Estudio de los cambios de microestructura y textura cristalográfica en soldaduras de aleaciones de circonio. / Study of changes in microstructure and crystallographic texture of zirconium alloys.

Moya Riffo, Álvaro E. (2017) Estudio de los cambios de microestructura y textura cristalográfica en soldaduras de aleaciones de circonio. / Study of changes in microstructure and crystallographic texture of zirconium alloys. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
277Mb

Resumen en español

En esta tesis se presenta una caracterización detallada y posterior análisis de los cambios en la textura cristalográfica y la microestructura producidos por el calor aportado en el proceso de soldadura entre 2 placas de Zircaloy-4 laminado. Este material es una aleación base circonio con bajas concentraciones de otros elementos, principalmente Fe, Cr, Sn y O. El Zircaloy-4 es ampliamente usado en la industria nuclear, en componentes estructurales del núcleo del reactor. La línea de fabricación de estos componentes involucra algunas soldaduras de tubos o láminas. El proceso de soldadura produce importantes cambios en la microestructura del material original, así como también en su textura cristalográfica, especialmente en la zona afectada por el calor (ZAC) cambiando sus propiedades mecánicas, resistencia a la corrosión y susceptibilidad al hidrógeno. Los estudios microestructurales están basados en imágenes ópticas bajo luz polarizada y por microscopía electrónica de barrido (SEM). Los cambios en textura cristalográfica fueron caracterizados en diferentes escalas de longitud. Para tamaños micrométricos se construyeron mapas de orientaciones mediante la técnica de difracción de electrones retro-dispersados (EBSD), mientras que en la escala milimétrica se realizaron experimentos de difracción de rayos-X de alta energía (HE-XRD) con un haz altamente colimado de 300 x 300 μm"2 con una resolución espacial de 1 mm. Estas medidas fueron realizadas en la facilidad: Advanced Photon Source - Argonne National Laboratory (APS-ANL), Argonne, USA. Esta caracterización se complementó con mediciones de difracción de neutrones de la misma soldadura, realizadas en la facilidad: Los Alamos Neutron Science Center - Los Alamos National Laboratory (LANSCE-LANL), Los Alamos, USA. En esta misma facilidad, también se realizaron experimentos de difracción de neutrones in situ del material original sin soldar. En este último experimento, piezas de 6 X 10 X 10 mm"3 fueron calentadas hasta temperaturas de 1000°C, mientras se realizaban mediciones de textura. Con la información obtenida, se pudo estudiar la evolución de la textura a alta temperatura de manera controlada. Mediante la caracterización microestructural en la zona afectada por el calor, se lograron identificar microestructuras con morfologías tipo Widmanstätten, típicas de la transformación de fase del Zr, entre la fase cúbica (β-bcc) de alta temperatura y la estructura hexagonal (α-hcp) estable a baja temperatura. Dos morfologías distintas de granos se observan: tipo basket weave cerca del cordón de soldadura y tipo placas paralelas en la región entre la zona afectada por el calor y el material base. En lo que respecta a la textura cristalográfica dentro de la zona afectada por el calor, se observaron cambios con respecto al material original. Éstos ocurren en escalas milimétricas e incluso submilimétricas, afectando directamente a la textura cristalográfica del material original. Estos cambios también son asociados a la transformación de fase experimentada por el material durante el proceso de soldadura. La textura del material original pasó de mostrar la distribución típica de orientaciones que tienen las chapas laminadas, con los planos basales del cristal hexagonal apuntando en una dirección cercana a la normal de la chapa, a exhibir una textura completamente distinta. Las texturas dentro de la zona afectada por el calor exhiben una distribución de los planos basales muy puntuales, con componentes cercanas a la dirección de laminación y también paralelas a la transversal. La aparición de estas nuevas y particulares distribuciones se puede predecir desde la textura original, siguiendo una estricta relación de orientaciones entre las fases hexagonal y cúbica al momento de la transformación de fase experimentada. Esta restricción es bien conocida para el Circonio y se la llama relación de orientaciones de Burgers. Los estudios que involucran esta relación se centran en las posibles orientaciones, conocidas como variantes cristalográficas, que puede tomar el cristal hexagonal a partir del cristal cúbico, y vice versa, durante la transformación de fase. De todas las variantes involucradas, el material puede privilegiar algunas y así generar una textura totalmente inesperada. Este mecanismo se denomina selección de variantes. Finalmente, para el análisis y descripción de esta fenomenología, nuestra investigación se apoyó en experimentos de difracción de neutrones in-situ en los cuales se logró medir la textura cristalográfica a través de un ciclo térmico. Además se usó la reconstrucción de la microestructura y micro-textura de la fase de alta temperatura, mediante mapas EBSD de alta resolución y algoritmos basados en la relación de orientaciones cristalográficas de ambas fases. Por último, se propuso un modelo teórico sobre el origen de la selección de variantes basado en el comportamiento elástico de ambos cristales, las deformaciones necesarias entre ambas redes cristalinas durante la transformación de fase y la anisotropía del medio texturado. Con este modelo se pueden diferenciar energéticamente las variantes al momento de su nucleación. Consecuentemente se puede construir una simulación de las texturas esperadas para comparar con las mediciones experimentales. Los resultados de las simulaciones de texturas son consistentes con la evidencia experimental, permitiéndonos dar una descripción cualitativa de los fenómenos involucrados en las variaciones de texturas observadas, completando nuestro entendimiento del comportamiento del material.

