton bose-einstein condensation. Reviews of Modern Physics, 82 (2), 1489, 2010. [70] Sun, Y.,Wen, P., Yoon, Y., Liu, G., Steger, M., Pfeiffer, L. N., et al. Bose-einstein condensation of long-lifetime polaritons in thermal equilibrium. Physical review letters, 118 (1), 016602, 2017. [71] Trallero-Giner, C., Durnev, M., Fernández, Y. N., Vasilevskiy, M., López-Richard, V., Kavokin, A. Excited states of exciton-polariton condensates in 2d and 1d harmonic traps. Physical Review B, 89 (20), 205317, 2014. [72] Das, A., Bhattacharya, P., Heo, J., Banerjee, A., Guo, W. Polariton bose-einstein condensate at room temperature in an al (ga) n nanowire-dielectric microcavity with a spatial potential trap. Proceedings of the National Academy of Sciences, 110 (8), 2735-2740, 2013. 34 [73] Askitopoulos, A., Ohadi, H., Kavokin, A. V., Hatzopoulos, Z., Savvidis, P. G., Lagoudakis, P. G. Polariton condensation in an optically induced two-dimensional potential. Phys. Rev. B, 88, 041308, Jul 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.88.041308. 32, 34 [74] Sarchi, D. Bose-Einstein condesation of microcavity polaritons. Tesis Doctoral, Ecole polytechnique federale de laussanne, 2007. 32, 33, 34 [75] El Daf, O., Baas, A., Guillet, T., Brantut, J.-P., Kaitouni, R. I., Staehli, J.-L., et al. Polariton quantum boxes in semiconductor microcavities. Applied Physics Letters, 88 (6), 061105, 2006. 35 [76] Kaitouni, R. I., El Daf, O., Baas, A., Richard, M., Paraiso, T., Lugan, P., et al. Engineering the spatial connement of exciton polaritons in semiconductors. Physical Review B, 74 (15), 155311, 2006. [77] Winkler, K., Schneider, C., Fischer, J., Rahimi-Iman, A., Amthor, M., Forchel, A., et al. Electroluminescence from spatially conned exciton polaritons in a textured microcavity. Applied Physics Letters, 102 (4), 041101, 2013. [78] Winkler, K., Fischer, J., Schade, A., Amthor, M., Dall, R., Geffler, J., et al. Apolariton condensate in a photonic crystal potential landscape. New Journal of Physics, 17 (2), 023001, 2015. 35 [79] Rozas, G., Winter, M. P., Jusserand, B., Fainstein, A., Perrin, B., Semenova, E., et al. Lifetime of thz acoustic nanocavity modes. Physical review letters, 102 (1), 015502, 2009. 40 80] Villafañe, V. D. Optomecánica en cavidades con modos plasmónicos de TAMM. Tesis Doctoral, Universidad Nacional de Cuyo, 2013. 59, 60, 65, 66 [81] Sesin, P., Soubelet, P., Villafañe, V., Bruchhausen, A., Jusserand, B., Lematre, A., et al. Dynamical optical tuning of the coherent phonon detection sensitivity in dbr-based gaas optomechanical resonators. Physical Review B, 92 (7), 075307, 2015. 60, 61 [82] Anguiano, S. Optomecánica y optoelectrónica en microrresonadores basados en espejos de Bragg. Tesis Doctoral, Universidad Nacional de Cuyo, 2019. 60, 61, 62, 63, 69, 70, 79 [83] Anguiano, S., Rozas, G., Bruchhausen, A., Fainstein, A., Jusserand, B., Senellart, P., et al. Spectra of mechanical cavity modes in distributed bragg reflector based vertical gaas resonators. Physical Review B, 90 (4), 045314, 2014. 59 [84] Winter, M. P., Rozas, G., Fainstein, A., Jusserand, B., Perrin, B., Huynh, A., et al. Selective optical generation of coherent acoustic nanocavity modes. Physical review letters, 98 (26), 265501, 2007. 59, 60 [85] Villafañe, V., Sesin, P., Soubelet, P., Anguiano, S., Bruchhausen, A., Rozas, G., et al. Optoelectronic forces with quantum wells for cavity optomechanics in gaas/alas semiconductor microcavities. Physical Review B, 97 (19), 195306, 2018. 