Resumen en inglés

This study aims to a detailed characterization and post analysis of the changes in crystallographic texture and microstructure inside the heat affected zone by two different welding processes of Zircaloy-4 rolled plates. This material is a Zirconium alloy with alloying elements (at low concentrations) like Fe, Cr, Sn and Oxygen. Zircalloy-4 is widely used in the nuclear industry for structural components in the reactor core. On the manufacturing process of these components, some welds are performed on plates or tubes. The welding process induces strong changes on the microstructure of the original material and on the crystallographic texture, especially in the heat affected zone (HAZ), changing its mechanical properties, corrosion resistance and Hydrogen susceptibility. In this work, the microstructure characterizations were based on optical micrographs with polarized light and scanning electron microscopy (SEM). The texture changes were studied on different length scales. For micrometric sizes, orientation maps of microstructure were obtained using electron back-scattered diffraction technique (EBSD). On the millimeter scale, texture measurement were taken every 1 mm across the weld line and HAZ, using high energy X-ray diffraction (HE-XRD). This powerful technique was performed on a synchrotron beam line at Argonne National Laboratory, USA. The incident beam on this experiment was highly collimated, creating an illuminated area in sample of 300x300 μm"2, with a penetration deep of 3 mm. These features allow us to estimate the macro texture on each measurement point with good accuracy. However, previous data were used to complement our measurements. On the same welded samples, neutron diffraction experiments were done previously on HIPPO diffractometer, at Los Alamos National Laboratory, USA. That experiment used samples of 2-3 mm cutting from the welds. These data, although not having a specially good resolution, are more representatives in zones of the HAZ were the grains reach sizes comparable to the beam of the HE-XRD experiment. In addition of the present work, pieces with dimensions of 6 x 10 x 10 mm were extracted from the original non-welded material. With these samples, measurements of texture were carried out while the samples were heated in a controlled thermal cycle up to 1000 °C. The in situ experiments were performed in the HIPPO diffractometer too. With this information, we study the evolution of texture at high temperature in controlled conditions and then correlated the results to the thermal cycle of the welding process. Through the optical micrographs corresponding to the heat affected zone (HAZ) we observed the development of Widmanstätten acicular grain morphologies. This microstructure is typical of the phase transformation between the low temperature stable phase of Zr (α-hcp) and the high temperature phase (β-bcc). Two morphologies are observed inside the HAZ: basket weave grains were particularly found close to the fusion zone of the weld (center), and parallel plates colonies appear close to the base material. Concerning the texture inside the HAZ, drastic changes with respect to the base material were evident. These changes occur in length scales of millimeter and even hundreds of micrometers in some regions, and are also associated to the thermal cycle where the material experiment a phase transformation at high temperature. The original texture is that of a cold rolled plate, with their c-poles pointing 35o apart from the normal direction of the plate in the normal-transversal line, while in the HAZ, c-poles align along the transversal direction of the plate and then re-orient to different directions. These changes occur in a length scale of millimeters. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by neutron diffraction in the HIPPO diffractometer. The new texture distributions formed inside the HAZ could be explained in terms of the original texture components, by following a strict orientation relationship during the transformation to the cubic crystal structure at high temperature and then retransformed to the hexagonal structure during cooling. This relation is well knowing as “Burgers Orientation Relationship” for Zirconium and Titanium. The studies which use this relation are centered on the possible orientations resulting from a phase transformation. These possible orientations are known as crystallographic variants. From all possible variants, the material may prefer some orientations instead of others, generating a particular and unexpected final texture after phase transformation. This mechanism is called “variant selection”. For the analysis and description of this phenomenology, our study takes base on the texture measured in situ at high temperature during phase transformation. Also, using high resolution orientation maps of the EBSD characterization, the prior grains were reconstructed to correlate the microstructure with the final β texture through a variant selection process following the orientation relationship between both phases. Finally a theoretical model was proposed to describe the origin of the variant selection mechanism. This model is based on the elastic behavior of both crystals (cubic and hexagonal), the strain misfit to match both phases on the nucleation stage and the anisotropy of the matrix, considered as a textured medium. This model discriminates favorable variants for nucleation, due to an energetic advantage, and systematically simulates inherited textures using experimental textures as input. These simulations are consistent with the experimental evidence, allowing us to give a rough description of the involved mechanism to develop the different microstructures and texture.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Texture; Textura; Crystallography; Cristalografía; Zirconium; Circonio; Zirconium alloys; Aleación de circonio; X-ray diffraction; Difracción de rayos-x; Neutron diffraction; Difracción de neutrones; Widmanstaetten structure; Estructura de widmanstaetten
Referencias:[1] Bolz, R. E., Tuve, G. L. CRC Handbook of Tables for Applied Engineering Science. CRC Press, 1973. [2] Linga Murty, K., Charit, I. Texture development and anisotropic deformation of zircaloys. Progress in Nuclear Energy, 48 (4), 325–359, mayo 2006. URL http://linkinghub.elsevier.com/retrieve/pii/S0149197005001861. [3] Schemel, J. Astm Manual on Zirconium and Hafniium, tomo 639. Astm International, 1977. [4] Phys. Rev. 144, 478 (1966) - Lattice Parameters, Thermal Expansions, and Gr\üneisen Coefficients of Zirconium, 4.2 to 1130\ifmmode^\circ\else\textdegree\fi{}K. URL http://journals.aps.org/pr/abstract/10.1103/PhysRev.144.478. [5] Tenckhoff, E. Review of deformation mechanisms, texture, and mechanical anisotropy in zirconium and zirconium base alloys. Journal of ASTM International, 2 (4), 1–26, 2005. [6] Banerjee, S., Mukhopadhyay, P. Phase transformations: examples from titanium and zirconium alloys, tomo 12. Elsevier, 2010. [7] Burgers, W. G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica, 1 (7), 561–586, mayo 1934. URL http://www.sciencedirect.com/science/article/ pii/S0031891434802443. [8] Beladi, H., Chao, Q., Rohrer, G. S. Variant selection and intervariant crystallographic planes distribution in martensite in a ti-6al-4v alloy. Acta Materialia, 80, 478 – 489, 2014. URL http://www.sciencedirect.com/science/article/pii/ S1359645414004947. [9] Lemaignan, C., Motta, A. T. Zirconium alloys in nuclear applications. Materials Science and Technology, 1994. [10] Bhattacharyya, D., Viswanathan, G. The role of crystallographic and geometrical relationships between α and β phases in an αβ titanium alloy. Acta Materialia, 2003. [11] Chung, H., Kassner, T. Pseudobinary zircaloy-oxygen phase diagram. Journal of Nuclear Materials, 84 (1), 327 – 339, 1979. URL http://www.sciencedirect. com/science/article/pii/0022311579901727. [12] Miquet, A., Charquet, D., Michaut, C., Allibert, C. Effect of cr, sn and o contents on the solid state phase boundary temperatures of zircaloy-4. Journal of Nuclear Materials, 105 (2), 142 – 148, 1982. URL