59 [86] Rozas, G., Bruchhausen, A. E., Fainstein, A., Jusserand, B., Lematre, A. Polariton path to fully resonant dispersive coupling in optomechanical resonators. Physical Review B, 90 (20), 201302, 2014. 59 [87] Grahn, H., Maris, H., Tauc, J., Abeles, B. Time-resolved study of vibrations of a-ge: H/a-si: H multilayers. Physical Review B, 38 (9), 6066, 1988. 60, 61 [88] Young, D., Grahn, H., Maris, H., Tauc, J., Hong, J., Smith, T. Measurement of the sound velocity in alas by picosecond ultrasonics. MRS Online Proceedings Library Archive, 130, 1988. [89] Wright, O. Thickness and sound velocity measurement in thin transparent lms with laser picosecond acoustics. Journal of Applied Physics, 71 (4), 1617-1629, 1992. 60, 61 [90] Wright, O. B., Perrin, B., Matsuda, O., Gusev, V. Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses. Physical Review B, 64 (8), 081202, 2001. 60, 62 [91] Wright, O. B. Ultrafast nonequilibrium stress generation in gold and silver. Physical Review B, 49 (14), 9985, 1994. 60, 61 [92] Thyrrestrup, H., Yuce, E., Ctistis, G., Claudon, J., Vos, W. L., Gfferard, J.-M. Differential ultrafast all-optical switching of the resonances of a micropillar cavity. Applied physics letters, 105 (11), 111115, 2014. 60, 61 [93] Ashkin, A. Atomic-beam deflection by resonance-radiation pressure. Physical Review Letters, 25 (19), 1321, 1970. 61 [94] Nelson, K. A. Stimulated brillouin scattering and optical excitation of coherentm shear waves. Journal of Applied Physics, 53 (9), 6060-6063, 1982. 62 [95] Matsuda, O., Larciprete, M. C., Voti, R. L., Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics, 56, 3-20, 2015. 70 [96] Mollow, B., Miller, M. The damped driven two-level atom. Annals of Physics, 52 (3), 464 - 478, 1969. 85 [97] de Lima Jr, M., van der Poel, M., Santos, P., Hvam, J. M. Phonon-induced polariton superlattices. Physical review letters, 97 (4), 045501, 2006. 86 [98] Cerda-Mendez, E., Krizhanovskii, D., Wouters, M., Bradley, R., Biermann, K., Guda, K., et al. Polariton condensation in dynamic acoustic lattices. Physical review letters, 105 (11), 116402, 2010. [99] Kapnger, S., Reichert, T., Lichtmannecker, S., Muller, K., Finley, J. J., Wixforth, A., et al. Dynamic acousto-optic control of a strongly coupled photonic molecule. Nature communications, 6, 8540, 2015. 86 [100] Berstermann, T., Scherbakov, A., Akimov, A., Yakovlev, D., Gippius, N., Glavin, B., et al. Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity. Physical Review B, 80 (7), 075301, 2009. 86 [101] Berstermann, T., Bruggemann, C., Akimov, A., Bombeck, M., Yakovlev, D., Gippius, N., et al. Destruction and recurrence of excitons by acoustic shock waves on picosecond time scales. Physical Review B, 86 (19), 195306, 2012. 86 [102] Metcalfe, M., Carr, S. M., Muller, A., Solomon, G. S., Lawall, J. Resolved sideband emission of inas/gaas quantum dots strained by surface acoustic waves. Physical review letters, 105 (3), 037401, 2010. 86, 88
Materias:Física > Fotónica
Física > Optoelectrónica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica
Código ID:900
Depositado Por:Tamara Cárcamo
Depositado En:16 Abr 2021 11:54
Última Modificación:16 Abr 2021 11:54

Personal del repositorio solamente: página de control del documento