http://www.sciencedirect.com/science/article/pii/0022311582903683. [13] Miquet, A., Charquet, D., Allibert, C. Solid state phase equilibria of zircaloy- 4 in the temperature range 750?1050°c. Journal of Nuclear Materials, 105 (2), 132 – 141, 1982. URL http://www.sciencedirect.com/science/article/pii/0022311582903671. [14] Woo, O., Tangri, K. Transformation characteristics of rapidly heated and quenched zircaloy-4-oxygen alloys. Journal of Nuclear Materials, 79 (1), 83 – 94, 1979. URL http://www.sciencedirect.com/science/article/pii/0022311579904355. [15] Forgeron, T., Brachet, J., Barcelo, F., Castaing, A., Hivroz, J., Mardon, J., et al. Experiment and modeling of advanced fuel rod cladding behavior under loca conditions: Alpha-beta phase transformation kinetics and edgar methodology. En: Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM International, 2000. [16] Massih, A. R., Jernkvist, L. O. Transformation kinetics of alloys under nonisothermal conditions. Modelling and Simulation in Materials Science and Engineering, 17 (5), 055002, 2009. [17] Holt, R. A. The beta to alpha phase transformation in zircaloy-4. Journal of Nuclear Materials, 35 (3), 322–334, jun. 1970. URL http://www.sciencedirect.com/science/article/pii/0022311570902163. [18] Woo, O., Tangri, K. Transformation characteristics of rapidly heated and quenched zircaloy-4-oxygen alloys. Journal of Nuclear Materials, 79 (1), 83–94, 1979. [19] Ökvist, G., Källström, K. The effect of zirconium carbide on the α to β transformation structur in zircaloy. Journal of Nuclear Materials, 35 (3), 316– 321, jun. 1970. URL http://www.sciencedirect.com/science/article/pii/0022311570902151. [20] Massih, A., Andersson, T., Witt, P., Dahlbäck, M., Limbäck, M. Effect of quenching rate on the α to β phase transformation structure in zirconium alloy. Journal of Nuclear Materials, 322 (2-3), 138–151, nov. 2003. URL http://linkinghub.elsevier.com/retrieve/pii/S0022311503003234. [21] Bertolino, G., Meyer, G., Perez Ipiña, J. Mechanical properties degradation at room temperature in zry-4 by hydrogen brittleness. Materials Research, 5 (2), 125–129, 2002. [22] Flores, A. V., Gomez, A. G., Juarez, G. A., Loureiro, N., Samper, R., Santisteban, J., et al. Typical zirconium alloys microstructures in nuclear components. Practical Metallography, 51 (9), 656–674, 2014. [23] Fisher, E. S., Renken, C. J. Single-crystal elastic moduli and the hcp ! bcc transformation in ti, zr, and hf. Phys. Rev., 135, A482–A494, Jul 1964. URL http://link.aps.org/doi/10.1103/PhysRev.135.A482. [24] Hutchings, M. T., Withers, P. J., Holden, T. M., Lorentzen, T. Introduction to the characterization of residual stress by neutron diffraction. CRC press, 2005. [25] Xu, F., Holt, R., Daymond, M. Modeling lattice strain evolution during uniaxial deformation of textured zircaloy-2. Acta Materialia, 56 (14), 3672–3687, 2008. [26] Heiming, A., Petry, W., Trampenau, J., Alba, M., Herzig, C., Schober, H., et al. Phonon dispersion of the bcc phase of group-iv metals. ii. bcc zirconium, a model case of dynamical precursors of martensitic transitions. Physical Review B, 43 (13), 10948, 1991. [27] Tenckhoff, E. Deformation mechanisms, texture, and anisotropy in zirconium and zircaloy, tomo 966. ASTM International, 1988. [28] Engler, O., Randle, V. Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. CRC press, 2009. [29] Wenk, H.-R., Lonardelli, I., Williams, D. Texture changes in the hcp→bcc→hcp transformation of zirconium studied in situ by neutron diffraction. Acta Materialia, 52 (7), 1899–1907, abr. 2004. URL http://linkinghub.elsevier.com/retrieve/pii/S1359645403007778. [30] Thompson, A. W., Baskes, M. I., Flanagan, W. F. The dependence of polycrystal work hardening on grain size. Acta Metallurgica, 21 (7), 1017–1028, 1973. [31] Petch, N. The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel. Acta Metallurgica, 34 (7), 1387–1393, 1986. [32] Kelly, A., Groves, G. W., Kidd, P. Crystallography and crystal defects. John Wiley & Sons, 2000. [33] Bunge, H.-J. Texture analysis in materials science: mathematical methods. Elsevier, 2013. [34] Kocks, U. F., Tomé, C. N.,Wenk, H.-R. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press, 2000. [35] Wenk, H., Kocks, U. The representation of orientation distributions. Metallurgical Transactions A, 18 (6), 1083–1092, 1991. [36] Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (3), 334–340, 2010. [37] Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A., Richardson Jr, J. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Physics, 81 (2), 594–600, 1997. [38] Bachmann, F., Hielscher, R., Schaeben, H. Texture analysis with mtex–free and open source software toolbox. Solid State Phenomena, 160, 63–68, 2010. URL http://dx.doi.org/10.4028/www.scientific.net/SSP.160.63. [39] Schulz, L. A direct method of determining preferred orientation of a flat reflection sample using a geiger counter x-ray spectrometer. Journal of Applied Physics, 20 (11), 1030–1033, 1949. [40] Lonardelli, I., Wenk, H.-R., Lutterotti, L., Goodwin, M. Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale. Journal of Synchrotron Radiation, 12 (3), 354–360, May 2005. URL https://doi.org/10.1107/S090904950500138X. [41] Alvarez, M. V., Santisteban, J., Domizzi, G., Almer, J. Phase and texture analysis of a hydride blister in a zr2.5%nb tube by synchrotron x-ray diffraction. Acta Materialia, 59 (5), 2210 – 2220, 2011. URL http://www.sciencedirect.com/science/article/pii/S1359645410008554. [42] Bozzolo, N., Gerspach, F., Sawina, G., Wagner, F. Accuracy of orientation distribution function determination based on ebsd data-a case study of a recrystallized low alloyed zr sheet. Journal of microscopy, 227 (3), 275–283, 2007. [43] Reiche, H., Vogel, S., Mosbrucker, P., Larson, E., Daymond, M. A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line. Review of Scientific Instruments, 83 (5), 053901, 2012. [44] Wenk, H.-R., Lutterotti, L., Vogel, S. Rietveld texture analysis from tof neutron diffraction data. Powder Diffraction, 25 (03), 283–296, 2010. [45] Tenckhoff, E., Rittenhouse, P. Annealing textures in zircaloy tubing. Journal of Nuclear Materials, 35 (1), 14–23, 1970. [46] Wenk, H., Van Houtte, P. Texture and anisotropy. Reports on Progress in Physics, 67 (8), 1367, 2004. [47] Humbert, M., Moustahfid, H., Wagner, F., Philippe, M. Evaluation of the high temperature texture of the ? phase of a ta6v sample from the individual orientations of grains of the low temperature ? phase. Scripta Metallurgica et Materialia, 30 (3), 377 – 382, 1994. URL http://www.sciencedirect.com/science/article/pii/0956716X94903921. [48] Humbert, M., Wagner, F., Moustahfid, H., Esling, C. Determination of the orientation of a parent grain from the orientations of the inherited β͢ plates in the phase transformation from body-centred cubic to hexagonal close packed. Journal of applied crystallography, 28 (5), 571–576, 1995. [49] Jourdan, C., Gastaldi, J., Marzo, P., Grange, G. In situ statistical study of the nucleation, the variant selection and the orientation memory effect during the α?β͢ titanium martensitic transformation. Journal of materials science, 26 (16), 4355–4360, 1991. [50] Gey, N., Humbert, M. Characterization of the variant selection occurring during the α/β͢ phase transformations of a cold rolled titanium sheet. Acta materialia, 50 (2), 277–287, 2002. [51] Gey, N., Gautier, E., Humbert, M., Cerqueira, A., Bechade, J., Archambault, P. Study of the β→α phase transformation of zy-4 in presence of applied stresses at heating: analysis of the inherited microstructures and textures. Journal of Nuclear Materials, 302 (2), 175–184, 2002. [52] Gey, N., Humbert, M., Gautier, E., Béchade, J. L. Analysis of the β→α variant selection in a zy-4 rod by means of specific crystal orientation maps. En: Materials Science Forum, tomo 408, págs. 1759–1764. Trans Tech Publ, 2002. [53] Stanford, N., Bate, P. Crystallographic variant selection in ti–6al–4v. Acta Materialia, 52 (17), 5215–5224, 2004. [54] Daymond, M., Holt, R., Cai, S., Mosbrucker, P., Vogel, S. Texture inheritance and variant selection through an hcp ! bcc ! hcp phase transformation. Acta Materialia, 58 (11), 4053 – 4066, 2010. URL http://www.sciencedirect.com/science/article/pii/S1359645410001576. [55] Ferjutz, K., Davis, J. R. Asm handbook, volume 6: welding, brazing and soldering. ASM International, Materials Park, OH, 1993. [56] Rudling, P., Strasser, A., Garzarolli, F., van Swam, L. Welding of zirconium alloys. IZNA7 special topic report Welding of Zirconium Alloys, 2007. [57] Ortiz, L., Martinez, R. Zircaloy welding in opal reactor reflecor vessel. 15th Pacific Basin Nuclear Conference, 2006. [58] DebRoy, T., David, S. Physical processes in fusion welding. Reviews of modern physics, 67 (1), 85, 1995. [59] Kou, S. Welding metallurgy. New York, 1987. [60] Martinez, R., Boccanera, L., Fernández, L., Corso, H. Estudio sobre la distribución de hidrógeno en juntas soldadas de zircaloy-4. CONGRESO CONAMET/SAM, 2004. [61] Bozzolo, N., Dewobroto, N., Grosdidier, T., Wagner, F. Texture evolution during grain growth in recrystallized commercially pure titanium. Materials Science and Engineering: A, 397 (1), 346–355, 2005. [62] Zhu, K., Bacroix, B., Chauveau, T., Chaubet, D., Castelnau, O. Texture evolution and associated nucleation and growth mechanisms during annealing of a zr alloy. Metallurgical and Materials Transactions A, 40 (10), 2423–2434, 2009. [63] Lonardelli, I., Gey, N., Wenk, H.-R., Humbert, M., Vogel, S., Lutterotti, L. In situ observation of texture evolution during α? and β? phase transformations in titanium alloys investigated by neutron diffraction. Acta Materialia, 55 (17), 5718–5727, 2007. [64] Santisteban, J., Vicente-Alvarez, M., Vizcaino, P., Banchik, A., Vogel, S., Tremsin, A., et al. Texture imaging of zirconium based components by total neutron crosssection experiments. Journal of Nuclear Materials, 425 (1), 218–227, 2012. [65] Chauvy, C., Barberis, P., Montheillet, F. Microstructure transformation during warm working of -treated lamellar zircaloy-4 within the upper ?-range. Materials Science and Engineering: A, 431 (1?2), 59 – 67, 2006. URL http://www.sciencedirect.com/science/article/pii/S0921509306007647. [66] Chai, L., Luan, B., Zhang, M., Murty, K. L., Liu, Q. Experimental observation of 12 α variants inherited from one grain in a zr alloy. Journal of Nuclear Materials, 440 (1?3), 377 – 381, 2013. URL http://www.sciencedirect.com/science/article/pii/S002231151300799X. [67] Romero, J., Preuss, M., da Fonseca, J. Q. Texture memory and variant selection during phase transformation of a zirconium alloy. Acta Materialia, 57 (18), 5501 – 5511, 2009. URL http://www.sciencedirect.com/science/article/pii/S1359645409004819. [68] Bhattacharyya, D., Viswanathan, G., Fraser, H. L. Crystallographic and morphological relationships between phase and the widmanstätten and allotriomorphic α phase at special grain boundaries in an β/ titanium alloy. Acta Materialia, 55 (20), 6765–6778, 2007. [69] Humbert, M., Gey, N. Elasticity-based model of the variant selection observed in the to β phase transformation of a zircalloy-4 sample. Acta materialia, 51 (16), 4783–4790, 2003. [70] Gey, N., Humbert, M., Gautier, E., Béchade, J. Study of the α to β variant selection for a zircaloy-4 rod heated to the transus in presence or not of an axial tensile stress. Journal of nuclear materials, 328 (2), 137–145, 2004. [71] Porter, D. A., Easterling, K. E., Sherif, M. Phase Transformations in Metals and Alloys, (Revised Reprint). CRC press, 2009. [72] Matthies, S.,Wagner, F. On a 1/n law in texture related single orientation analysis. physica status solidi (b), 196 (2), K11–K15, 1996. [73] Gey, N., Humbert, M., Philippe, M., Combres, Y. Investigation of the α-and -β texture evolution of hot rolled ti-64 products. Materials Science and Engineering: A, 219 (1-2), 80–88, 1996. [74] Mura, T. Micromechanics of defects in solids. Springer Science & Business Media, 2013.
Materias:Ingeniería > Ciencia de los materiales
Divisiones:Energía nuclear > Ingeniería nuclear > Física de neutrones
Código ID:902
Depositado Por:Tamara Cárcamo
Depositado En:26 Feb 2021 11:37
Última Modificación:26 Feb 2021 11:55

Personal del repositorio solamente: página de control del documento